1
|
Lesnak JB, Hayashi K, Plumb AN, Janowski AJ, Chimenti MS, Sluka KA. The impact of sex and physical activity on the local immune response to muscle pain. Brain Behav Immun 2023; 111:4-20. [PMID: 36972744 DOI: 10.1016/j.bbi.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Induction of muscle pain triggers a local immune response to produce pain and this mechanism may be sex and activity level dependent. The purpose of this study was to measure the immune system response in the muscle following induction of pain in sedentary and physically active mice. Muscle pain was produced via an activity-induced pain model using acidic saline combined with fatiguing muscle contractions. Prior to induction of muscle pain, mice (C57/BL6) were sedentary or physically active (24hr access to running wheel) for 8 weeks. The ipsilateral gastrocnemius was harvested 24hr after induction of muscle pain for RNA sequencing or flow cytometry. RNA sequencing revealed activation of several immune pathways in both sexes after induction of muscle pain, and these pathways were attenuated in physically active females. Uniquely in females, the antigen processing and presentation pathway with MHC II signaling was activated after induction of muscle pain; activation of this pathway was blocked by physical activity. Blockade of MHC II attenuated development of muscle hyperalgesia exclusively in females. Induction of muscle pain increased the number of macrophages and T-cells in the muscle in both sexes, measured by flow cytometry. In both sexes, the phenotype of macrophages shifted toward a pro-inflammatory state after induction of muscle pain in sedentary mice (M1 + M1/2) but toward an anti-inflammatory state in physically active mice (M2 + M0). Thus, induction of muscle pain activates the immune system with sex-specific differences in the transcriptome while physical activity attenuates immune response in females and alters macrophage phenotype in both sexes.
Collapse
Affiliation(s)
- Joseph B Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kazuhiro Hayashi
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Ashley N Plumb
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Adam J Janowski
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Lesnak JB, Fahrion A, Helton A, Rasmussen L, Andrew M, Cunard S, Huey M, Kreber A, Landon J, Siwiec T, Todd K, Frey-Law LA, Sluka KA. Resistance training protects against muscle pain through activation of androgen receptors in male and female mice. Pain 2022; 163:1879-1891. [PMID: 35353765 PMCID: PMC9481652 DOI: 10.1097/j.pain.0000000000002638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Resistance training-based exercise is commonly prescribed in the clinic for the treatment of chronic pain. Mechanisms of aerobic exercise for analgesia are frequently studied, while little is known regarding resistance training mechanisms. We developed a resistance training model in mice and hypothesized resistance training would protect against development of muscle pain, mediated through the activation of androgen receptors. Activity-induced muscle hyperalgesia was produced by 2 injections of pH 5.0 stimuli with fatiguing muscle contractions. Resistance training was performed by having mice climb a ladder with attached weights, 3 times per week. Resistance training acutely increased blood lactate and prolonged training increased strength measured via forepaw grip strength and 1 repetition maximum, validating the exercise program as a resistance training model. Eight weeks of resistance training prior to induction of the pain model blocked the development of muscle hyperalgesia in both sexes. Resistance training initiated after induction of the pain model reversed muscle hyperalgesia in male mice only. A single resistance training bout acutely increased testosterone in male but not female mice. Administration of the androgen receptor antagonist flutamide (200 mg pellets) throughout the 8-week training program blocked the exercise-induced protection against muscle pain in both sexes. However, single administration of flutamide (1, 3, 10 mg/kg) in resistance-trained animals had no effect on existing exercise-induced protection against muscle pain. Therefore, resistance training acutely increases lactate and testosterone and strength overtime. Eight weeks of resistance training prevents the development of hyperalgesia through the activation of androgen receptors in an animal model of muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Alexis Fahrion
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Amber Helton
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Megan Andrew
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Stefanie Cunard
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Michaela Huey
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Austin Kreber
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Joseph Landon
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Travis Siwiec
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Kenan Todd
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Laura A. Frey-Law
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| |
Collapse
|
3
|
Hasegawa M, Piriyaprasath K, Otake M, Kamimura R, Saito I, Fujii N, Yamamura K, Okamoto K. Effect of daily treadmill running exercise on masseter muscle nociception associated with social defeat stress in mice. Eur J Oral Sci 2022; 130:e12882. [DOI: 10.1111/eos.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Mana Hasegawa
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Department of Restorative Dentistry Faculty of Dentistry Naresuan University Phitsanulok Thailand
| | - Masanori Otake
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Rantaro Kamimura
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Isao Saito
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Noritaka Fujii
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kensuke Yamamura
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| |
Collapse
|
4
|
Adra N, Reddy M, Attarian H, Sahni AS. Autonomic dysfunction in idiopathic hypersomnia: an overlooked association and potential management. J Clin Sleep Med 2022; 18:963-965. [PMID: 34847990 PMCID: PMC8883100 DOI: 10.5664/jcsm.9818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is a small yet robust body of literature regarding autonomic dysfunction in idiopathic hypersomnia as well as sleep disturbances in postural orthostatic tachycardia syndrome. This review aims at summarizing the current literature and highlighting gaps in the current knowledge. This article additionally presents the personal experience of one of the authors at the sleep center. CITATION Adra N, Reddy M, Attarian H, Sahni AS. Autonomic dysfunction in idiopathic hypersomnia: an overlooked association and potential management. J Clin Sleep Med. 2022;18(3):963-965.
