1
|
Zhang Y, Feng R, Chen S, Wang Z, Huang C, Zhang L, Chen J, Liang C. The causative effect of CXCR7 on experimental autoimmune prostatitis injury and fibrosis. Int Immunopharmacol 2025; 144:113685. [PMID: 39608177 DOI: 10.1016/j.intimp.2024.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Chronic prostatitis and Pelvic Pain syndrome (CP/CPPS) is an autoimmune inflammatory disease characterized by pelvic or perineal pain and infiltration of inflammatory cells in the prostate. C-X-C chemokine receptor type 7 (CXCR7) is an atypical chemokine receptor that has been shown to play a key role in inflammatory processes in prostate cancer. However, the role of CXCR7 in autoimmune prostate and immune regulation in CP/CPPS along with the mechanism of action for CXCR7 remains unclear. In this study, a mouse model of experimental autoimmune prostatitis (EAP) was constructed by subcutaneous injection of antigen, and CXCR7 agonist was administered to investigate the effects of CXCR7 on the proportion of immune cells and fibrosis in CP/CPPS. Western blotting, immunohistochemical staining and immunofluorescence, flow cytometry, and masson's trichrome staining were used to study the regulatory mechanisms of CXCR7 in immune regulation. CXCR7 agonists can significantly reduce pain and prostatic inflammation, and in vivo flow cytometry studies showed that the antagonists restored the imbalance of the Th17/Treg cell ratio. To elucidate the potential mechanisms by which CXCR7 influences the pathogenesis of CP/CPPS, we conducted simultaneous RNA-seq and non-targeted metabolome sequencing. Our findings suggest that CXCR7 agonists alleviate fibrosis in autoimmune prostatitis by inhibiting the TGFβ/SMAD pathway. This study provides the foundation to target the immunological function of CXCR7 as a novel therapy for CP/CPPS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sixu Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Zhengbin Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Cong Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C, Zhang M. The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal 2024; 22:584. [PMID: 39633456 PMCID: PMC11619290 DOI: 10.1186/s12964-024-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration. METHODS A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential. RESULTS Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro. CONCLUSION These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.
Collapse
Affiliation(s)
- Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Hailang Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Boyang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
3
|
Zhang F, Meng T, Feng R, Jin C, Zhang S, Meng J, Zhang M, Liang C. MIF aggravates experimental autoimmune prostatitis through activation of the NLRP3 inflammasome via the PI3K/AKT pathway. Int Immunopharmacol 2024; 141:112891. [PMID: 39153310 DOI: 10.1016/j.intimp.2024.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China; Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Jin
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Song Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
4
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Fernandez MM, Motrich RD, Ostrowski M, De Marzi M. Editorial: Immune system disorders: from molecular mechanisms to clinical implications. Front Immunol 2024; 15:1498830. [PMID: 39439796 PMCID: PMC11493736 DOI: 10.3389/fimmu.2024.1498830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Marisa M. Fernandez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Instituto de Estudios de Inmunidad Humoral, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ruben D. Motrich
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence, Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomedicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (SIDA), Facultad de Medicina, Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mauricio De Marzi
- Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Instituto de Ecología y Desarrollo Sustentable (INEDES), (Universidad Nacional de Luján – CONICET), Luján, Buenos Aires, Argentina
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Luján, Buenos Aires, Argentina
| |
Collapse
|
6
|
Zhang Y, Zhang C, Feng R, Meng T, Peng W, Song J, Ma W, Xu W, Chen X, Chen J, Liang C. CXCR4 regulates macrophage M1 polarization by altering glycolysis to promote prostate fibrosis. Cell Commun Signal 2024; 22:456. [PMID: 39327570 PMCID: PMC11426013 DOI: 10.1186/s12964-024-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND C-X-C receptor 4(CXCR4) is widely considered to be a highly conserved G protein-coupled receptor, widely involved in the pathophysiological processes in the human body, including fibrosis. However, its role in regulating macrophage-related inflammation in the fibrotic process of prostatitis has not been confirmed. Here, we aim to describe the role of CXCR4 in modulating macrophage M1 polarization through glycolysis in the development of prostatitis fibrosis. METHODS Use inducible experimental chronic prostatitis as a model of prostatic fibrosis. Reduce CXCR4 expression in immortalized bone marrow-derived macrophages using lentivirus. In the fibrotic mouse model, use adenovirus carrying CXCR4 agonists to detect the silencing of CXCR4 and assess the in vivo effects. RESULTS In this study, we demonstrated that reducing CXCR4 expression during LPS treatment of macrophages can alleviate M1 polarization. Silencing CXCR4 can inhibit glycolytic metabolism, enhance mitochondrial function, and promote macrophage transition from M1 to M2. Additionally, in vivo functional experiments using AAV carrying CXCR4 showed that blocking CXCR4 in experimental autoimmune prostatitis (EAP) can alleviate inflammation and experimental prostate fibrosis development. Mechanistically, CXCR4, a chemokine receptor, when silenced, weakens the PI3K/AKT/mTOR pathway as its downstream signal, reducing c-MYC expression. PFKFB3, a key enzyme involved in glucose metabolism, is a target gene of c-MYC, thus impacting macrophage polarization and glycolytic metabolism processes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chen Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Peng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jian Song
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenming Ma
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenlong Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xianguo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Jing Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Yue SY, Niu D, Ma WM, Guan Y, Liu QS, Wang XB, Xiao YZ, Meng J, Ding K, Zhang L, Du HX, Liang CZ. The CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in experimental autoimmune prostatitis through the PI3K/AKT pathway. Andrology 2024; 12:1408-1418. [PMID: 38095276 DOI: 10.1111/andr.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Ming Ma
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qiu-Shi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Bin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yun-Zheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Xu H, Yong L, Gao X, Chen Y, Wang Y, Wang F, Hou X. CaMK4: Structure, physiological functions, and therapeutic potential. Biochem Pharmacol 2024; 224:116204. [PMID: 38615920 DOI: 10.1016/j.bcp.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, β cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.
