1
|
de Faria Gonçalves A, Anjos D, de Oliveira Peixoto FA, Franco FC, Silva-Sales M, Fiaccadori FS, Porto PS, Souza M. Bocaparvovirus in infants hospitalized in a neonatal intensive care unit in Midwest Brazil during the COVID-19 pandemic (2021-2022). Braz J Microbiol 2024; 55:315-322. [PMID: 38019412 PMCID: PMC10920594 DOI: 10.1007/s42770-023-01184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Human bocaparvoviruses (HBoVs) belong to the Parvoviridae family, being currently classified into four species (HBoV1-4). These viruses have been found in association with respiratory and gastroenteric symptoms, as well as in asymptomatic individuals. This study aimed to investigate the occurrence of HBoVs in infants under 5 months old admitted to a Neonatal Intensive Care Unit (NICU) during the COVID-19 pandemic (between March 2021 and March 2022). Clinical samples (nasopharyngeal swab, serum, stool, and urine) were screened by qPCR TaqMan. The HBoV was detected in samples of 31.6% (12/38) of participants. The most frequent alteration among the HBoV-positive neonates was the chest X-ray with interstitial infiltrate, followed by tachycardia and vomiting. Viral DNA was detected in more than one type of clinical sample in three of the participants in association with respiratory symptoms. Two participants had positive stool samples with or without enteric symptoms. HBoV intermittent and continuous positivity patterns were observed. The present study stands out for the prospective evaluation of positivity for HBoV in different types of clinical samples from a population of hospitalized infants. Our data supports circulation of HBoV in nosocomial environment during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aline de Faria Gonçalves
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil
| | - Déborah Anjos
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil
| | | | - Fernanda Craveiro Franco
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil
| | - Marcelle Silva-Sales
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil
| | - Fabíola Souza Fiaccadori
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil
| | - Pedro Soares Porto
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil
| | - Menira Souza
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Sala 420, Setor Leste Universitário, Goiânia, Goiás, 74605050, Brazil.
| |
Collapse
|
2
|
Jalving HT, Heimdal I, Valand J, Risnes K, Krokstad S, Nordbø SA, Døllner H, Christensen A. The Burden of Human Bocavirus 1 in Hospitalized Children With Respiratory Tract Infections. J Pediatric Infect Dis Soc 2023; 12:282-289. [PMID: 37099765 PMCID: PMC10231390 DOI: 10.1093/jpids/piad027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Human bocavirus 1 (HBoV1) is frequently codetected with other viruses, and detected in asymptomatic children. Thus, the burden of HBoV1 respiratory tract infections (RTI) has been unknown. Using HBoV1-mRNA to indicate true HBoV1 RTI, we assessed the burden of HBoV1 in hospitalized children and the impact of viral codetections, compared with respiratory syncytial virus (RSV). METHODS Over 11 years, we enrolled 4879 children <16 years old admitted with RTI. Nasopharyngeal aspirates were analyzed with polymerase chain reaction for HBoV1-DNA, HBoV1-mRNA, and 19 other pathogens. RESULTS HBoV1-mRNA was detected in 2.7% (130/4850) samples, modestly peaking in autumn and winter. Forty-three percent with HBoV1 mRNA were 12-17 months old, and only 5% were <6 months old. A total of 73.8% had viral codetections. It was more likely to detect HBoV1-mRNA if HBoV1-DNA was detected alone (odds ratio [OR]: 3.9, 95% confidence interval [CI]: 1.7-8.9) or with 1 viral codetection (OR: 1.9, 95% CI: 1.1-3.3), compared to ≥2 codetections. Codetection of severe viruses like RSV had lower odds for HBoV1-mRNA (OR: 0.34, 95% CI: 0.19-0.61). The yearly lower RTI hospitalization rate per 1000 children <5 years was 0.7 for HBoV1-mRNA and 8.7 for RSV. CONCLUSIONS True HBoV1 RTI is most likely when HBoV1-DNA is detected alone, or with 1 codetected virus. Hospitalization due to HBoV1 LRTI is 10-12 times less common than RSV.
Collapse
Affiliation(s)
- Hedda Trømborg Jalving
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Inger Heimdal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jonas Valand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children’s Department, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children’s Department, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Runge A, Straif S, Banki Z, Borena W, Muellauer B, Brunner J, Gottfried T, Schmutzhard J, Dudas J, Risslegger B, Randhawa A, Lass-Flörl C, von Laer D, Riechelmann H. Viral infection in chronic otitis media with effusion in children. Front Pediatr 2023; 11:1124567. [PMID: 37234860 PMCID: PMC10208354 DOI: 10.3389/fped.2023.1124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Background The role of respiratory viruses in chronic otitis media with effusion (COME) in children is not clearly defined. In our study we aimed to investigate the detection of respiratory viruses in middle ear effusions (MEE) as well as the association with local bacteria, respiratory viruses in the nasopharynx and cellular immune response of children with COME. Methods This 2017-2019 cross-sectional study included 69 children aged 2-6 undergoing myringotomy for COME. MEE and nasopharyngeal swabs were analyzed via PCR and CT-values for the genome and loads of typical respiratory viruses. Immune cell populations and exhaustion markers in MEE related to respiratory virus detection were studied via FACS. Clinical data including the BMI was correlated. Results Respiratory viruses were detected in MEE of 44 children (64%). Rhinovirus (43%), Parainfluenzavirus (26%) and Bocavirus (10%) were detected most frequently. Average Ct values were 33.6 and 33.5 in MEE and nasopharynx, respectively. Higher detection rates correlated with elevated BMI. Monocytes were elevated in MEE (9.5 ± 7.3%/blood leucocytes). Exhaustion markers were elevated on CD4+ and CD8+ T cells and monocytes in MEE. Conclusion Respiratory viruses are associated with pediatric COME. Elevated BMI was associated with increased rates of virus associated COME. Changes in cell proportions of innate immunity and expression of exhaustion markers may be related to chronic viral infection.