Collapse
Affiliation(s)
- Nour Adra
- Department of Neurology, American University of Beirut, Beirut, Lebanon
| | - Manasa Reddy
- Division of Pulmonary and Critical Care, University of Illinois at Chicago, Chicago, Illinois
| | - Hrayr Attarian
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ashima S. Sahni
- Division of Pulmonary and Critical Care, University of Illinois at Chicago, Chicago, Illinois,Address correspondence to: Ashima S. Sahni, MD, Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago;
| |
Collapse
|
5
|
Townsend K, Imbert I, Eaton V, Stevenson GW, King T. Voluntary exercise blocks ongoing pain and diminishes bone remodeling while sparing protective mechanical pain in a rat model of advanced osteoarthritis pain. Pain 2022; 163:e476-e487. [PMID: 34224496 PMCID: PMC8712625 DOI: 10.1097/j.pain.0000000000002392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Exercise is the most common treatment recommended by healthcare providers for the treatment of musculoskeletal pain. We examined whether voluntary running wheel exercise improves pain and bone remodeling in rats with monosodium iodoacetate-induced unilateral knee joint pain. During acquisition of wheel running before osteoarthritis (OA) treatment, rats separated into 2 groups characterized by either high or low levels of voluntary wheel running as indicated by distance and peak speed. After the induction of knee joint OA, all rats showed diminished voluntary wheel running throughout the study. Voluntary wheel running failed to alter evoked nociceptive responses evaluated as weight asymmetry or hind paw tactile thresholds at any timepoint of the study. By contrast, relief of ongoing pain was demonstrated by conditioned place preference produced by lidocaine injection into the monosodium iodoacetate-treated knee in high but not low-running rats. Both high and low voluntary runners showed diminished trabecular bone loss compared with sedentary controls. These observations indicate that both high-intensity and low-intensity exercise is beneficial in protecting against bone remodeling in advanced OA. The data suggest that similar to clinical observation, bone remodeling does not correlate with pain. In addition, these results suggest that higher intensity exercise may relieve persistent ongoing OA pain while maintaining movement-evoked nociception. The relief of ongoing pain can potentially offer significant improvement in quality of life, whereas preservation of responses to movement-evoked pain may be especially important in protecting the joint from damage because of overuse.
Collapse
Affiliation(s)
- Kaylee Townsend
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Ian Imbert
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Victoria Eaton
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Glenn W Stevenson
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Tamara King
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
6
|
Tokunaga R, Takahashi Y, Touj S, Hotta H, Leblond H, Kato F, Piché M. Attenuation of widespread hypersensitivity to noxious mechanical stimuli by inhibition of GABAergic neurons of the right amygdala in a rat model of chronic back pain. Eur J Pain 2022; 26:911-928. [DOI: 10.1002/ejp.1921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- R. Tokunaga
- Department of Anatomy Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
- CogNAC Research Group Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
| | - Y. Takahashi
- Department of Neuroscience Jikei University School of Medicine Tokyo Japan
| | - S. Touj
- Department of Anatomy Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
- CogNAC Research Group Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
| | - H. Hotta
- Department of Autonomic Neuroscience Tokyo Metropolitan Institute of Gerontology Tokyo Japan
| | - H. Leblond
- Department of Anatomy Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
- CogNAC Research Group Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
| | - F. Kato
- Department of Neuroscience Jikei University School of Medicine Tokyo Japan
| | - M. Piché
- Department of Anatomy Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
- CogNAC Research Group Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada G9A 5H7
| |
Collapse
|
7
|
Brum ES, Becker G, Fialho MFP, Oliveira SM. Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 2021; 230:107959. [PMID: 34265360 DOI: 10.1016/j.pharmthera.2021.107959] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia (FM) is a complex syndrome, with an indefinite aetiology and intricate pathophysiology that affects 2 - 3% of the world population. From the beginning of the 2000s, experimental animal models have been developed to mimic clinical FM and help obtain a better understanding of the relevant neurobiology. These animal models have enabled a broad study of FM symptoms and mechanisms, as well as new treatment strategies. Current experimental FM models include the reserpine-induced systemic depletion of biogenic amines, muscle application of acid saline, and stress-based (cold, sound, or swim) approaches, among other emerging models. FM models should: (i) mimic the cardinal symptoms and complaints reported by FM patients (e.g., spontaneous nociception, muscle pain, hypersensitivity); (ii) mimic primary comorbidities that can aggravate quality of life and lead to worse outcomes (e.g., fatigue, sleep disturbance, depression, anxiety); (iii) mimic the prevalent pathological mechanisms (e.g., peripheral and central sensitization, inflammation/neuroinflammation, change in the levels of the excitatory and inhibitory neurotransmitters); and (iv) demonstrate a pharmacological profile similar to the clinical treatment of FM. However, it is difficult for any one of these models to include the entire spectrum of clinical FM features once even FM patients are highly heterogeneous. In the past six years (2015 - 2020), a wide range of experimental FM studies has amounted to the literature reinforcing the need for an updated review. Here we have described, in detail, several approaches used to experimentally study FM, with a focus on recent studies in the field and in previously less discussed mechanisms. We highlight each model's challenges, limitations, and future directions, intending to help preclinical researchers establish the correct experimental FM model to use depending on their goals.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Pessoa MDV, de Araujo FX, Schell MS, Silva MF, Macagnan FE. The addition of thoracic mobilization to aerobic exercise did not alter autonomic function and pain pressure threshold acutely in asymptomatic young people: A randomized controlled trial. J Bodyw Mov Ther 2021; 27:543-549. [PMID: 34391284 DOI: 10.1016/j.jbmt.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/11/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To analyze the influence of acute aerobic exercise (AE) plus thoracic mobilization in pain perception and autonomic nervous system response in healthy adults. DESIGN Randomized clinical trial. METHODS Forty-eight asymptomatic adults were allocated into one of three groups: 1) Aerobic Exercise (AE), 2) Aerobic Exercise + Mobilization (AE + M), and 3) Placebo. Participants from groups AE and AE + M ran for 5 min on a treadmill with a 75-85% of age-predicted heart rate. Participants from AE + M group also received a rotatory thoracic passive accessory intervertebral mobilization at T4 after running. Participants from the Placebo group received placebo mobilization. We mesured the autonomic system modulation through Heart Rate Variability (HRV) (time-domain, frequency-domain, and non-linear variables). We measured Pressure Pain Threshold (PPT) with a handheld digital algometer. RESULTS While aerobic exercise increased the sympathetic outflow and reduced the HRV, the addition of vertebral mobilization to exercise had no further effect on autonomic system modulation. There was no change in PPT in any group. Besides, there was no correlation between HRV and PPT. CONCLUSION Thoracic mobilization did not increase the sympathetic response induced by aerobic exercise. Moreover, exercise alone or exercise plus thoracic mobilization did not change the PPT.