Collapse
Affiliation(s)
- Hao Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liang Yong
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yandong Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, PR China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
9
|
Salazar FC, Martinez MS, Paira DA, Chocobar YA, Olivera C, Godoy GJ, Acosta-Rodriguez EV, Rivero VE, Motrich RD. CD8 T cells are dispensable for experimental autoimmune prostatitis induction and chronic pelvic pain development. Front Immunol 2024; 15:1387142. [PMID: 38807587 PMCID: PMC11130463 DOI: 10.3389/fimmu.2024.1387142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Chronic Pelvic Pain Syndrome or Chronic Prostatitis (CPPS/CP) is the most prevalent urologic affliction among young adult men. It is a challenging condition to treat, which significantly decreases patient quality of life, mostly because of its still uncertain aetiology. In that regard, an autoimmune origin is a prominent supported theory. Indeed, studies in patients and in rodent models of Experimental Autoimmune Prostatitis (EAP) have provided compelling evidence suggesting a key role of CD4 Th1 cells in disease pathogenesis. However, the implication of other prominent effectors of the immune system, such as CD8 T cells, has yet to be studied. Methods We herein analyzed the induction of prostatitis and the development of chronic pelvic pain in EAP using CD8 T cell-deficient animals. Results We found similarly elevated PA-specific immune responses, with high frequencies of specific IFNg+CD4+ and IL17+CD4+ T cells in prostate draining lymph nodes from PA-immunized either CD8 KO or wild type animals with respect to controls. Moreover, these peripheral immune responses were paralleled by the development of significant chronic pelvic pain, and accompanied by prostate histological lesions, characterized by hemorrhage, epithelial cell desquamation, marked periglandular leukocyte infiltration, and increased collagen deposition in both, PA-immunized CD8 KO and wild type animals. As expected, control animals did not develop prostate histological lesions. Discussion Our results indicate that CD8 T cells do not play a major role in EAP pathogenesis and chronic pelvic pain development. Moreover, our results corroborate the previous notion that a CD4 Th1 associated immune response drives the induction of prostate tissue inflammation and the development of chronic pelvic pain.
Collapse
Affiliation(s)
- Florencia C. Salazar
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Maria S. Martinez
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Daniela A. Paira
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Yair A. Chocobar
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Carolina Olivera
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Gloria J. Godoy
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Eva V. Acosta-Rodriguez
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Virginia E. Rivero
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Ruben D. Motrich
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| |
Collapse
|
10
|
Gao SJ, Liu L, Li DY, Liu DQ, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Interleukin-17: A Putative Novel Pharmacological Target for Pathological Pain. Curr Neuropharmacol 2024; 22:204-216. [PMID: 37581321 PMCID: PMC10788884 DOI: 10.2174/1570159x21666230811142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 08/16/2023] Open
Abstract
Pathological pain imposes a huge burden on the economy and the lives of patients. At present, drugs used for the treatment of pathological pain have only modest efficacy and are also plagued by adverse effects and risk for misuse and abuse. Therefore, understanding the mechanisms of pathological pain is essential for the development of novel analgesics. Several lines of evidence indicate that interleukin-17 (IL-17) is upregulated in rodent models of pathological pain in the periphery and central nervous system. Besides, the administration of IL-17 antibody alleviated pathological pain. Moreover, IL-17 administration led to mechanical allodynia which was alleviated by the IL-17 antibody. In this review, we summarized and discussed the therapeutic potential of targeting IL-17 for pathological pain. The upregulation of IL-17 promoted the development of pathological pain by promoting neuroinflammation, enhancing the excitability of dorsal root ganglion neurons, and promoting the communication of glial cells and neurons in the spinal cord. In general, the existing research shows that IL-17 is an attractive therapeutic target for pathologic pain, but the underlying mechanisms still need to be investigated.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
11
|
Yu YQ, Wang H. Imbalance of Th1 and Th2 Cytokines and Stem Cell Therapy in Pathological Pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:88-101. [PMID: 36573059 DOI: 10.2174/1871527322666221226145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
The pathophysiological importance of T helper 1 (Th1) and Th2 cell cytokines in pathological pain has been highly debated in recent decades. However, the analgesic strategy targeting individual cytokines still has a long way to go for clinical application. In this review, we focus on the contributions of Th1 cytokines (TNF-α, IFN-γ, and IL-2) and Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in rodent pain models and human pain-related diseases. A large number of studies have shown that Th1 and Th2 cytokines have opposing effects on pain modulation. The imbalance of Th1 and Th2 cytokines might determine the final effect of pain generation or inhibition. However, increasing evidence indicates that targeting the individual cytokine is not sufficient for the treatment of pathological pain. It is practical to suggest a promising therapeutic strategy against the combined effects of Th1 and Th2 cytokines. We summarize the current advances in stem cell therapy for pain-related diseases. Preclinical and clinical studies show that stem cells inhibit proinflammatory cytokines and release enormous Th2 cytokines that exhibit a strong analgesic effect. Therefore, a shift of the imbalance of Th1 and Th2 cytokines induced by stem cells will provide a novel therapeutic strategy against intractable pain. It is extremely important to reveal the cellular and molecular mechanisms of stem cell-mediated analgesia. The efficiency and safety of stem cell therapy should be carefully evaluated in animal models and patients with pathological pain.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
12
|
Wang H, He L, Liu Z, Xu X, Zhang H, Mao P, Li M. Calycosin protects against chronic prostatitis in rats via inhibition of the p38MAPK/NF-κB pathway. Open Med (Wars) 2023; 18:20230770. [PMID: 37663231 PMCID: PMC10473462 DOI: 10.1515/med-2023-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Currently, the effect and molecular mechanism of calycosin, the main active ingredient of Qinshi Simiao San, which can alleviate chronic prostatitis (CP), on CP remain unclear. This study aimed to elucidate the potential mechanism of action of calycosin in CP in a rat CP model. The prostate tissue morphology was evaluated based on hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was conducted to evaluate inflammatory cytokine and immune factor levels (secretory immunoglobulin A [SIgA]; immunoglobulin G [IgG]) in prostate tissues and serum. Additionally, representative biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase, and catalase were detected using detection kits, and reactive oxygen species release was evaluated using immunofluorescence staining. Furthermore, the p38 mitogen-activated protein kinase (p38MAPK)/NF-kappaB (NF-κB) signaling pathway was analyzed by western blotting. The results showed that calycosin substantially ameliorated the pathological damage to prostate tissues of the CP rats. Moreover, calycosin significantly downregulated interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha, IgG, and SIgA levels. Furthermore, we found that calycosin considerably suppressed oxidative stress and inhibited the activation of the p38MAPK/NF-κB signaling pathway in rats with CP. In summary, our findings revealed that calycosin protects against CP in rats by inhibiting the p38MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Lei He
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Zhaofei Liu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Xiangjun Xu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Haitao Zhang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Pengfei Mao
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Ming Li
- Department of Pharmacy, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.160 Chaoyang Middle Road, Haizhou District, Lianyungang 222000, China
| |
Collapse
|
13
|
Chen J, Chen J, Fang Y, Shen Q, Zhao K, Liu C, Zhang H. Microbiology and immune mechanisms associated with male infertility. Front Immunol 2023; 14:1139450. [PMID: 36895560 PMCID: PMC9989213 DOI: 10.3389/fimmu.2023.1139450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Up to 50% of infertility is caused by the male side. Varicocele, orchitis, prostatitis, oligospermia, asthenospermia, and azoospermia are common causes of impaired male reproductive function and male infertility. In recent years, more and more studies have shown that microorganisms play an increasingly important role in the occurrence of these diseases. This review will discuss the microbiological changes associated with male infertility from the perspective of etiology, and how microorganisms affect the normal function of the male reproductive system through immune mechanisms. Linking male infertility with microbiome and immunomics can help us recognize the immune response under different disease states, providing more targeted immune target therapy for these diseases, and even the possibility of combined immunotherapy and microbial therapy for male infertility.