Collapse
Affiliation(s)
- Annette Runge
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sonja Straif
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltan Banki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Muellauer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
- Faculty of Medicine and Dental Medicine, Danube Private Univeristy Krems, Krems-Stein, Austria
| | - Timo Gottfried
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Risslegger
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Avneet Randhawa
- Department of Otolaryngology—Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, United States
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Mijač M, Ljubin-Sternak S, Ivković-Jureković I, Vraneš J. Comparison of MT-PCR with Quantitative PCR for Human Bocavirus in Respiratory Samples with Multiple Respiratory Viruses Detection. Diagnostics (Basel) 2023; 13:diagnostics13050846. [PMID: 36899990 PMCID: PMC10001063 DOI: 10.3390/diagnostics13050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Human bocavirus (HBoV) is an important respiratory pathogen, especially in children, but it is often found in co-detection with other respiratory viruses, which makes the diagnostic approach challenging. We compared multiplex PCR and quantitative PCR for HBoV with multiplex tandem PCR (MT-PCR) in 55 cases of co-detection of HBoV and other respiratory viruses. In addition, we investigated whether there is a connection between the severity of the disease, measured by the localization of the infection, and amount of virus detected in the respiratory secretions. No statistically significant difference was found, but children with large amount of HBoV and other respiratory virus had a longer stay in hospital.
Collapse
Affiliation(s)
- Maja Mijač
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
- Medical Microbiology Department, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Correspondence:
| | - Sunčanica Ljubin-Sternak
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
- Medical Microbiology Department, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Irena Ivković-Jureković
- Department of Pulmonology, Allergy, Immunology and Rheumatology, Children’s Hospital Zagreb, 10000 Zagreb, Croatia
- Faculty for Dental Medicine and Healthcare, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasmina Vraneš
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
- Medical Microbiology Department, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Saha S, Fozzard N, Lambert SB, Ware RS, Grimwood K. Human bocavirus-1 infections in Australian children aged < 2 years: a birth cohort study. Eur J Clin Microbiol Infect Dis 2023; 42:99-108. [PMID: 36434280 PMCID: PMC9702687 DOI: 10.1007/s10096-022-04529-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
To determine human bocavirus-1 (HBoV1) infection characteristics in young Australian children. Data were from the Observational Research in Childhood Infectious Diseases (ORChID) study, a Brisbane, Australia-based birth cohort of healthy, term, newborns followed prospectively for 2 years. Parents recorded daily symptoms, maintained an illness-burden diary, and collected weekly nasal swabs, which were tested for 17 respiratory viruses, including HBoV1, by real-time polymerase chain reaction (PCR) assays. Main outcomes measured were infection incidence, risk factors, symptoms, and healthcare use. One hundred fifty-eight children in the ORChID cohort provided 11,126 weekly swabs, of which 157 swabs were HBoV1 positive involving 107 incident episodes. Co-detections were observed in 65/157 (41.4%) HBoV1-positive swabs (or 41/107 [38.3%] infection episodes), principally with rhinovirus. Shedding duration was 1 week in 64.5% of episodes. The incidence of HBoV1 infections in the first 2 years of life was 0.58 episodes per child-year (95% confidence interval [CI] 0.47-0.71), including 0.38 episodes per child-year (95% CI 0.30-0.49) associated with respiratory symptoms. Recurrent episodes occurred in 18/87 (20.7%) children following their primary infection. In the first 2 years of life, incidence of HBoV1 episodes increased with age, during winter and with childcare attendance. Overall, 64.2% of HBoV1 episodes were symptomatic, with 26.4% having healthcare contact. Viral load estimates were higher when children were symptomatic than when asymptomatic (mean difference = 3.4; 95% CI 1.0-5.7 PCR cycle threshold units). After age 6 months, HBoV1 is detected frequently in the first 2 years of life, especially during winter. Symptoms are usually mild and associated with higher viral loads.
Collapse
Affiliation(s)
- Sumanta Saha
- School of Medicine and Dentistry, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Nicolette Fozzard
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Stephen B Lambert
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, Sydney, NSW, Australia
| | - Robert S Ware
- School of Medicine and Dentistry, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia.
- Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia.
| |
Collapse
|
6
|
Mathisen M, Basnet S, Christensen A, Sharma AK, Tylden G, Krokstad S, Valentiner-Branth P, Strand TA. Viral and Atypical Bacterial Detection in Young Nepalese Children Hospitalized with Severe Pneumonia. Microbiol Spectr 2021; 9:e0055121. [PMID: 34704788 PMCID: PMC8549725 DOI: 10.1128/spectrum.00551-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory viruses cause a substantial proportion of respiratory tract infections in children but are underrecognized as a cause of severe pneumonia hospitalization in low-income settings. We employed 22 real-time PCR assays and retrospectively reanalyzed 610 nasopharyngeal aspirate specimens from children aged 2 to 35 months with severe pneumonia (WHO definition) admitted to Kanti Childrens' Hospital in Kathmandu, Nepal, from January 2006 through June 2008. Previously, ≥1 of 7 viruses had been detected by multiplex reverse transcription-PCR in 30% (188/627) of cases. Reanalyzing the stored specimens, we detected ≥1 pathogens, including 18 respiratory viruses and 3 atypical bacteria, in 98.7% (602/610) of cases. Rhinovirus (RV) and respiratory syncytial virus (RSV) were the most common, detected in 318 (52.1%) and 299 (49%) cases, respectively, followed by adenovirus (AdV) (10.6%), human metapneumovirus (hMPV) (9.7%), parainfluenza virus type 3 (8.4%), and enterovirus (7.7%). The remaining pathogens were each detected in less than 5%. Mycoplasma pneumoniae was most common among the atypical bacteria (3.7%). Codetections were observed in 53.3% of cases. Single-virus detection was more common for hMPV (46%) and RSV (41%) than for RV (22%) and AdV (6%). The mean cycle threshold value for detection of each pathogen tended to be lower in single-pathogen detections than in codetections. This finding was significant for RSV, RV, and AdV. RSV outbreaks occurred at the end of the monsoon or during winter. An expanded diagnostic PCR panel substantially increased the detection of respiratory viruses in young Nepalese children hospitalized with severe pneumonia. IMPORTANCE Respiratory viruses are an important cause of respiratory tract infections in children but are underrecognized as a cause of pneumonia hospitalization in low-income settings. Previously, we detected at least one of seven respiratory viruses by PCR in 30% of young Nepalese children hospitalized with severe pneumonia over a period of 36 months. Using updated PCR assays detecting 21 different viruses and atypical bacteria, we reanalyzed 610 stored upper-respiratory specimens from these children. Respiratory viruses were detected in nearly all children hospitalized for pneumonia. RSV and rhinovirus were the predominant pathogens detected. Detection of two or more pathogens was observed in more than 50% of the pneumonia cases. Single-virus detection was more common for human metapneumovirus and RSV than for rhinovirus and adenovirus. The concentration of virus was higher (low cycle threshold [CT] value) for single detected pathogens, hinting at a high viral load as a marker of clinical significance.
Collapse
Affiliation(s)
- Maria Mathisen
- Department of Medical Microbiology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Sudha Basnet
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Andreas Christensen
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Arun K. Sharma
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Garth Tylden
- Department of Microbiology and Infection control, University Hospital of North Norway, Tromsø, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Palle Valentiner-Branth
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Infectious Disease Preparedness, Copenhagen, Denmark
| | - Tor A. Strand
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
7
|
Polo D, Lema A, Gándara E, Romalde JL. Prevalence of human bocavirus infections in Europe. A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:2451-2461. [PMID: 34250765 DOI: 10.1111/tbed.14233] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Human bocaviruses (HBoVs) are recently described as human emergent viruses, especially in young children. In this study, we undertook a systematic review and meta-analysis to estimate their prevalence in Europe. PubMed, Web of Science and Scopus databases were systematically screened for clinical studies, up to October 2020. Study eligibility criteria were primary full-text articles from clinical studies, conducted using valid screening test methods and published in peer-reviewed journals, in English or Spanish and from European countries. The overall pooled prevalence, prevalence by country as well as the prevalence of HBoV as a single or co-pathogen were estimated using a random-effects model. Sub-group and meta-regression analyses explored potential sources of heterogeneity in the data. A total of 35 studies involving 32,656 subjects from 16 European countries met the inclusion criteria. Heterogeneity (I2 = 97.0%, p < .01) was seen among studies; HBoV prevalence varied from 2.0 to 45.69% with a pooled estimate of 9.57% (95%CI 7.66-11.91%). The HBoV prevalence both as a single infection (3.99%; 95%CI 2.99-5.31%) or as co-infection with other viruses (5.06%; 95%CI 3.88-6.58%) was also analysed. On a geographic level, prevalence by country did not show statistical differences, ranging from 3.24% (Greece) to 21.05% (Denmark). An odds ratio analysis was also included in order to evaluate the relevance of the variable 'age' as a risk factor of HBoV infection in children <5 years old. The OR value of 1.77 (95%CI 1.13-2.77; p < .01) indicated that being <5 years old is a risk factor for HBoV infection. This study showed that HBoV has a moderate prevalence among European countries.