Collapse
Affiliation(s)
- Mariana D V Pessoa
- Physical Therapy Department, Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Francisco X de Araujo
- Physical Therapy Department, Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Centro Universitário Ritter dos Reis (UniRitter) - Laureate International Universities, Porto Alegre, Brazil.
| | - Maurício S Schell
- Physical Therapy Department, Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Marcelo F Silva
- Physical Therapy Department, Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Fabricio Edler Macagnan
- Physical Therapy Department, Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
9
|
Reyes Del Paso GA, Contreras-Merino AM, de la Coba P, Duschek S. The cardiac, vasomotor, and myocardial branches of the baroreflex in fibromyalgia: Associations with pain, affective impairments, sleep problems, and fatigue. Psychophysiology 2021; 58:e13800. [PMID: 33645659 DOI: 10.1111/psyp.13800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
This study investigated the cardiac, vasomotor, and myocardial branches of the baroreflex in fibromyalgia using the spontaneous sequence method. Systolic blood pressure (SBP), interbeat interval (IBI), stroke volume (SV), pre-ejection period (PEP), and total peripheral resistance (TPR) were continuously recorded in 40 fibromyalgia patients and 30 healthy individuals during a cold pressor test and a mental arithmetic task. Sequences of covariation between SBP and IBI (cardiac branch), SV and PEP (myocardial branch), and TPR (vasomotor branch) were identified. Baroreflex sensitivity (BRS) was represented by the slope of the regression line between values in the sequences; baroreflex effectiveness (BEI) was indexed by the proportion of progressive SBP changes that elicited reflex responses. Patients exhibited lower BRS in the three branches, lower BEI in the cardiac and vasomotor branches, and reduced reactivity in cardiac BRS and BEI, SBP, IBI, SV, and PEP. Moreover, BRS and BEI were inversely related to clinical pain, cold pressor pain, depression, trait anxiety, sleep problems, and fatigue. Reduced function of the three baroreflex branches implies diminished resources for autonomic inotropic, chronotropic, and vascular regulation in fibromyalgia. Blunted stress reactivity indicates a limited capacity for autonomic cardiovascular adjustment to situational requirements. The associations of BRS and BEI with pain perception may reflect the antinociceptive effects arising from baroreceptor afferents, where reduced baroreflex function may contribute to the hyperalgesia characterizing fibromyalgia. The associations with affective impairments, sleep problems, and fatigue suggest that baroreflex dysfunctions are also involved in the secondary symptoms of the disorder.
Collapse
Affiliation(s)
| | | | | | - Stefan Duschek
- Institute of Psychology, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
10
|
Mouat MA, Jackson KL, Coleman JLJ, Paterson MR, Graham RM, Head GA, Smith NJ. Deletion of Orphan G Protein-Coupled Receptor GPR37L1 in Mice Alters Cardiovascular Homeostasis in a Sex-Specific Manner. Front Pharmacol 2021; 11:600266. [PMID: 33633567 PMCID: PMC7901490 DOI: 10.3389/fphar.2020.600266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
GPR37L1 is a family A orphan G protein-coupled receptor (GPCR) with a putative role in blood pressure regulation and cardioprotection. In mice, genetic ablation of Gpr37l1 causes sex-dependent effects; female mice lacking Gpr37l1 (GPR37L1-/-) have a modest but significant elevation in blood pressure, while male GPR37L1-/- mice are more susceptible to cardiovascular dysfunction following angiotensin II-induced hypertension. Given that this receptor is highly expressed in the brain, we hypothesize that the cardiovascular phenotype of GPR37L1-/- mice is due to changes in autonomic regulation of blood pressure and heart rate. To investigate this, radiotelemetry was employed to characterize baseline cardiovascular variables in GPR37L1-/- mice of both sexes compared to wildtype controls, followed by power spectral analysis to quantify short-term fluctuations in blood pressure and heart rate attributable to alterations in autonomic homeostatic mechanisms. Additionally, pharmacological ganglionic blockade was performed to determine vasomotor tone, and environmental stress tests were used to assess whether cardiovascular reactivity was altered in GPR37L1-/- mice. We observed that mean arterial pressure was significantly lower in female GPR37L1-/- mice compared to wildtype counterparts, but was unchanged in male GPR37L1-/- mice. GPR37L1-/- genotype had a statistically significant positive chronotropic effect on heart rate across both sexes when analyzed by two-way ANOVA. Power spectral analysis of these data revealed a reduction in power in the heart rate spectrum between 0.5 and 3 Hz in female GPR37L1-/- mice during the diurnal active period, which indicates that GPR37L1-/- mice may have impaired cardiac vagal drive. GPR37L1-/- mice of both sexes also exhibited attenuated depressor responses to ganglionic blockade with pentolinium, indicating that GPR37L1 is involved in maintaining sympathetic vasomotor tone. Interestingly, when these mice were subjected to aversive and appetitive behavioral stressors, the female GPR37L1-/- mice exhibited an attenuation of cardiovascular reactivity to aversive, but not appetitive, environmental stimuli. Together, these results suggest that loss of GPR37L1 affects autonomic maintenance of blood pressure, giving rise to sex-specific cardiovascular changes in GPR37L1-/- mice.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Madeleine R Paterson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