Collapse
Affiliation(s)
- Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Hua X, Zhang J, Ge S, Liu H, Du H, Niu Q, Chen X, Yang C, Zhang L, Liang C. CXCR3 antagonist AMG487 ameliorates experimental autoimmune prostatitis by diminishing Th1 cell differentiation and inhibiting macrophage M1 phenotypic activation. Prostate 2022; 82:1223-1236. [PMID: 35700340 DOI: 10.1002/pros.24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is an inflammatory immune disease that is characterized by infiltrating inflammatory cells in the prostate and pelvic or by perineal pain. Receptor CXCR3modulates immune and inflammatory responses; however, the effects of CXCR3 antagonist AMG487 in the context of CP/CPPS are unknown. Therefore, we investigated the effect of AMG487 in experimental autoimmune prostatitis (EAP) mice and explored the potential functional mechanisms. METHODS The EAP model was induced by intradermally injecting a mixture of prostate antigens and complete Freund's adjuvant on Days 0 and 28. To evaluate the effect of AMG487 on EAP mice, treatment with AMG487 and vehicle solution was conducted for the indicated period. Then, procedures were performed, including behavioral test, to evaluate the pain response to stimulation before the mice were killed and a histological assessment to evaluate the inflammation after the mice were killed. Immunofluorescence, flow cytometry, and Western blot assay were used to analyze the functional phenotype and regulation mechanism of AMG487 on T helper type 1 (Th1) cells and macrophages. RESULTS We found high expression of CXCR3 in human benign prostate tissues with inflammation and EAP mice. The elevated CXCR3 in prostate tissues correlates with the severity of inflammation. CXCR3 antagonist AMG487 treatment ameliorated the inflammatory changes and the pelvic pain of EAP mice. AMG487 inhibits Th1 cell differentiation through the IL-12/STAT4pathway and inhibits pro-inflammatory M1 macrophages through the lipopolysaccharide/NF-κB p65signaling. AMG487 could inhibit the secretion of inflammatory mediators in EAP mice. CONCLUSION CXCR3 antagonist AMG487 could ameliorate the inflammatory changes and the pelvic pain of EAP mice by diminishing Th1 cell differentiation and inhibiting macrophage M1 phenotypic activation. Thus, the results imply that AMG487 has the potential as an effective therapeutic agent in the prevention and treatment of EAP.
Collapse
Affiliation(s)
- Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Jiong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Hexi Du
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Qingsong Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
15
|
Chen J, Meng J, Li X, Li X, Liu Y, Jin C, Zhang L, Hao Z, Chen X, Zhang M, Liang C. HA/CD44 Regulates the T Helper 1 Cells Differentiation by Activating Annexin A1/Akt/mTOR Signaling to Drive the Pathogenesis of EAP. Front Immunol 2022; 13:875412. [PMID: 35693826 PMCID: PMC9178196 DOI: 10.3389/fimmu.2022.875412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
CD44 partcipates in multiple inflammatory reactions. Here, we aimed to investigate the role of CD44 and the ligand, hyaluronan (HA), on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) pathogenesis. We found that CD44 was universally expressed in CD4+ lymphocytes in the peripheral blood of CP/CPPS patients. After silencing CD44 expression or delivering 4-methylumbelliferone (4-MU), the pain severity and prostatic inflammation were significantly relieved. In vitro assay found that HA/CD44 was able to regulate T helper 1 (Th1) cells differentiation, the deficiency of which diminished experimental autoimmune prostatitis (EAP) susceptibility. Bioinformatic analysis suggested that after HA or 4-MU treatment, mTOR signaling was significantly altered, and these results were confirmed by subsequent Western blotting assay. Besides, mass spectrometry and co-immunoprecipitation assays found that CD44 was able to interact with Annexin A1 (ANX A1), and this kind of interaction stabilized ANX A1 protein and maintained the activation of Akt/mTOR pathway. Meanwhile, HA-treatment-enhanced prostatic inflammation, Th1 cell differentiation, and Akt/mTOR pathway activation were reversed after silencing the expression of ANX A1 using shANX A1-lentivirus. The present study systematically investigates the functional role of HA/CD44 in CP/CPPS and identifies novel mechanisms for HA/CD44 promoting Th1 cell differentiation. Targeting the HA/CD44/ANX A1/Akt/mTOR signaling represents novel potential therapeutic strategies for patients with CP/CPPS.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiaoling Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Xianguo Chen, ; Meng Zhang, ; Chaozhao Liang,
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Xianguo Chen, ; Meng Zhang, ; Chaozhao Liang,
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Xianguo Chen, ; Meng Zhang, ; Chaozhao Liang,
| |
Collapse
|
16
|
Zhang C, Chen J, Wang H, Chen J, Zheng MJ, Chen XG, Zhang L, Liang CZ, Zhan CS. IL-17 exacerbates experimental autoimmune prostatitis via CXCL1/CXCL2-mediated neutrophil infiltration. Andrologia 2022; 54:e14455. [PMID: 35560069 DOI: 10.1111/and.14455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a poorly understood disease. Accumulating evidence suggests that autoimmune dysfunction is involved in the development of CP/CPPS. Interleukin-17 (IL-17) is associated with the occurrence and development of several chronic autoimmune inflammatory diseases. However, the molecular mechanisms underlying the role of IL-17 in CP/CPPS are not clear. We confirmed that IL-17 was increased in the prostate tissues of experimental autoimmune prostatitis (EAP) mice. Corresponding to the increase of IL-17, neutrophil infiltration and the levels of CXCL1 and CXCL2 (CXC chemokine ligands 1 and 2) were also increased in the prostate of EAP. Treatment of EAP mice with an IL-17-neutralizing monoclonal antibody (mAb) decreased the number of infiltrated neutrophils and CXCL1 and CXCL2 levels. Depletion of neutrophils using anti-Ly6G antibodies ameliorated the inflammatory changes and hyperalgesia caused by EAP. Fucoidan, a could potent inhibitor of neutrophil migration, also ameliorate the manifestations of EAP. Our findings suggested that IL-17 promoted the production of CXCL1 and CXCL2, which triggered neutrophil chemotaxis to prostate tissues. Fucoidan might be a potential drug for the treatment of EAP via the effective inhibition of neutrophil infiltration.