Collapse
Affiliation(s)
- David Polo
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Enia Gándara
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Xiao J, He W. The immunomodulatory effects of vitamin D drops in children with recurrent respiratory tract infections. Am J Transl Res 2021; 13:1750-1756. [PMID: 33841698 PMCID: PMC8014391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of vitamin D drops on immune function in children with recurrent respiratory tract infections (RRTI). METHODS The clinical data of 119 children with RRTI in our hospital were retrospectively retrieved, and they were divided into group A (n=59, receiving routine treatment) and group B (n=60, receiving vitamin D drops) based on their treatment modality. The clinical efficacy, symptom disappearance time, immune function index, insulin-like growth factor (IGF-1), 25-hydroxyvitamin D3 [25-(OH)D3], serum y-interferon (INF-y), and the number of episodes of respiratory tract infections were compared between the two groups. RESULTS The total effective rate of treatment in group B was 96.67%, which was significantly higher than 71.19% in group A (P<0.05). Children in group B had shorter time to disappearance of lung rales, cough, and fever than group A (P<0.05). Group B had higher IgA, IgG, and IgM levels, higher CD4+, CD3+ levels and lower CD8+ levels as well as higher IGF-1, 25-(OH)D3, INF-y levels, and fewer respiratory infections after treatment than group A (P<0.05). CONCLUSION Vitamin D drops are effective in the treatment of children with RRTI, which is beneficial to the improvement of clinical symptoms and immune function.
Collapse
Affiliation(s)
- Jianqiu Xiao
- Department of Pediatrics, The First People's Hospital of Fuyang Hangzhou Hangzhou 311400, Zhejiang Province, China
| | - Wei He
- Department of Pediatrics, The First People's Hospital of Fuyang Hangzhou Hangzhou 311400, Zhejiang Province, China
| |
Collapse
|
9
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
10
|
Xu M, Perdomo MF, Mattola S, Pyöriä L, Toppinen M, Qiu J, Vihinen-Ranta M, Hedman K, Nokso-Koivisto J, Aaltonen LM, Söderlund-Venermo M. Persistence of Human Bocavirus 1 in Tonsillar Germinal Centers and Antibody-Dependent Enhancement of Infection. mBio 2021; 12:e03132-20. [PMID: 33531399 PMCID: PMC7858059 DOI: 10.1128/mbio.03132-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Human bocavirus 1 (HBoV1), a nonenveloped single-stranded DNA parvovirus, causes mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children. HBoV1 often persists in nasopharyngeal secretions for months, hampering diagnosis. It has also been shown to persist in pediatric palatine and adenoid tonsils, which suggests that lymphoid organs are reservoirs for virus spread; however, the tissue site and host cells remain unknown. Our aim was to determine, in healthy nonviremic children with preexisting HBoV1 immunity, the adenotonsillar persistence site(s), host cell types, and virus activity. We discovered that HBoV1 DNA persists in lymphoid germinal centers (GCs), but not in the corresponding tonsillar epithelium, and that the cell types harboring the virus are mainly naive, activated, and memory B cells and monocytes. Both viral DNA strands and both sides of the genome were detected, as well as infrequent mRNA. Moreover, we showed, in B-cell and monocyte cultures and ex vivo tonsillar B cells, that the cellular uptake of HBoV1 occurs via the Fc receptor (FcγRII) through antibody-dependent enhancement (ADE). This resulted in viral mRNA transcription, known to occur exclusively from double-stranded DNA in the nucleus, however, with no detectable productive replication. Confocal imaging with fluorescent virus-like particles moreover disclosed endocytosis. To which extent the active HBoV1 GC persistence has a role in chronic inflammation or B-cell maturation disturbances, and whether the virus can be reactivated, will be interesting topics for forthcoming studies.IMPORTANCE Human bocavirus 1 (HBoV1), a common pediatric respiratory pathogen, can persist in airway secretions for months hampering diagnosis. It also persists in tonsils, providing potential reservoirs for airway shedding, with the exact location, host cell types, and virus activity unknown. Our study provides new insights into tonsillar HBoV1 persistence. We observed HBoV1 persistence exclusively in germinal centers where immune maturation occurs, and the main host cells were B cells and monocytes. In cultured cell lines and primary tonsillar B cells, we showed the virus uptake to be significantly enhanced by HBoV1-specific antibodies, mediated by the cellular IgG receptor, leading to viral mRNA synthesis, but without detectable productive replication. Possible implications of such active viral persistence could be tonsillar inflammation, disturbances in immune maturation, reactivation, or cell death with release of virus DNA, explaining the long-lasting HBoV1 airway shedding.