11
|
Souza LAC, Cooper SG, Worker CJ, Thakore P, Feng Earley Y. Use of chlorisondamine to assess the neurogenic contribution to blood pressure in mice: An evaluation of method. Physiol Rep 2021; 9:e14753. [PMID: 33587331 PMCID: PMC7883841 DOI: 10.14814/phy2.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
Chlorisondamine (CSD) has been used to assess the neurogenic contribution to blood pressure (BP) and vasomotor sympathetic tone in animal models. It is assumed that the reduction in BP following CSD administration is associated to decreases in cardiac output (CO) and peripheral resistance, reflecting cardiac and vasomotor sympathetic tone, respectively. Surprisingly, this has not been characterized experimentally in mice, despite the extensive use of this animal model in cardiovascular research. We hypothesize that a specific dose of CSD can selectively block the sympathetic vasomotor tone. To test this hypothesis, we evaluated the effects of different doses of CSD (intraperitoneal) on BP and heart rate (HR) using telemetry, and on CO using echocardiography. BP and HR in normotensive C57Bl/6J mice reduced to a similar extent by all CSD doses tested (1-6 mg/kg). CSD at 6 mg/kg also reduced CO without affecting left ventricular stroke volume or fractional shortening. On the other hand, lower doses of CSD (1 and 2 mg/kg) produced significantly larger BP and HR reductions in DOCA-salt-induced hypertensive mice, indicating a greater neurogenic BP response. In addition, all doses of CSD reduced CO in hypertensive mice. Our data suggest that the BP response to CSD in mice likely reflects reduced CO and vasomotor sympathetic tone. We conclude that CSD can be used to assess the neurogenic contribution to BP in mice but may not be appropriate for specifically estimating vasomotor sympathetic tone.
Collapse
Affiliation(s)
- Lucas AC. Souza
- Departments of Pharmacology and Physiology & Cell BiologySchool of MedicineUniversity of Nevada, RenoRenoNVUSA
- Center for Molecular and Cellular Signaling in the Cardiovascular SystemUniversity of Nevada, RenoRenoNVUSA
| | - Silvana G. Cooper
- Departments of Pharmacology and Physiology & Cell BiologySchool of MedicineUniversity of Nevada, RenoRenoNVUSA
- Center for Molecular and Cellular Signaling in the Cardiovascular SystemUniversity of Nevada, RenoRenoNVUSA
| | - Caleb J. Worker
- Departments of Pharmacology and Physiology & Cell BiologySchool of MedicineUniversity of Nevada, RenoRenoNVUSA
- Center for Molecular and Cellular Signaling in the Cardiovascular SystemUniversity of Nevada, RenoRenoNVUSA
| | - Pratish Thakore
- Departments of Pharmacology and Physiology & Cell BiologySchool of MedicineUniversity of Nevada, RenoRenoNVUSA
- Center for Molecular and Cellular Signaling in the Cardiovascular SystemUniversity of Nevada, RenoRenoNVUSA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell BiologySchool of MedicineUniversity of Nevada, RenoRenoNVUSA
- Center for Molecular and Cellular Signaling in the Cardiovascular SystemUniversity of Nevada, RenoRenoNVUSA
| |
Collapse
|
12
|
Yoshimoto T, Sakurai H, Ohmichi Y, Ohmichi M, Morimoto A, Ushida T, Sato J. Changes in cardiovascular parameters in rats exposed to chronic widespread mechanical allodynia induced by hind limb cast immobilization. PLoS One 2021; 16:e0245544. [PMID: 33465131 PMCID: PMC7815128 DOI: 10.1371/journal.pone.0245544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 11/19/2022] Open
Abstract
To elucidate the relationship between chronic pain conditions with cast immobilization and autonomic function, we investigated the functional changes of the autonomic nervous system in conscious rats with chronic post-cast pain (CPCP) induced by a two-week cast immobilization of one hind limb. We telemetrically examined the time courses of systolic arterial blood pressure (SBP), heart rate (HR), and the middle-frequency (MF) component obtained from the power spectral analysis of SBP variability as a vasomotor sympathetic index. We also investigated the baroreflex sensitivity to phentolamine, an α-adrenoceptor antagonist, and the SBP and HR responses to a low ambient temperature (LT; 9.0 ± 0.2°C) exposure, a sympathetic stimulant. Rats exposed to cast immobilization exhibited mechanical allodynia lasting for at least 10 weeks after cast removal in the calf area (skin and muscle) of the bilateral hind limbs. Under resting conditions, the SBP, HR, and MF components were significantly increased during cast immobilization (all p < 0.001). Following cast removal, these parameters gradually decreased and within 1 week reached lower than baseline levels, lasting for over 10 weeks. Phentolamine administration (10 mg/kg, intraperitoneally) significantly decreased the SBP before and during cast immobilization (before, p < 0.001; during, p = 0.001) but did not lower the SBP after cast removal. The baroreflex gain after phentolamine administration, calculated as the HR increase divided by the SBP reduction, was significantly increased after cast removal (p = 0.002). The SBP increase on LT exposure was significantly greater after cast removal than that before cast immobilization, suggesting hypersensitivity to sympathetic neurotransmitters. These results revealed that, in the CPCP model, sympathetic activation was augmented during cast immobilization, which then decreased after cast removal and remained below normal levels with persisting pain behaviors. Additionally, the responsiveness of the autonomic nervous system was impaired in the CPCP model.