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Mei-Juan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chang-Sheng Zhan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Zhang M, Jin C, Kong X, Meng J, Fan S, Ding Y, Fang Q, Dong T, Zhang H, Ni J, Liu Y, Wang H, Chen X, Hao Z, Peng B, Zhang L, Wang Z, Liang C. Identification of novel susceptibility factors related to CP/CPPS-like symptoms: Evidence from a multicenter case-control study. Prostate 2022; 82:772-782. [PMID: 35188987 DOI: 10.1002/pros.24319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to systematically identify novel susceptible factors related to the occurrence and development of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)-like symptoms that were not limited to lifestyles or dietary habits in Chinese population. METHODS We recruited participants from three centers (Shanghai [northeast], Hefei [east], and Lanzhou [northwest]) from August 2020 to June 2021. Demographics, lifestyles, dietary habits, past medical history, and national institutes of health-chronic prostatitis symptom index (NIH-CPSI) were collected from the individuals via optimized questionnaires. Logistic regression analysis and multivariate adjustment models were used to calculate the odds ratio (OR) and 95% confidence interval (95% CI) to assess the association between these variables and CP/CPPS-like symptoms. RESULTS A total of 1851 participants were enrolled in this study (764 cases and 1087 controls). Age distributions differed between groups (median, range: 32, 18-74 vs. 29, 18-70, p < 0.001). After adjustment, physicochemical occupational hazards were identified significantly related to CP/CPPS-like symptom occurrence and development (ORoccurrence : 1.389, 95% CI: 1.031-1.870, p < 0.001; ORdevelopment : 2.222, 95% CI: 1.464-3.372, p < 0.001); besides, greater than or equal to four ejaculations per week significantly increased the likelihood of CP/CPPS-like symptoms compared with one ejaculation per week (ORoccurrence : 3.051, 95% CI: 1.598-5.827, p = 0.001). For these patients, who were easily felt gastrointestinal discomfort caused by spicy food intake, they had a higher incidence to affect with CP/CPPS-like symptoms (ORoccurrence : 2.258, 95% CI: 1.858-2.745, p < 0.001). In addition, history of drug allergy and genitourinary infections were identified as independent susceptible factors for the occurrence of CP/CPPS-like symptoms (ORoccurrence : 1.689, 95% CI: 1.007-2.834, p = 0.047; ORoccurrence : 3.442, 95% CI: 2.202-5.382, p < 0.001, respectively), while the history of rheumatic immune diseases was found tightly associated with the development of CP/CPPS-like symptoms (ORdevelopment : 2.002, 95% CI: 1.008-4.058, p = 0.048). CONCLUSION Infection/inflammatory/immune-related disorders, novel dietary habits, and lifestyles associated with the susceptibility of CP/CPPS-like symptoms' occurrence and development are identified. Altering these irregular conditions serves as potential strategies for the treatment of patients with CP/CPPS-like symptoms.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
- Shenzhen Luohu Hospital Group, Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xiangbin Kong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Yang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Qiaozhou Fang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Ting Dong
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, PR China
| | - Jinliang Ni
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, PR China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, PR China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
18
|
Cyril AC, Jan RK, Radhakrishnan R. Pain in chronic prostatitis and the role of ion channels: a brief overview. Br J Pain 2022; 16:50-59. [PMID: 35111314 PMCID: PMC8801692 DOI: 10.1177/20494637211015265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Prostatitis is the third most common urologic condition affecting more than half the male population at some point in their lives. There are different categories of prostatitis, of which approximately 90% of cases can be classified under the National Institute of Health (NIH) type III category (chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)) with no causative agents identified. CP/CPPS is associated with several symptoms, of which the most prominent being chronic pain. Despite its high incidence, pain management in patients with CP/CPPS has been poor, possibly due to the lack of understanding of aetiological factors and mechanisms underlying pain development. METHODS An extensive literature search of published articles on the molecular mechanisms of pain in CP/CPPS was conducted using PubMed and Google Scholar search engines (https://pubmed.ncbi.nlm.nih.gov and https://scholar.google.com). The terms used for the search were: prostatitis, pain mechanism in CP/CPPS, prostatitis pain models, acid-sensing ion channels (ASICs), transient receptor potential vanilloid type 1 (TRPVs), purinergic channels (P2X) in prostatitis pain mechanism and inflammatory mediators in CP/CPPS. The papers were identified based on the title and abstract, and after excluding the articles that did not emphasize the pain mechanism in CP/CPPS. Ninety-five articles (36 review and 59 original research papers) met our criteria and were included in the review. RESULTS A number of inflammatory mediator molecules and pain channels, including ASICs, transient receptor potential vanilloid channels (TRPVs) and P2Xs have been investigated for their role in prostatitis pain pathology using various animal models. CONCLUSION This review summarizes the pain mechanisms in CP/CPPS focusing on the inflammatory mediators, neurotransmitters, pain-transducing ion channels and small animal models developed for studying prostatitis.