Collapse
Affiliation(s)
- Man Xu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | | | - Salla Mattola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lari Pyöriä
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Mari Toppinen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Esposito S, Mencacci A, Cenci E, Camilloni B, Silvestri E, Principi N. Multiplex Platforms for the Identification of Respiratory Pathogens: Are They Useful in Pediatric Clinical Practice? Front Cell Infect Microbiol 2019; 9:196. [PMID: 31275863 PMCID: PMC6593267 DOI: 10.3389/fcimb.2019.00196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/21/2019] [Indexed: 01/31/2023] Open
Abstract
Respiratory tract infections (RTIs) are extremely common especially in the first year of life. Knowledge of the etiology of a RTI is essential to facilitate the appropriate management and the implementation of the most effective control measures. This perspective explains why laboratory methods that can identify pathogens in respiratory secretions have been developed over the course of many years. High-complexity multiplex panel assays that can simultaneously detect up to 20 viruses and up to four bacteria within a few hours have been marketed. However, are these platforms actually useful in pediatric clinical practice? In this manuscript, we showed that these platforms appear to be particularly important for epidemiological studies and clinical research. On the contrary, their routine use in pediatric clinical practice remains debatable. They can be used only in the hospital as they require specific equipment and laboratory technicians with considerable knowledge, training, and experience. Moreover, despite more sensitive and specific than other tests routinely used for respiratory pathogen identification, they do not offer significantly advantage for detection of the true etiology of a respiratory disease. Furthermore, knowledge of which virus is the cause of a respiratory disease is not useful from a therapeutic point of view unless influenza virus or respiratory syncytial virus are the infecting agents as effective drugs are available only for these pathogens. On the other hand, multiplex platforms can be justified in the presence of severe clinical manifestations, and in immunocompromised patients for whom specific treatment option can be available, particularly when they can be used simultaneously with platforms that allow identification of antimicrobial resistance to commonly used drugs. It is highly likely that these platforms, particularly those with high sensitivity and specificity and with low turnaround time, will become essential when new drugs effective and safe against most of the respiratory viruses will be available. Further studies on how to differentiate carriers from patients with true disease, as well as studies on the implications of coinfections and identification of antimicrobial resistance, are warranted.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Antonella Mencacci
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Barbara Camilloni
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Ettore Silvestri
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
13
|
Costa BCL, Dábilla NAS, Almeida TN, Fiaccadori FS, de Souza TT, das Dores de Paula Cardoso D, de Moraes Arantes A, Souza M. Human bocavirus detection and quantification in fecal and serum specimens from recipients of allogeneic hematopoietic stem cell transplantation: A longitudinal study. J Med Virol 2019; 94:594-600. [PMID: 30982975 DOI: 10.1002/jmv.25486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the occurrence of human bocavirus (HBoV) and to determine viral loads in samples of patients admitted for allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS Fecal and serum samples were collected from 19 patients, during a 24-month period. Samples were screened by quantitative polymerase chain reaction TaqMan assay, with specific probe and primers targeting the NP1 gene of all HBoVs genotypes (HBoV-1 to - 4), and viral loads were determined using serial dilutions of a recombinant plasmid. RESULTS HBoV DNA was detected in 42.1% (8 of 19) of the patients in at least one type of sample (feces and/or serum) during the study period, with 75% (6 of 8) of the patients being positive in both types of sample. Viral shedding in feces had a median of 26 days (range, 5 to 121) and viremia was detected in 87.5% (7 of 8) of the patients. The HBoV loads in fecal samples were higher than in sera and, in most cases, HBoV was detected earlier in fecal than in sera samples. In six HBoV-positive patients (6 of 8) diarrhea was observed concomitantly to viral detection in fecal samples. CONCLUSIONS A high frequency and loads of HBoV in allo-HSCT recipients was observed, especially in fecal samples. Positivity in fecal samples was an early predictor of HBoV presence.
Collapse
Affiliation(s)
- Brunno Câmara Lopes Costa
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Nathânia Alves Silva Dábilla
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Tâmera Nunes Almeida
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fabíola Souza Fiaccadori
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Teresinha Teixeira de Souza
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Divina das Dores de Paula Cardoso
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Menira Souza
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
14
|
Vliora C, Papadakis V, Doganis D, Tourkantoni N, Paisiou A, Kottaridi C, Kourlamba G, Zaoutis T, Kosmidis H, Kattamis A, Polychronopoulou S, Goussetis E, Giannouli G, Syridou G, Priftis K, Papaevangelou V. A prospective study on the epidemiology and clinical significance of viral respiratory infections among pediatric oncology patients. Pediatr Hematol Oncol 2019; 36:173-186. [PMID: 31215284 DOI: 10.1080/08880018.2019.1613462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Respiratory infections in oncology are both common and potentially severe. However, there is still a gap in the literature, regarding the epidemiology of viral respiratory infections in children with cancer. We prospectively enrolled 224 patients, from September 2012 to August 2015. The cohort included children with hematologic or solid malignancies receiving chemotherapy, or undergoing hemopoietic stem cell transplantation, outpatients/inpatients exhibiting signs/symptoms of febrile/afebrile upper/lower respiratory infection. Viral infection was diagnosed by detection of ≥1 viruses from a sample at time of enrollment, using the CLART® PneumoVir kit (GENOMICA, Spain). Α detailed questionnaire including demographics and medical history was also completed. Samples were processed in batches, results were communicated as soon as they became available. Children recruited in whom no virus was detected composed the no virus detected group. Viral prevalence was 38.4% in children presenting with respiratory illness. A single virus was found in 30.4%, with RSV being the most frequent. Viral coinfections were detected in 8%. Children with viral infection were more likely to be febrile upon enrollment and to present with lower respiratory signs/symptoms. They had longer duration of illness and they were more likely to receive antibiotics/antifungals. Only 22% of children with influenza received oseltamivir. Mortality was low (2.7%), however, pediatric intensive care unit (PICU) admission and death were correlated with virus detection. In our study mortality was low and PICU admission was related to virus identification. Further research is needed to clarify whether antibiotics in virus-proven infection are of value and underline the importance of oseltamivir's timely administration in influenza.