Collapse
Affiliation(s)
- Takahiko Yoshimoto
- Department of Hygiene, Public Health and Preventive Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hiroki Sakurai
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
- Faculty of Health Sciences, Tokoha University, Hamamatsu, Japan
| | - Yusuke Ohmichi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mika Ohmichi
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Atsuko Morimoto
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Jun Sato
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
- * E-mail:
| |
Collapse
|
13
|
Lesnak JB, Sluka KA. Mechanism of exercise-induced analgesia: what we can learn from physically active animals. Pain Rep 2020; 5:e850. [PMID: 33490844 PMCID: PMC7808683 DOI: 10.1097/pr9.0000000000000850] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Physical activity has become a first-line treatment in rehabilitation settings for individuals with chronic pain. However, research has only recently begun to elucidate the mechanisms of exercise-induced analgesia. Through the study of animal models, exercise has been shown to induce changes in the brain, spinal cord, immune system, and at the site of injury to prevent and reduce pain. Animal models have also explored beneficial effects of exercise through different modes of exercise including running, swimming, and resistance training. This review will discuss the central and peripheral mechanisms of exercise-induced analgesia through different modes, intensity, and duration of exercise as well as clinical applications of exercise with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Swimming Physical Training Prevented the Onset of Acute Muscle Pain by a Mechanism Dependent of PPARγ Receptors and CINC-1. Neuroscience 2020; 427:64-74. [DOI: 10.1016/j.neuroscience.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
|
15
|
Sanford MT, Yeh JC, Mao JJ, Guo Y, Wang Z, Zhang R, Holschneider DP, Rodriguez LV. Voluntary exercise improves voiding function and bladder hyperalgesia in an animal model of stress-induced visceral hypersensitivity: A multidisciplinary approach to the study of urologic chronic pelvic pain syndrome research network study. Neurourol Urodyn 2020; 39:603-612. [PMID: 31944369 DOI: 10.1002/nau.24270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/25/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The underlying mechanism of interstitial cystitis/bladder pain syndrome (IC/BPS) is not well understood and evaluation of current therapeutic interventions has not identified any generally effective treatments. Physical activity has shown beneficial effects on individuals suffering from chronic pain. Anxiety-prone rats exposed to water avoidance stress (WAS) develop urinary frequency and lower bladder sensory thresholds with high face and construct validity for the study of IC/BPS. The aim of this study was to evaluate the role of chronic voluntary exercise on urinary frequency, voiding function, and hyperalgesia in animals exposed to WAS. MATERIALS AND METHODS Twenty-six female Wistar-Kyoto rats were exposed to WAS and thereafter randomized to either voluntary exercise for 3 weeks or sedentary groups. Voiding parameters were assessed at baseline, post-WAS, and weekly for 3 weeks. Before euthanasia, the animals underwent cystometrogram (CMG), external urinary sphincter electromyography, and assessment of visceromotor response (VMR) to isotonic bladder distension (IBD). RESULTS WAS exposure resulted in adverse changes in voiding parameters. Compared with sedentary animals, animals in the voluntary exercise group had improved voiding parameters during metabolic cage and CMG testing, as well as improved bladder sensory thresholds as determined by VMR during IBD. CONCLUSION Voluntary exercise in an animal model of chronic stress leads to improvement in voiding function and visceral bladder hyperalgesia.
Collapse
Affiliation(s)
- Melissa T Sanford
- Department of Urology, Texas Tech University Health Science Center, Lubbock, Texas
| | - Jih-Chao Yeh
- Department of Urology, University of Southern California, Los Angeles, California
| | - Jackie J Mao
- Department of Urology, University of Southern California, Los Angeles, California
| | - Yumei Guo
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Zhuo Wang
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Rong Zhang
- Department of Urology, University of Southern California, Los Angeles, California
| | - Daniel P Holschneider
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Larissa V Rodriguez
- Department of Urology, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
Slivicki RA, Mali SS, Hohmann AG. Voluntary exercise reduces both chemotherapy-induced neuropathic nociception and deficits in hippocampal cellular proliferation in a mouse model of paclitaxel-induced peripheral neuropathy. NEUROBIOLOGY OF PAIN 2019; 6:100035. [PMID: 31528755 PMCID: PMC6739464 DOI: 10.1016/j.ynpai.2019.100035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
Paclitaxel treatment did not alter voluntary running activity. Voluntary running reduced mechanical and cold allodynia induced by paclitaxel. Voluntary running reduced paclitaxel-induced deficits in hippocampal cellular proliferation.
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side-effect of all major chemotherapeutic agents. Here, we explored efficacy of voluntary exercise as a nonpharmacological strategy for suppressing two distinct adverse side effects of chemotherapy treatment. We evaluated whether voluntary running would suppress both neuropathic pain and deficits in hippocampal cell proliferation in a mouse model of CIPN induced by the taxane chemotherapeutic agent paclitaxel. Mice were given free access to running wheels or were housed without running wheels during one of three different intervention phases: 1) during the onset (i.e. development phase) of paclitaxel-induced neuropathy, 2) prior to dosing with paclitaxel or its vehicle, or 3) following the establishment (i.e. maintenance phase) of paclitaxel-induced neuropathy. Paclitaxel treatment did not alter running wheel behavior relative to vehicle-treated animals in any study. Animals that engaged in voluntary running during the development phase of paclitaxel-induced neuropathy failed to display mechanical or cold hypersensitivities relative to sedentary control animals that did not have access to running wheels. A prior history of voluntary running delayed the onset of, but did not fully prevent, development of paclitaxel-induced neuropathic pain behavior. Voluntary running reduced already established mechanical and cold allodynia induced by paclitaxel. Importantly, voluntary running did not alter mechanical or cold responsivity in vehicle-treated animals, suggesting that the observed antinociceptive effect of exercise was dependent upon the presence of the pathological pain state. In the same animals evaluated for nociceptive responding, paclitaxel also reduced cellular proliferation but not cellular survival in the dentate gyrus of the hippocampus, as measured by immunohistochemistry for Ki67 and BrdU expression, respectively. Voluntary running abrogated paclitaxel-induced reductions in cellular proliferation to levels observed in vehicle-treated mice and also increased BrdU expression levels irrespective of chemotherapy treatment. Our studies support the hypothesis that voluntary exercise may be beneficial in suppressing both neuropathic pain and markers of hippocampal cellular function that are impacted by toxic challenge with chemotherapeutic agents.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S. Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G. Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
- Corresponding author at: Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405-7007, United States.