Collapse
Affiliation(s)
| | | | - Rajan Radhakrishnan
- Rajan Radhakrishnan, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, P.O Box 505055, Dubai, UAE.
| |
Collapse
|
19
|
Chen J, Meng J, Jin C, Mo F, Ding Y, Gao X, Zhang L, Zhang M, Liang C. 4-Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy for chronic prostatitis. Prostate 2021; 81:1078-1090. [PMID: 34320251 DOI: 10.1002/pros.24205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hyaluronan (HA), an extracellular matrix component, accumulates in most chronic inflammatory tissues. Here, we studied the impact of HA on the pathogenesis of chronic prostatitis. MATERIALS AND METHODS First, we sorted demographic characteristics and peripheral blood serum samples from patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) to assess the relationship between the levels of HA in peripheral blood serum and the severity of inflammation in patients. Second, we induced an experimental autoimmune prostatitis (EAP) mouse model and treated the mice with 4-methylumbelliferone (4-MU) (200 mg/kg/day). After the mice were sacrificed, RNA from Th1 cells of the mouse spleens was extracted for RNA sequencing. We used weighted gene co-expression network analysis (WGCNA) to identify co-expressed gene modules and hub-gene related to the pathogenesis of EAP. The expression of critical genes associated with the identified pathway was confirmed by using western blot analysis. RESULTS HA was significantly more highly expressed in CP/CPPS patients than in healthy volunteers and positively correlated with the severity of pain, urination symptoms, and quality of life. Besides, the protein expression of HA was significantly higher in prostate tissues derived from EAP models than in those derived from controls. 4-MU, an oral inhibitor of HA synthesis, relieved immunocyte infiltration to the prostate and significantly reduced the proportion of Th1 cells. Based on the WGCNA, we identified 18 co-expression modules and identified that the Grey60 and brown modules were positively associated with the EAP and negatively associated with the Control and 4-MU-treated groups. Pathway enrichment analyses and western blot assays proved that HA potentially activated the cell cycle pathway, increasing the proportion of Th1 cells promoting chronic prostatitis pathogenesis, while these processes were reversed by 4-MU treatment. CONCLUSIONS Our results suggest that HA is elevated in patients with CP/CPPS compared with healthy controls and that targeting HA through 4-MU suppresses the activity of the cell cycle-related pathway, potentially by decreasing the proportion of Th1 cells and relieving chronic prostatitis. Our findings might inspire the clinical treatment of chronic prostatitis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Fan Mo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiaomei Gao
- The Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
20
|
Liu Y, Wazir J, Tang M, Ullah R, Chen Y, Chen T, Zhou X. Experimental autoimmune prostatitis: different antigens induction and antigen-specific therapy. Int Urol Nephrol 2020; 53:607-618. [PMID: 33200334 DOI: 10.1007/s11255-020-02703-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has uncertain etiology and lacks effective treatment. Autoimmunity is an important pathogeny, and experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. This review presents the detailed current knowledge of EAP models based on evaluation criteria aspects to provide a tool for model selection in pathogenesis studies and therapeutic drug screening. METHODS We extensively searched the published literature on CP/CPPS and different antigen-induced EAP models focusing on the histopathology, clinical-related phenotypes, and biochemical indicators. We also cover the changes in the prostate function and other organs in EAP. Finally, we try to get some insights about antigen-based therapeutic approaches for CP/CPPS. RESULTS Several inciting autoantigens were reported in EAP, including male accessory gland extracts, prostate extracts (PE), prostatic steroid-binding protein, prostatic spermine-binding protein (p25), prostatic acid phosphatase, seminal vesicle secretory protein 2, and T2 peptide. All of these models mimicked histological prostatitis, however only p25- and T2-induced models developed both pelvic pain and voiding behaviors. PE immunization is the most widely used method. Diminished fertility and mental health disorders can be found in PE model. Oral and intravenous T2 peptide have been studied for antigen-specific therapy and achieved preliminary progress in EAP models. CONCLUSIONS PE-induced model is the most commonly used, while T2- or p25-model could serve as a promising CP/CPPS model. Antigen-specific therapy in CP/CPPS deserves further study.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Rahat Ullah
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yueting Chen
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Tingting Chen
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, 210017, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Zhang M, Liu Y, Chen J, Chen L, Meng J, Yang C, Yin S, Zhang X, Zhang L, Hao Z, Chen X, Liang C. Single-cell multi-omics analysis presents the landscape of peripheral blood T-cell subsets in human chronic prostatitis/chronic pelvic pain syndrome. J Cell Mol Med 2020; 24:14099-14109. [PMID: 33124198 PMCID: PMC7754003 DOI: 10.1111/jcmm.16021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cumulative evidence suggests that abnormal differentiation of T lymphocytes influences the pathogenesis of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Thus, understanding the immune activation landscape of CP/CPPS would be helpful for improving therapeutic strategies. Here, we utilized BD™ AbSeq to digitally quantify both the protein and mRNA expression levels in single peripheral blood T cells from two CP/CPPS patients and two healthy controls. We utilized an integrated strategy based on canonical correlation analysis of 10 000+ AbSeq profiles and identified fifteen unique T‐cell subpopulations. Notably, we found that the proportion of cluster 0 in the CP/CPPS group (30.35%) was significantly increased compared with the proportion in the healthy control group (9.38%); cluster 0 was defined as effector T cells based on differentially expressed genes/proteins. Flow cytometry assays confirmed that the proportions of effector T‐cell subpopulations, particularly central memory T cells, T helper (Th)1, Th17 and Th22 cells, in the peripheral blood mononuclear cell populations of patients with CP/CPPS were significantly increased compared with those of healthy controls (P < 0.05), further confirming that aberration of effector T cells possibly leads to or intensifies CP/CPPS. Our results provide novel insights into the underlying mechanisms of CP/CPPS, which will be beneficial for its treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Junyi Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Shuiping Yin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Zhan CS, Chen J, Chen J, Zhang LG, Liu Y, Du HX, Wang H, Zheng MJ, Yu ZQ, Chen XG, Zhang L, Liang CZ. CaMK4-dependent phosphorylation of Akt/mTOR underlies Th17 excessive activation in experimental autoimmune prostatitis. FASEB J 2020; 34:14006-14023. [PMID: 32862457 DOI: 10.1096/fj.201902910rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022]
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is a complicated syndrome characterized by genitourinary pain in the absence of bacterial infection. Th17 cell-driven autoimmunity has been proposed as a cause of CP/CPPS. However, the factors that promote Th17-driven autoimmunity in experimental autoimmune prostatitis (EAP) and the molecular mechanisms are still largely unknown. Here, we showed that Th17 cells were excessively activated, and blockade of IL-17A could effectively ameliorate various symptoms in EAP. Furthermore, we revealed that calcium/calmodulin-dependent kinase Ⅳ (CaMK4), especially Thr196 p-CaMK4 was increased in the Th17 cells of the EAP group, which were activated by intracellular cytosolic Ca2+ . Pharmacologic and genetic inhibition of CaMK4 decreased the proportion of Th17 cells, and the protein and mRNA level of IL-17A, IL-22, and RORγt. The phosphorylation of CaMK4 was dependent on the increase in intracellular cytosolic Ca2+ concentration in Th17 cells. A mechanistic study demonstrated that inhibition of CaMK4 reduced IL-17A production by decreasing the phosphorylation of Akt-mTOR, which was well accepted to positively regulate Th17 differentiation. Collectively, our results demonstrated that Ca2+ -CaMK4-Akt/mTOR-IL-17A axis inhibition may serve as a promising therapeutic strategy for CP/CPPS.