Collapse
Affiliation(s)
- Christianna Vliora
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Vassilios Papadakis
- b Department of Pediatric Hematology-Oncology , Athens , Greece , "Aghia Sofia" Children's Hospital
| | - Dimitrios Doganis
- c Oncology Department , " P&A Kyriakou" Children's Hospital , Athens , Greece
| | - Natalia Tourkantoni
- d Hematology-Oncology Unit, First Department of Pediatrics , National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital , Athens , Greece
| | - Anna Paisiou
- e Stem Cell Transplant Unit , Aghia Sofia Children's Hospital , Athens , Greece
| | | | - Georgia Kourlamba
- g The Stavros Niarchos Foundation-Collaborative Center for Clinical Epidemiology and Outcomes Research (CLEO), First and Second Departments of Pediatrics, National and Kapodistrian University of Athens , Athens , Greece
| | - Theoklis Zaoutis
- g The Stavros Niarchos Foundation-Collaborative Center for Clinical Epidemiology and Outcomes Research (CLEO), First and Second Departments of Pediatrics, National and Kapodistrian University of Athens , Athens , Greece
| | - Helen Kosmidis
- c Oncology Department , " P&A Kyriakou" Children's Hospital , Athens , Greece
| | - Antonis Kattamis
- d Hematology-Oncology Unit, First Department of Pediatrics , National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital , Athens , Greece
| | - Sophia Polychronopoulou
- b Department of Pediatric Hematology-Oncology , Athens , Greece , "Aghia Sofia" Children's Hospital
| | - Evgenios Goussetis
- e Stem Cell Transplant Unit , Aghia Sofia Children's Hospital , Athens , Greece
| | - Georgia Giannouli
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Garyfallia Syridou
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Kostas Priftis
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Vassiliki Papaevangelou
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| |
Collapse
|
15
|
Christensen A, Kesti O, Elenius V, Eskola AL, Døllner H, Altunbulakli C, Akdis CA, Söderlund-Venermo M, Jartti T. Human bocaviruses and paediatric infections. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:418-426. [PMID: 30948251 DOI: 10.1016/s2352-4642(19)30057-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
Human bocavirus 1 (HBoV1), belonging to the Parvoviridae family, was discovered in 2005, in nasopharyngeal samples from children with respiratory tract infections. Three additional bocaviruses, HBoV2-4, were discovered in 2009-10. These viruses have mainly been found in faecal samples and their role in human diseases is still uncertain. HBoV1 causes a wide spectrum of respiratory diseases in children, including common cold, acute otitis media, pneumonia, bronchiolitis, and asthma exacerbations. HBoV1 DNA can persist in airway secretions for months after an acute infection. Consequently, acute HBoV1 infection cannot be diagnosed with standard DNA PCR; quantitative PCR and serology are better diagnostic approaches. Because of their high clinical specificity, diagnostic developments such as HBoV1 mRNA and antigen detection have shown promising results. This Review summarises the knowledge on human bocaviruses, with a special focus on HBoV1.
Collapse
Affiliation(s)
- Andreas Christensen
- Department of Medical Microbiology, St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Olli Kesti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Varpu Elenius
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna L Eskola
- Department of Education, University of Turku, Turku, Finland
| | - Henrik Døllner
- Department of Pediatrics, St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research, University of Zürich and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Tuomas Jartti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
16
|
Yan Z, Zou W, Feng Z, Shen W, Park SY, Deng X, Qiu J, Engelhardt JF. Establishment of a High-Yield Recombinant Adeno-Associated Virus/Human Bocavirus Vector Production System Independent of Bocavirus Nonstructural Proteins. Hum Gene Ther 2019; 30:556-570. [PMID: 30398383 DOI: 10.1089/hum.2018.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of recombinant adeno-associated virus 2 (rAAV2) remains a promising candidate for gene therapy for cystic fibrosis (CF) lung disease, but due to limitations in the packaging capacity and the tropism of this virus with respect to the airways, strategies have evolved for packaging an rAAV2 genome (up to 5.8 kb) into the capsid of human bocavirus 1 (HBoV1) to produce a chimeric rAAV2/HBoV1 vector. Although a replication-incompetent HBoV1 genome has been established as a trans helper for capsid complementation, this system remains suboptimal with respect to virion yield. Here, a streamlined production system is described based on knowledge of the involvement of HBoV1 nonstructural (NS) proteins NS1, NS2, NS3, NS4, and NP1 in the process of virion production. The analyses reveal that NS1 and NS2 negatively impact virion production, NP1 is required to prevent premature termination of transcription of the cap mRNA from the native genome, and silent mutations within the polyadenylation sites of the cap coding sequence can eliminate this requirement for NP1. It is further shown that preventing the expression of all NS proteins significantly increases virion yield. Whereas the expression of capsid proteins VP1, VP2, and VP3 from a codon-optimized cap mRNA was highly efficient, optimal virion assembly, and thus potency, required enhanced VP1 expression, entailing a separate VP1 expression cassette. The final NS protein-free production system uses three-plasmid co-transfection of HEK293 cells, with one trans helper plasmid encoding VP1 and the AAV2 Rep proteins, and another encoding VP2-3 and components from adenovirus. This system yielded >16-fold more virions than the prototypic system, without reducing transduction potency. This increase in virion production is expected to facilitate greatly both research on the biology of rAAV2/HBoV1 and preclinical studies testing the effectiveness of this vector for gene therapy of CF lung disease in large animal models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiran Shen
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| |
Collapse
|
17
|
Schildgen V, Pieper M, Khalfaoui S, Arnold WH, Schildgen O. Human Bocavirus Infection of Permanent Cells Differentiated to Air-Liquid Interface Cultures Activates Transcription of Pathways Involved in Tumorigenesis. Cancers (Basel) 2018; 10:cancers10110410. [PMID: 30380741 PMCID: PMC6267225 DOI: 10.3390/cancers10110410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
The parvoviral human bocavirus (HBoV) is a respiratory pathogen, able to persist in infected cells. The viral DNA has been identified in colorectal and lung tumors and thus it was postulated that the virus could be associated with tumorigenesis. This assumption was supported by the fact that in HBoV-infected patients and in an in vitro cell culture system, pro-cancerogenic and -fibrotic cytokines were expressed. In this work, it is shown by a whole transcriptome analysis that, also at the mRNA level, several pathways leading to neoplasia and tumorigenesis are significantly upregulated. In total, a set of 54 transcripts are specifically regulated by HBoV, of which the majority affects canonical pathways that may lead to tumor development if they become deregulated. Moreover, pathways leading to necrosis, apoptosis and cell death are downregulated, supporting the hypothesis that HBoV might contribute to the development of some kinds of cancer.