| |
Collapse
|
17
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
18
|
Sabharwal R, Mason BN, Kuburas A, Abboud FM, Russo AF, Chapleau MW. Increased receptor activity-modifying protein 1 in the nervous system is sufficient to protect against autonomic dysregulation and hypertension. J Cereb Blood Flow Metab 2019; 39:690-703. [PMID: 29297736 PMCID: PMC6446426 DOI: 10.1177/0271678x17751352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcitonin gene-related peptide (CGRP) can cause migraines, yet it is also a potent vasodilator that protects against hypertension. Given the emerging role of CGRP-targeted antibodies for migraine prevention, an important question is whether the protective actions of CGRP are mediated by vascular or neural CGRP receptors. To address this, we have characterized the cardiovascular phenotype of transgenic nestin/hRAMP1 mice that have selective elevation of a CGRP receptor subunit in the nervous system, human receptor activity-modifying protein 1 (hRAMP1). Nestin/hRAMP1 mice had relatively little hRAMP1 RNA in blood vessels and intravenous injection of CGRP caused a similar blood pressure decrease in transgenic and control mice. At baseline, nestin/hRAMP1 mice exhibited similar mean arterial pressure, heart rate, baroreflex sensitivity, and sympathetic vasomotor tone as control mice. We previously reported that expression of hRAMP1 in all tissues favorably improved autonomic regulation and attenuated hypertension induced by angiotensin II (Ang II). Similarly, in nestin/hRAMP1 mice, hypertension caused by Ang II or phenylephrine was greatly attenuated, and associated autonomic dysregulation and increased sympathetic vasomotor tone were diminished or abolished. We conclude that increased expression of neuronal CGRP receptors is sufficient to induce a protective change in cardiovascular autonomic regulation with implications for migraine therapy.
Collapse
Affiliation(s)
- Rasna Sabharwal
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Bianca N Mason
- 2 Molecular and Cell Biology Program, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- 3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Francois M Abboud
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- 2 Molecular and Cell Biology Program, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,4 Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,5 Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Mark W Chapleau
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,5 Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Physical activity is increasingly recommended for chronic pain. In this review, we briefly survey recent, high-quality meta-analyses on the effects of exercise in human chronic pain populations, followed by a critical discussion of the rodent literature. RECENT FINDINGS Most meta-analytical studies on the effects of exercise in human chronic pain populations describe moderate improvements in various types of chronic pain, despite substantial variability in the outcomes reported in the primary literature. The most consistent findings suggest that while greater adherence to exercise programs produces better outcomes, there is minimal support for the superiority of one type of exercise over another. The rodent literature similarly suggests that while regular exercise reduces hypersensitivity in rodent models of chronic pain, exercise benefits do not appear to relate to either the type of injury or any particular facet of the exercise paradigm. Potential factors underlying these results are discussed, including the putative involvement of stress-induced analgesic effects associated with certain types of exercise paradigms. Exercise research using rodent models of chronic pain would benefit from increased attention to the role of stress in exercise-induced analgesia, as well as the incorporation of more clinically relevant exercise paradigms.
Collapse
Affiliation(s)
- Mark Henry Pitcher
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Room 1E-420, 35A Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Tai LW, Yeung SC, Cheung CW. Enriched Environment and Effects on Neuropathic Pain: Experimental Findings and Mechanisms. Pain Pract 2018; 18:1068-1082. [PMID: 29722923 DOI: 10.1111/papr.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022]
Abstract
Neuropathic pain inflicts tremendous biopsychosocial suffering for patients worldwide. However, safe and effective treatment of neuropathic pain is a prominent unmet clinical need. Environmental enrichment (EE) is an emerging cost-effective nonpharmacological approach to alleviate neuropathic pain and complement rehabilitation care. We present here a review of preclinical studies in ascertaining the efficacy of EE for neuropathic pain. Their proposed mechanisms, including the suppression of ascending nociceptive signaling to the brain, enhancement of the descending inhibitory system, and neuroprotection of the peripheral and central nervous systems, may collectively reduce pain perception and improve somatic and emotional functioning in neuropathic pain. The current evidence offers critical insights for future preclinical research and the translational application of EE in clinical pain management.
Collapse
Affiliation(s)
- Lydia Wai Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Sung Ching Yeung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
21
|
Eller-Smith OC, Nicol AL, Christianson JA. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Front Cell Neurosci 2018; 12:35. [PMID: 29487504 PMCID: PMC5816755 DOI: 10.3389/fncel.2018.00035] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA) axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC) infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional connectivity and magnetic resonance spectroscopy and are shown to contribute to the widespreadness of pain and poor mood in patients with fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including exercise and cognitive behavioral therapy (CBT), have shown great promise in treating symptoms of centralized pain.