Collapse
Affiliation(s)
- Chang-Sheng Zhan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Mei-Juan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Qiang Yu
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Du HX, Liu Y, Zhang LG, Zhan CS, Chen J, Zhang M, Chen XG, Zhang L, Liang CZ. Abnormal gut microbiota composition is associated with experimental autoimmune prostatitis-induced depressive-like behaviors in mice. Prostate 2020; 80:663-673. [PMID: 32255522 DOI: 10.1002/pros.23978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depressive symptoms are found in approximately 78% of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) patients, but the pathological mechanisms remain unknown. Increasing evidence suggests that abnormal gut microbiota may play an important role in depression. Thus, we aimed to investigate whether gut microbiota contributes to CP/CPPS-associated depression by using a mouse model of experimental autoimmune prostatitis (EAP). METHODS Male nonobese diabetic mice were immunized twice by subcutaneous injection of prostate antigen and adjuvant. Behavioral tests consisted of an open field test, sucrose preference test, forced swimming tests, and tail suspension test was used to confirm the depression-like symptoms that were induced by EAP. Then, fecal samples were collected, and 16S ribosomal RNA gene sequencing was performed to detect differences in gut microbiota composition between control and EAP group. Additionally, fecal bacteria from the control and EAP mice were transplanted into antibiotics-induced pseudo-germ-free mice to investigate the effects on host behaviors and the composition of gut bacteria. RESULTS EAP was successfully established and exhibited depressive-like behaviors in mice. The 16S rRNA analysis of fecal samples indicated the abnormal composition of gut microbiota in the EAP mice compared to the control mice. In the fecal microbiota transplant study, antibiotics-treated pseudo-germ-free mice presented depressive states as compared to naïve mice. Fecal bacteria transplant from EAP mice, but not from control mice, into the pseudo-germ-free mice, significantly exaggerated host depression-like behaviors. Moreover, fecal bacteria transplants from control and EAP mice induced distinct alterations in α-diversity and β-diversity indices. In all, 24 bacteria at six phylogenetic levels were remarkably changed by the fecal bacteria transplantation. CONCLUSIONS Abnormal gut microbiota composition after EAP induction may contribute to the development of depression in mice. A therapeutic strategy that targets gut microbiota may provide an alternative treatment for alleviating this condition.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li-Gang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chang-Sheng Zhan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xian-Guo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
24
|
Liu Y, Mikrani R, Xie D, Wazir J, Shrestha S, Ullah R, Baig MMFA, Ahmed A, Srivastava PK, Thapa KB, Zhou X. Chronic prostatitis/chronic pelvic pain syndrome and prostate cancer: study of immune cells and cytokines. Fundam Clin Pharmacol 2019; 34:160-172. [DOI: 10.1111/fcp.12517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Dianyou Xie
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Junaid Wazir
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Sajan Shrestha
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Rahat Ullah
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Abrar Ahmed
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 China
| | | | - Kedar Bahadur Thapa
- Institute of Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
- Department of Surgery Zhongda Hospital Affiliated to Southeast University Nanjing Jiangsu 210017 China
- Department of Surgery Nanjing Shuiximen Hospital Nanjing Jiangsu 210017 China
| |
Collapse
|
25
|
Wang W, Naveed M, Majeed F, Cui X, Ihsan AU, Liu Z, Zubair HM, Tang M, Sohail M, Xiaohui Z. Morphological reseach on expression of inflammatory mediators in murine models of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by T2 antigen. Andrologia 2019; 51:e13435. [PMID: 31613015 DOI: 10.1111/and.13435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 02/01/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common clinical syndrome with unknown aetiology. In this study, we used the T2 peptide in C57BL/6 (B6) mice and Sprague Dawley (SD) rats model during different stages. We sought to understand the role of CD4+ T cells and macrophages in CP/CPPS. A total of 16 B6 mice and 18 SD rats were divided into five groups: B6-naïve (n = 6), B6 model (n = 10), SD-naïve (n = 6), SD-45-day model (n = 6) and SD-56-day model (n = 6). The B6 model group was subcutaneously injected with 0.2 ml of (225μg/ml) T2 peptide on 0 and 14th day and was finally sacrificed on 28th day. The SD-45- and SD-56-day model groups were subcutaneously injected with 1ml of (50 μg/ml) T2 peptide on 0 and 14th day and were finally sacrificed on 45th and 56th day respectively. An equivalent volume of normal saline (NS) solution was injected to the naïve groups and analysed the pain and voiding behaviour. We have calculated the prostate index, H&E staining and immunofluorescence of CD4+ T cells and macrophages (CD68) in each group. T2 peptide immunization in B6 mice and SD rats caused severe prostatitis and cell infiltration, mainly composed of CD4+ T cells and macrophages. The SD-56-day model group showed more severe inflammatory cells infiltration than SD-45-day model group. Moreover, inflammatory cells infiltration and red secretions in B6 model were less than SD model. Expression of CD4+ T cells and macrophages was also consistent with H&E results. These results indicated that different stages of CP/CPPS, inflammatory response, and the inflammation of the rat were stronger than the mouse. Our study suggests that CD4+ T cells and macrophages are key factors in the development of CP/CPPS.