Collapse
Affiliation(s)
- Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Kliniken der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln/Cologne, Germany.
| | - Monika Pieper
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Kliniken der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln/Cologne, Germany.
| | - Soumaya Khalfaoui
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Kliniken der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln/Cologne, Germany.
| | - Wolfgang H Arnold
- Universität Witten/Herdecke, Lehrstuhl für Biologische und Materialkundliche Grundlagen der Zahnmedizin, D-58448 Witten, Germany.
| | - Oliver Schildgen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Kliniken der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln/Cologne, Germany.
| |
Collapse
|
18
|
Tang YW, Stratton CW. The Role of the Human Bocavirus (HBoV) in Respiratory Infections. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120174 DOI: 10.1007/978-3-319-95111-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human bocavirus is one of the most common respiratory viruses and occurs in all age groups. Because Koch’s postulates have been fulfilled unintendedly, it is currently accepted that the virus is a real pathogen associated with upper and lower respiratory tract infections causing clinical symptoms ranging from a mild common cold to life-threatening respiratory diseases. In order to exclude a viremia, serological analysis should be included during laboratory diagnostics, as acute and chronic infections cannot be differentiated by detection of viral nucleic acids in respiratory specimen alone due to prolonged viral shedding. Besides its ability to persist, the virus appears to trigger chronic lung disease and increases clinical symptoms by causing fibrotic lung diseases. Due to the lack of an animal model, clinical trials remain the major method for studying the long-term effects of HBoV infections.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
19
|
Schlaberg R, Ampofo K, Tardif KD, Stockmann C, Simmon KE, Hymas W, Flygare S, Kennedy B, Blaschke A, Eilbeck K, Yandell M, McCullers JA, Williams DJ, Edwards K, Arnold SR, Bramley A, Jain S, Pavia AT. Human Bocavirus Capsid Messenger RNA Detection in Children With Pneumonia. J Infect Dis 2017; 216:688-696. [PMID: 28934425 PMCID: PMC5853397 DOI: 10.1093/infdis/jix352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Background The role of human bocavirus (HBoV) in respiratory illness is uncertain. HBoV genomic DNA is frequently detected in both ill and healthy children. We hypothesized that spliced viral capsid messenger RNA (mRNA) produced during active replication might be a better marker for acute infection. Methods As part of the Etiology of Pneumonia in the Community (EPIC) study, children aged <18 years who were hospitalized with community-acquired pneumonia (CAP) and children asymptomatic at the time of elective outpatient surgery (controls) were enrolled. Nasopharyngeal/oropharyngeal specimens were tested for HBoV mRNA and genomic DNA by quantitative polymerase chain reaction. Results HBoV DNA was detected in 10.4% of 1295 patients with CAP and 7.5% of 721 controls (odds ratio [OR], 1.4 [95% confidence interval {CI}, 1.0–2.0]); HBoV mRNA was detected in 2.1% and 0.4%, respectively (OR, 5.1 [95% CI, 1.6–26]). When adjusted for age, enrollment month, and detection of other respiratory viruses, HBoV mRNA detection (adjusted OR, 7.6 [95% CI, 1.5–38.4]) but not DNA (adjusted OR, 1.2 [95% CI, .6–2.4]) was associated with CAP. Among children with no other pathogens detected, HBoV mRNA (OR, 9.6 [95% CI, 1.9–82]) was strongly associated with CAP. Conclusions Detection of HBoV mRNA but not DNA was associated with CAP, supporting a pathogenic role for HBoV in CAP. HBoV mRNA could be a useful target for diagnostic testing.