Collapse
Affiliation(s)
- Olivia C Eller-Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrea L Nicol
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
22
|
Lima LV, DeSantana JM, Rasmussen LA, Sluka KA. Short-duration physical activity prevents the development of activity-induced hyperalgesia through opioid and serotoninergic mechanisms. Pain 2017; 158:1697-1710. [PMID: 28621702 PMCID: PMC5561491 DOI: 10.1097/j.pain.0000000000000967] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regular physical activity prevents the development of chronic muscle pain through the modulation of central mechanisms that involve rostral ventromedial medulla (RVM). We tested if pharmacological blockade or genetic deletion of mu-opioid receptors in physically active mice modulates excitatory and inhibitory systems in the RVM in an activity-induced hyperalgesia model. We examined response frequency to mechanical stimulation of the paw, muscle withdrawal thresholds, and expression of phosphorylation of the NR1 subunit of the N-methyl-D-aspartate receptor (p-NR1) and serotonin transporter (SERT) in the RVM. Mice that had performed 5 days of voluntary wheel running prior to the induction of the model were compared with sedentary mice. Sedentary mice showed significant increases in mechanical paw withdrawal frequency and a reduction in muscle withdrawal threshold; wheel running prevented the increase in paw withdrawal frequency. Naloxone-treated and MOR mice had increases in withdrawal frequency that were significantly greater than that in physically active control mice and similar to sedentary mice. Immunohistochemistry in the RVM showed increases in p-NR1 and SERT expression in sedentary mice 24 hours after the induction of the model. Wheel running prevented the increase in SERT, but not p-NR1. Physically active, naloxone-treated, and MOR mice showed significant increases in SERT immunoreactivity when compared with wild-type physically active control mice. Blockade of SERT in the RVM in sedentary mice reversed the activity-induced hyperalgesia of the paw and muscle. These results suggest that analgesia induced by 5 days of wheel running is mediated by mu-opioid receptors through the modulation of SERT, but not p-NR1, in RVM.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Gene Expression Regulation/physiology
- Hyperalgesia/etiology
- Hyperalgesia/prevention & control
- Male
- Medulla Oblongata/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/metabolism
- Pain Measurement
- Pain Threshold/physiology
- Physical Conditioning, Animal/methods
- Physical Stimulation/adverse effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Statistics, Nonparametric
- Time Factors
Collapse
Affiliation(s)
- Lucas V Lima
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju/Se, Brazil
| | - Josimari M DeSantana
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju/Se, Brazil
- Department of Physical Therapy, Federal University of Sergipe, Aracaju/Se, Brazil
| | - Lynn A Rasmussen
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
23
|
Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep 2017; 2:e618. [PMID: 29392233 PMCID: PMC5777681 DOI: 10.1097/pr9.0000000000000618] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022] Open
Abstract
The current study shows that blockade of opioid receptors systemically in the periaqueductal gray and the rostral ventromedial medulla prevents analgesia by 8 weeks of wheel running in a chronic muscle pain model. We further show increases in serotonin transporter expression and reversal of hyperalgesia with a selective reuptake inhibitor in the rostral ventromedial medulla in the chronic muscle pain model, and exercise normalizes serotonin transporter expression. Introduction: It is generally believed that exercise produces its effects by activating central opioid receptors; there are little data that support this claim. The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are key nuclei in opioid-induced analgesia, and opioids interact with serotonin to produce analgesia. Objectives: The purpose was to examine central inhibitory mechanisms involved in analgesia produced by wheel running. Methods: C57/Black6 mice were given access to running wheels in their home cages before induction of chronic muscle hyperalgesia and compared with those without running wheels. Systemic, intra-PAG, and intra-RVM naloxone tested the role of central opioid receptors in the antinociceptive effects of wheel running in animals with muscle insult. Immunohistochemistry for the serotonin transporter (SERT) in the spinal cord and RVM, and pharmacological blockade of SERT, tested whether the serotonin system was modulated by muscle insult and wheel running. Results: Wheel running prevented the development of muscle hyperalgesia. Systemic naloxone, intra-PAG naloxone, and intra-RVM naloxone reversed the antinociceptive effect of wheel running in animals that had received muscle insult. Induction of chronic muscle hyperalgesia increased SERT in the RVM, and blockade of SERT reversed the hyperalgesia in sedentary animals. Wheel running reduced SERT expression in animals with muscle insult. The serotonin transporter in the superficial dorsal horn of the spinal cord was unchanged after muscle insult, but increased after wheel running. Conclusion: These data support the hypothesis that wheel running produced analgesia through central inhibitory mechanisms involving opioidergic and serotonergic systems.
Collapse
|
24
|
Cormier J, Cone K, Lanpher J, Kinens A, Henderson T, Liaw L, Bilsky EJ, King T, Rosen CJ, Stevenson GW. Exercise reverses pain-related weight asymmetry and differentially modulates trabecular bone microarchitecture in a rat model of osteoarthritis. Life Sci 2017; 180:51-59. [PMID: 28504116 PMCID: PMC5549619 DOI: 10.1016/j.lfs.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/21/2022]
Abstract
There is great interest in developing and utilizing non-pharmacological/non-invasive forms of therapy for osteoarthritis (OA) pain including exercise and other physical fitness regimens. AIMS The present experiments determined the effects of prior wheel running on OA-induced weight asymmetry and trabecular bone microarchitecture. MAIN METHODS Wheel running included 7 or 21days of prior voluntary access to wheels followed by OA induction, followed by 21days post-OA access to wheels. OA was induced with monosodium iodoacetate (MIA), and weight asymmetry was measured using a hind limb weight bearing apparatus. Bone microarchitecture was characterized using ex vivo μCT. KEY FINDINGS Relative to saline controls, MIA (3.2mg/25μl) produced significant weight asymmetry measured on post-days (PDs) 3, 7, 14, 21 in sedentary rats. Seven days of prior running failed to alter MIA-induced weight asymmetry. In contrast, 21days of prior running resulted in complete reversal of MIA-induced weight asymmetry on all days tested. As a comparator, the opioid agonist morphine (3.2-10mg/kg) dose-dependently reversed weight asymmetry on PDs 3, 7, 14, but was ineffective in later-stage (PD 21) OA. In runners, Cohen's d (effect sizes) for OA vs. controls indicated large increases in bone volume fraction, trabecular number, trabecular thickness, and connective density in lateral compartment, and large decreases in the same parameters in medial compartment. In contrast, effect sizes were small to moderate for sedentary OA vs. CONTROLS SIGNIFICANCE Results indicate that voluntary exercise may protect against OA pain, the effect varies as a function of prior exercise duration, and is associated with distinct trabecular bone modifications.