Collapse
Affiliation(s)
- Wenlu Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fatima Majeed
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | | | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Muhammad Sohail
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, China.,Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, China.,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated to Southeast University, Nanjing, China
| |
Collapse
|
26
|
Motrich RD, Salazar FC, Breser ML, Mackern-Oberti JP, Godoy GJ, Olivera C, Paira DA, Rivero VE. Implications of prostate inflammation on male fertility. Andrologia 2018; 50:e13093. [DOI: 10.1111/and.13093] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ruben D. Motrich
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Florencia C. Salazar
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Maria L. Breser
- Instituto A.P. de Ciencias Básicas y Aplicadas; Universidad Nacional de Villa María, Ciudad Universitaria; Villa María, Cordoba Argentina
| | - Juan P. Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU-CONICET; Mendoza Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología; Universidad Nacional de Cuyo; Mendoza Argentina
| | - Gloria J. Godoy
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Carolina Olivera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Daniela A. Paira
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Virginia E. Rivero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
27
|
A prostate derived commensal Staphylococcus epidermidis strain prevents and ameliorates induction of chronic prostatitis by UPEC infection. Sci Rep 2018; 8:17420. [PMID: 30479364 PMCID: PMC6258684 DOI: 10.1038/s41598-018-35818-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/10/2018] [Indexed: 11/08/2022] Open
Abstract
Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) is a common syndrome with limited therapies and an unknown etiology. Previously, our laboratory has defined a potential role for pathogenic infection in disease onset. Intra-urethral infection with a uropathogenic Escherichia coli strain isolated from a CP/CPPS patient, CP1, induces prostatic inflammation and tactile allodynia in mice. We have also demonstrated that a prostate specific Staphylococcus epidermidis bacterial isolate, NPI (non-pain inducing), from a healthy subject reduces pain and inflammation in an experimental autoimmune prostatitis (EAP) murine model. Here we focus on the interplay between these human isolates in the context of prostatitis development and resolution. NOD/ShiLtJ mice were inoculated with either NP1 or CP1, or combinations of both. Infection with CP1 induced pelvic tactile allodynia after 7 days, while NPI instillation alone induced no such response. Instillation with NPI 7 days following CP1 infection resolved pelvic tactile allodynia and prophylactic instillation 7 days prior to CPI infection prevented its onset. Prophylactic NPI instillation also prevented CP1 colonization of both prostate and bladder tissues. In vitro analyses revealed that CP1 and NPI do not directly inhibit the growth or invasive potential of one another. Immunological analyses revealed that specific markers associated with CP1-induced pelvic allodynia were decreased upon NPI treatment or repressed by prophylactic colonization. This study demonstrates that a commensal bacterial isolate can inhibit the colonization, pain responses, and immunological activation to uropathogenic bacteria, emphasizing the power of a healthy prostatic microflora in controlling health and disease.
Collapse
|
28
|
Su Y, Lu J, Chen X, Liang C, Luo P, Qin C, Zhang J. Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway. Inflammation 2018; 41:1384-1395. [PMID: 29675586 DOI: 10.1007/s10753-018-0786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic prostatitis (CP) is a clinically common disease with high morbidity. It affects the patients' quality of life (QoL) as well as physical and mental health seriously due to the recurring symptoms of lower urinary tract and genitalia. As the opinions about the etiology of CP are still not uniform, it is very difficult to be treated or even cured. Autophagy is a highly conserved physiological function which is widely found in eukaryotic cells. In general, cells maintain a certain level of autophagy under physiological conditions, and the basal level of autophagy can be regulated by a variety of autophagy-related genes under stress such as hunger, infection, trauma, and other circumstances. Therefore, the main purpose of this study is to investigate the role of autophagy in chronic nonbacterial prostatitis (CNP, also called CP). In this paper, we established the CNP model via hypodermic injection of 17β-estradiol and subsequently abdominal rapamycin (a common autophagy inducer) treatment based on castrated rats. Then, the expression of nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), and autophagy-related markers as well as autophagosome formation in prostate tissues, peripheral blood mononuclear cells (PBMCs), and serum of rats were evaluated respectively. In addition to some histological changes in the prostate tissues, we found the levels of NF-κB and IL-1β were significantly increased in the model group, along with significantly suppressed autophagy, whereas rapamycin could reverse these effects which involved in the mTOR/ULK1/ATG13 signaling pathway. In conclusion, our results suggested that rapamycin could ameliorate hormone imbalance-induced CNP by activating autophagy.
Collapse
Affiliation(s)
- Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingxiao Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Cong Qin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, 435000, China.
| |
Collapse
|
29
|
Nesheim N, Ellem S, Dansranjavin T, Hagenkötter C, Berg E, Schambeck R, Schuppe HC, Pilatz A, Risbridger G, Weidner W, Wagenlehner F, Schagdarsurengin U. Elevated seminal plasma estradiol and epigenetic inactivation of ESR1 and ESR2 is associated with CP/CPPS. Oncotarget 2018; 9:19623-19639. [PMID: 29731970 PMCID: PMC5929413 DOI: 10.18632/oncotarget.24714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/24/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is associated with urinary tract symptoms and hormonal imbalances amongst others. The heterogeneous clinical presentation, unexplored molecular background and lack of prostate biopsies complicate therapy. Here, using liquid biopsies, we performed a comprehensive translational study on men diagnosed with CP/CPPS type III (n= 50; median age 39.8, range 23-65) and age-matched controls (n= 61; median age 36.8, range 20-69), considering biochemical parameters of blood and ejaculates, and epigenetic regulation of the estrogen receptor genes (ESR1 and ESR2) in leukocytes isolated from blood (systemic regulation) and in somatic cells isolated from ejaculates (local regulation). We found elevated 17β-estradiol (E2) levels in seminal plasma, but not in blood plasma, that was significantly associated with CP/CPPS and impaired urinary tract symptoms. In ejaculated somatic cells of CP/CPPS patients we found that ESR1 and ESR2 were both significantly higher methylated in CpG-promoters and expressionally down-regulated in comparison to controls. Mast cells are reported to contribute to CP/CPPS and are estrogen responsive. Consistent with this, we found that E2 -treatment of human mast cell lines (HMC-1 and LAD2) resulted in altered cytokine and chemokine expression. Interestingly, in HMC-1 cells, possessing epigenetically inactivated ESR1 and ESR2, E2 -treatment led to a reduced transcription of a number of inflammatory genes. Overall, these data suggest that elevated local E2 levels associate with an epigenetic down-regulation of the estrogen receptors and have a prominent role in CP/CPPS. Investigating E2 levels in semen could therefore serve as a promising biomarker to select patients for estrogen targeted therapy.