Collapse
Affiliation(s)
- Robert Schlaberg
- Department of Pathology.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | | | - Keith D Tardif
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | | | | | - Weston Hymas
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | | | | | | | | | - Mark Yandell
- Department of Human Genetics, University of Utah
| | - Jon A McCullers
- Department of Pediatrics, University of Tennessee Health Sciences Center.,Nashville and Le Bonheur Children's Hospital.,St. Jude Children's Research Hospital, Memphis
| | - Derek J Williams
- Vanderbilt University School of Medicine.,Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University.,Vanderbilt Vaccine Research Program, Nashville, Tennessee
| | - Kathryn Edwards
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University.,Vanderbilt Vaccine Research Program, Nashville, Tennessee
| | - Sandra R Arnold
- Department of Pediatrics, University of Tennessee Health Sciences Center.,Nashville and Le Bonheur Children's Hospital
| | - Anna Bramley
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Seema Jain
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
20
|
Moe N, Stenseng IH, Krokstad S, Christensen A, Skanke LH, Risnes KR, Nordbø SA, Døllner H. The Burden of Human Metapneumovirus and Respiratory Syncytial Virus Infections in Hospitalized Norwegian Children. J Infect Dis 2017; 216:110-116. [PMID: 28838133 PMCID: PMC7107394 DOI: 10.1093/infdis/jix262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Background The burden of severe human metapneumovirus (HMPV) respiratory tract infections (RTIs) in European children has not been clarified. We assessed HMPV in Norwegian children and compared hospitalization rates for HMPV and respiratory syncytial virus (RSV). Methods We prospectively enrolled children (<16 years old) hospitalized with RTI and asymptomatic controls (2006-2015). Nasopharyngeal aspirate samples were analyzed with polymerase chain reaction (PCR) tests for HMPV, RSV, and 17 other pathogens. We genotyped HMPV-positive samples and assessed shedding time in 32 HMPV-infected children. Results In children with RTI, HMPV was detected in 7.3% (267 of 3650) and RSV in 28.7% (1048 of 3650). Among controls, 2.1% (7 of 339) had low HMPV levels detected by PCR, but all were culture negative. HMPV primarily occurred from January to April and in regular epidemics. At least 2 HMPV subtypes occurred each season. The average annual hospitalization rates in children <5 years old with lower RTI were 1.9/1000 (HMPV) and 10.4/1000 (RSV). Among children with RTI, the median HMPV shedding time by PCR was 13 days (range, 6-28 days), but all were culture negative (noninfectious) after 13 days. Conclusions HMPV appears in epidemics in Norwegian children, with a hospitalization rate 5 times lower than RSV. Low levels of HMPV are rarely detected in healthy children.
Collapse
Affiliation(s)
- Nina Moe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Inger Heimdal Stenseng
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology
| | - Sidsel Krokstad
- Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars Høsøien Skanke
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Kari Ravndal Risnes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Svein Arne Nordbø
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| |
Collapse
|
21
|
Xu M, Arku B, Jartti T, Koskinen J, Peltola V, Hedman K, Söderlund-Venermo M. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology. J Infect Dis 2017; 215:1551-1557. [DOI: 10.1093/infdis/jix169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
|
22
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Isaacs D. Bocavirus respiratory infections. J Paediatr Child Health 2016; 52:910. [PMID: 27650154 DOI: 10.1111/jpc.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Moe N, Pedersen B, Nordbø SA, Skanke LH, Krokstad S, Smyrnaios A, Døllner H. Respiratory Virus Detection and Clinical Diagnosis in Children Attending Day Care. PLoS One 2016; 11:e0159196. [PMID: 27433803 PMCID: PMC4951077 DOI: 10.1371/journal.pone.0159196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Respiratory viruses often have been studied in children with respiratory tract infection (RTI), but less knowledge exists about viruses in asymptomatic children. We have studied the occurrence of a broad panel of respiratory viruses in apparently healthy children attending day care, taking into account the influence of possible confounding factors, such as age, clinical signs of respiratory tract infection (RTI), location (day-care section) and season. METHODS We have studied 161 children in two day-care centers, each with separate sections for younger and older children, during four autumn and winter visits over a two-year period. A total of 355 clinical examinations were performed, and 343 nasopharyngeal samples (NPS) were analyzed by semi-quantitative, real-time, polymerase chain reaction (PCR) tests for 19 respiratory pathogens. RESULT Forty-three percent of all NPS were PCR-positive for ≥ 1 of 13 virus species, with high species variation during visits. Rhinovirus 26% (88/343 NPS), enterovirus 12% (40/343) and parechovirus 9% (30/343) were detected in every visit, and the rates varied in relation to age, day-care section and season. Ten other viruses were detected in ≤ 3% of the NPS. Generally, viruses occurred together in the NPS. In 24% (79/331) of the clinical examinations with available NPS, the children had clear signs of RTI, while in 41% (135/331) they had mild signs, and in 35% (117/331) the children had no signs of RTI. Moreover, viruses were found in 70% (55/79) of children with clear signs of RTI, in 41% (55/135) with mild signs and in 30% (35/117) without any signs of RTI (p < 0.001). CONCLUSIONS Positive PCR tests for respiratory viruses, particularly picornaviruses, were frequently detected in apparently healthy children attending day care. Virus detection rates were related to age, presence of clinical signs of RTI, location in day care and season.
Collapse
Affiliation(s)
- Nina Moe
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Bård Pedersen
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Svein Arne Nordbø
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Høsøien Skanke
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anastasios Smyrnaios
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|