Collapse
Affiliation(s)
- Jim Cormier
- Department of Psychology, University of New England, Biddeford, ME 04005, United States; Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States
| | - Katherine Cone
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Janell Lanpher
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Abigail Kinens
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Terry Henderson
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - Edward J Bilsky
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States; Department of Biomedical Sciences COM, Pacific Northwest University of Health Sciences, Yakima, WA 98901, United States
| | - Tamara King
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States; Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - Glenn W Stevenson
- Department of Psychology, University of New England, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States.
| |
Collapse
|
25
|
Allen J, Imbert I, Havelin J, Henderson T, Stevenson G, Liaw L, King T. Effects of Treadmill Exercise on Advanced Osteoarthritis Pain in Rats. Arthritis Rheumatol 2017; 69:1407-1417. [PMID: 28320059 PMCID: PMC5489381 DOI: 10.1002/art.40101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Exercise is commonly recommended for patients with osteoarthritis (OA) pain. However, whether exercise is beneficial in ameliorating ongoing pain that is persistent, resistant to nonsteroidal antiinflammatory drugs (NSAIDs), and associated with advanced OA is unknown. METHODS Rats treated with intraarticular (IA) monosodium iodoacetate (MIA) or saline underwent treadmill exercise or remained sedentary starting 10 days postinjection. Tactile sensory thresholds and weight bearing were assessed, followed by radiography at weekly intervals. After 4 weeks of exercise, ongoing pain was assessed using conditioned place preference (CPP) to IA or rostral ventromedial medulla (RVM)-administered lidocaine. The possible role of endogenous opioids in exercise-induced pain relief was examined by systemic administration of naloxone. Knee joints were collected for micro-computed tomography (micro-CT) analysis to examine pathologic changes to subchondral bone and metaphysis of the tibia. RESULTS Treadmill exercise for 4 weeks reversed MIA-induced tactile hypersensitivity and weight asymmetry. Both IA and RVM lidocaine D35, administered post-MIA, induced CPP in sedentary but not exercised MIA-treated rats, indicating that exercise blocks MIA-induced ongoing pain. Naloxone reestablished weight asymmetry in MIA-treated rats undergoing exercise and induced conditioned place aversion, indicating that exercise-induced pain relief is dependent on endogenous opioids. Exercise did not alter radiographic evidence of OA. However, micro-CT analysis indicated that exercise did not block lateral subchondral bone loss or trabecular bone loss in the metaphysis, but did block MIA-induced medial bone loss. CONCLUSION These findings support the conclusion that exercise induces pain relief in advanced, NSAID-resistant OA, likely through increased endogenous opioid signaling. In addition, treadmill exercise blocked MIA-induced bone loss in this model, indicating a potential bone-stabilizing effect of exercise on the OA joint.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Arthralgia/physiopathology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/physiopathology
- Behavior, Animal/drug effects
- Disease Models, Animal
- Enzyme Inhibitors/toxicity
- Hyperalgesia/chemically induced
- Hyperalgesia/physiopathology
- Injections, Intra-Articular
- Iodoacetic Acid/toxicity
- Knee Joint/diagnostic imaging
- Knee Joint/drug effects
- Knee Joint/physiopathology
- Lidocaine/pharmacology
- Male
- Medulla Oblongata
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Osteoarthritis, Knee/chemically induced
- Osteoarthritis, Knee/diagnostic imaging
- Osteoarthritis, Knee/physiopathology
- Physical Conditioning, Animal
- Rats
- Rats, Sprague-Dawley
- Tibia/diagnostic imaging
- Weight-Bearing
- X-Ray Microtomography
Collapse
Affiliation(s)
- Joshua Allen
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
| | - Ian Imbert
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
| | - Joshua Havelin
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
| | - Terry Henderson
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Glenn Stevenson
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford ME
- Center for Excellence in the Neurosciences, University of New England, Biddeford ME
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
- Center for Excellence in the Neurosciences, University of New England, Biddeford ME
| |
Collapse
|
26
|
Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation. THE JOURNAL OF PAIN 2017; 18:687-701. [PMID: 28185925 DOI: 10.1016/j.jpain.2017.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 11/23/2022]
Abstract
Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. PERSPECTIVE Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals.
Collapse
|
27
|
Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 2016; 338:114-129. [PMID: 27291641 DOI: 10.1016/j.neuroscience.2016.06.006] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
Fibromyalgia is the current term for chronic widespread musculoskeletal pain for which no alternative cause can be identified. The underlying mechanisms, in both human and animal studies, for the continued pain in individuals with fibromyalgia will be explored in this review. There is a substantial amount of support for alterations of central nervous system nociceptive processing in people with fibromyalgia, and that psychological factors such as stress can enhance the pain experience. Emerging evidence has begun exploring other potential mechanisms including a peripheral nervous system component to the generation of pain and the role of systemic inflammation. We will explore the data and neurobiology related to the role of the CNS in nociceptive processing, followed by a short review of studies examining potential peripheral nervous system changes and cytokine involvement. We will not only explore the data from human subjects with fibromyalgia but will relate this to findings from animal models of fibromyalgia. We conclude that fibromyalgia and related disorders are heterogenous conditions with a complicated pathobiology with patients falling along a continuum with one end a purely peripherally driven painful condition and the other end of the continuum is when pain is purely centrally driven.
Collapse
|