Collapse
Affiliation(s)
- Nils Nesheim
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stuart Ellem
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Temuujin Dansranjavin
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Christina Hagenkötter
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Elena Berg
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Rupert Schambeck
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Gail Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Wolfgang Weidner
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
30
|
Ye C, Xiao G, Xu J, Qin S, Luo Y, Chen G, Lai HH, Zhou T. Differential expression of immune factor between patients with chronic prostatitis/chronic pelvic pain syndrome and the healthy volunteers. Int Urol Nephrol 2017; 50:395-399. [PMID: 29235061 DOI: 10.1007/s11255-017-1763-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Immune mechanisms have been hypothesized to contribute to the development of CP/CPPS. In this study, we investigated the differential expression of immune factors between patients with CP/CPPS and healthy volunteers. METHODS This study was registered in Australian New Zealand Clinical Trials Registry. Healthy volunteers and patients with CP/CPPS were enrolled in this study. The inclusion criteria for patients were below: (1) aged 18-45 years old; (2) prostatitis-related syndrome longer than 3 months; (3) normal routine urine culture and negative bacterial culture in prostatic fluid. Patients were further classified into two groups: types IIIA and IIIB CP/CPPS according to the results of EPS routine test. Serum immune markers include IgA, IgM, IgG, CD4+ and CD8+. RESULTS There are total 23 CP/CPPS patients, including 12 type IIIB and 11 type IIIA. Relatively, there are 26 healthy volunteers. The serum levels of IgG were higher in CP/CPPS patients compared to healthy volunteers (1141.2 ± 204.3 vs 1031.9 ± 173.7 mg/L, p = 0.045), while the serum levels of CD8+ were lower in CP/CPPS patients compared to healthy volunteers (492.8 ± 185.6 vs 640.0 ± 246.8 cells/μL, p = 0.021). Furthermore, serum levels of IgG were higher in patients with IIIA CP/CPPS compared to those with IIIB (1244.3 ± 151.6 vs 1054.3 ± 209.3 mg/L, p = 0.023). CONCLUSIONS Differential levels of IgG and CD8+ between CPPS patients and healthy volunteers suggest a contributing role of immune mechanisms to the development of CP/CPPS; and IgG may play an important role in inflammatory CPPS. Clinical Study registration number ACTRN12613000792729.
Collapse
Affiliation(s)
- Chen Ye
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Guang'an Xiao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jian Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shengfei Qin
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuhua Luo
- Department of Urology, Haining People's Hospital, QianJiang West Road, Haining City, ZheJiang Province, People's Republic of China.
| | - Guanghua Chen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - H Henry Lai
- Division of Urologic Surgery, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Tie Zhou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
31
|
Breser ML, Salazar FC, Rivero VE, Motrich RD. Immunological Mechanisms Underlying Chronic Pelvic Pain and Prostate Inflammation in Chronic Pelvic Pain Syndrome. Front Immunol 2017; 8:898. [PMID: 28824626 PMCID: PMC5535188 DOI: 10.3389/fimmu.2017.00898] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is the most common urologic morbidity in men younger than 50 years and is characterized by a diverse range of pain and inflammatory symptoms, both in type and severity, that involve the region of the pelvis, perineum, scrotum, rectum, testes, penis, and lower back. In most patients, pain is accompanied by inflammation in the absence of an invading infectious agent. Since CP/CPPS etiology is still not well established, available therapeutic options for patients are far from satisfactory for either physicians or patients. During the past two decades, chronic inflammation has been deeply explored as the cause of CP/CPPS. In this review article, we summarize the current knowledge regarding immunological mechanisms underlying chronic pelvic pain and prostate inflammation in CP/CPPS. Cumulative evidence obtained from both human disease and animal models indicate that several factors may trigger chronic inflammation in the form of autoimmunity against prostate, fostering chronic prostate recruitment of Th1 cells, and different other leukocytes, including mast cells, which might be the main actors in the consequent development of chronic pelvic pain. Thus, the local inflammatory milieu and the secretion of inflammatory mediators may induce neural sensitization leading to chronic pelvic pain development. Although scientific advances are encouraging, additional studies are urgently needed to establish the relationship between prostatitis development, mast cell recruitment to the prostate, and the precise mechanisms by which they would induce pelvic pain.
Collapse
Affiliation(s)
- María L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia C Salazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
32
|
Sanchez LR, Breser ML, Godoy GJ, Salazar FC, Mackern-Oberti JP, Cuffini C, Motrich RD, Rivero VE. Chronic Infection of the Prostate by Chlamydia muridarum Is Accompanied by Local Inflammation and Pelvic Pain Development. Prostate 2017; 77:517-529. [PMID: 28093789 DOI: 10.1002/pros.23291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/18/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chlamydia trachomatis urogenital infections are the leading cause of sexually transmitted bacterial infections. Although the prevalence of chlamydial infection is similar in men and women, current research is mainly focused on women, neglecting the study of male genital tract infections. We, therefore, investigated Chlamydia infection in the rodent male genital tract. MATERIALS AND METHODS Male NOD and C57BL/6 mice were inoculated in the meatus urethra with C. muridarum. Bacterial DNA, leukocyte infiltration of male genital tract tissues, pelvic pain, and Chlamydia-specific immune responses were analyzed at different time points. RESULTS AND CONCLUSIONS The inoculation of C. muridarum in the meatus urethra of male mice resulted in an ascending and widely disseminated infection of the male genital tract. C. muridarum remained longer and with the highest bacterial burdens in the prostate, thus showing a special tropism for this organ. Infection caused leukocyte infiltration, mainly composed by neutrophils, and also induced early pelvic pain development that rapidly dropped and resolved as the infection became chronic. Bacterial load and leukocyte infiltration was observed in all prostate lobes, although dorsolateral prostate was the most affected lobe. Interestingly, immune responses induced by both mice strains were characterized by the production of high levels of IL-10 during early stages of the infection, with highest and sustained levels observed in NOD mice, which showed to be less efficient in clearing the infection. Chronic infection of the prostate accompanied by local inflammation and pelvic pain development described herein have important implications for the improvement of the diagnosis and for the design of new efficient therapies. Prostate 77:517-529, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonardo R Sanchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gloria J Godoy
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia C Salazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CCT Mendoza, CONICET), Mendoza, Argentina
- Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cecilia Cuffini
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
33
|
Breser ML, Motrich RD, Sanchez LR, Rivero VE. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis. Prostate 2017; 77:94-104. [PMID: 27699823 DOI: 10.1002/pros.23252] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. RESULTS Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. CONCLUSIONS Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration and secretion of inflammatory mediators. Our results corroborate and support the notion that mice with different genetic background have different susceptibility to EAP induction. Prostate 77:94-104, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Leonardo R Sanchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
34
|
Breser ML, Lino AC, Motrich RD, Godoy GJ, Demengeot J, Rivero VE. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis. Sci Rep 2016; 6:33097. [PMID: 27624792 PMCID: PMC5022010 DOI: 10.1038/srep33097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022] Open
Abstract
Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence.
Collapse
Affiliation(s)
- Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | | | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - Gloria J Godoy
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | | | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| |
Collapse
|