1
|
Mitchell JR, Vincelette L, Tuberman S, Sheppard V, Bergeron E, Calitri R, Clark R, Cody C, Kannan A, Keith J, Parakoyi A, Pikus M, Vance V, Ziane L, Brenhouse H, Laine MA, Shansky RM. Behavioral and neural correlates of diverse conditioned fear responses in male and female rats. Neurobiol Stress 2024; 33:100675. [PMID: 39391589 PMCID: PMC11465128 DOI: 10.1016/j.ynstr.2024.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Pavlovian fear conditioning is a widely used tool that models associative learning in rodents. For decades the field has used predominantly male rodents and focused on a sole conditioned fear response: freezing. However, recent work from our lab and others has identified darting as a female-biased conditioned response, characterized by an escape-like movement across a fear conditioning chamber. It is also accompanied by a behavioral phenotype: Darters reliably show decreased freezing compared to Non-darters and males and reach higher velocities in response to the foot shock ("shock response"). However, the relationship between shock response and conditioned darting is not known. This study investigated if this link is due to differences in general processing of aversive stimuli between Darters, Non-darters and males. Across a variety of modalities, including corticosterone measures, the acoustic startle test, and sensitivity to thermal pain, Darters were found not to be more reactive or sensitive to aversive stimuli, and, in some cases, they appear less reactive to Non-darters and males. Analyses of cFos activity in regions involved in pain and fear processing following fear conditioning identified discrete patterns of expression among Darters, Non-darters, and males exposed to low and high intensity foot shocks. The results from these studies further our understanding of the differences between Darters, Non-darters and males and highlight the importance of studying individual differences in fear conditioning as indicators of fear state.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rose Clark
- Northeastern University, Boston, MA, USA
| | | | | | - Jack Keith
- Northeastern University, Boston, MA, USA
| | | | | | | | | | | | - Mikaela A. Laine
- Northeastern University, Boston, MA, USA
- Smith College, Northampton, MA, USA
| | | |
Collapse
|
2
|
Mitchell JR, Vincelette L, Tuberman S, Sheppard V, Bergeron E, Calitri R, Clark R, Cody C, Kannan A, Keith J, Parakoyi A, Pikus M, Vance V, Ziane L, Brenhouse H, Laine MA, Shansky RM. Behavioral and neural correlates of diverse conditioned fear responses in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608817. [PMID: 39229164 PMCID: PMC11370446 DOI: 10.1101/2024.08.20.608817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Pavlovian fear conditioning is a widely used tool that models associative learning in rodents. For decades the field has used predominantly male rodents and focused on a sole conditioned fear response: freezing. However, recent work from our lab and others has identified darting as a female-biased conditioned response, characterized by an escape-like movement across a fear conditioning chamber. It is also accompanied by a behavioral phenotype: Darters reliably show decreased freezing compared to Non-darters and males and reach higher velocities in response to the foot shock ("shock response"). However, the relationship between shock response and conditioned darting is not known. This study investigated if this link is due to differences in general processing of aversive stimuli between Darters, Non-darters and males. Across a variety of modalities, including corticosterone measures, the acoustic startle test, and sensitivity to thermal pain, Darters were found not to be more reactive or sensitive to aversive stimuli, and, in some cases, they appear less reactive to Non-darters and males. Analyses of cFos activity in regions involved in pain and fear processing following fear conditioning identified discrete patterns of expression among Darters, Non-darters, and males exposed to low and high intensity foot shocks. The results from these studies further our understanding of the differences between Darters, Non-darters and males and highlight the importance of studying individual differences in fear conditioning as indicators of fear state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mikaela A. Laine
- Northeastern University, Boston, MA
- Smith College, Northampton, MA
| | | |
Collapse
|
3
|
Tian Y, Yang XW, Chen L, Xi K, Cai SQ, Cai J, Yang XM, Wang ZY, Li M, Xing GG. Activation of CRF/CRFR1 Signaling in the Central Nucleus of the Amygdala Contributes to Chronic Stress-Induced Exacerbation of Neuropathic Pain by Enhancing GluN2B-NMDA Receptor-Mediated Synaptic Plasticity in Adult Male Rats. THE JOURNAL OF PAIN 2024; 25:104495. [PMID: 38354968 DOI: 10.1016/j.jpain.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Yue Tian
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xue-Wei Yang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Lin Chen
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Ke Xi
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Si-Qing Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Yong Wang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guo-Gang Xing
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Demaestri C, Pisciotta M, Altunkeser N, Berry G, Hyland H, Breton J, Darling A, Williams B, Bath KG. Central amygdala CRF+ neurons promote heightened threat reactivity following early life adversity in mice. Nat Commun 2024; 15:5522. [PMID: 38951506 PMCID: PMC11217353 DOI: 10.1038/s41467-024-49828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Failure to appropriately predict and titrate reactivity to threat is a core feature of fear and anxiety-related disorders and is common following early life adversity (ELA). A population of neurons in the lateral central amygdala (CeAL) expressing corticotropin releasing factor (CRF) have been proposed to be key in processing threat of different intensities to mediate active fear expression. Here, we use in vivo fiber photometry to show that ELA results in sex-specific changes in the activity of CeAL CRF+ neurons, yielding divergent mechanisms underlying the augmented startle in ELA mice, a translationally relevant behavior indicative of heightened threat reactivity and hypervigilance. Further, chemogenic inhibition of CeAL CRF+ neurons selectively diminishes startle and produces a long-lasting suppression of threat reactivity. These findings identify a mechanism for sex-differences in susceptibility for anxiety following ELA and have broad implications for understanding the neural circuitry that encodes and gates the behavioral expression of fear.
Collapse
Affiliation(s)
- Camila Demaestri
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, USA
| | - Margaux Pisciotta
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Naira Altunkeser
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Georgia Berry
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Hyland
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Jocelyn Breton
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Darling
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Brenna Williams
- Doctoral Program in Cellular and Molecular Physiology & Biophysics, Columbia University, New York, NY, USA
| | - Kevin G Bath
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
7
|
Baudat M, Simons SHP, Joosten EAJ. Repetitive neonatal procedural pain affects stress-induced plasma corticosterone increase in young adult females but not in male rats. Dev Psychobiol 2024; 66:e22478. [PMID: 38433425 DOI: 10.1002/dev.22478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Exposure to repetitive painful procedures in the neonatal intensive care unit results in long-lasting effects, especially visible after a "second hit" in adulthood. As the nociceptive system and the hypothalamic-pituitary-adrenal (HPA) axis interact and are vulnerable in early life, repetitive painful procedures in neonates may affect later-life HPA axis reactivity. The first aim of the present study was to investigate the effects of repetitive neonatal procedural pain on plasma corticosterone levels after mild acute stress (MAS) in young adult rats. Second, the study examined if MAS acts as a "second hit" and affects mechanical sensitivity. Fifty-two rats were either needle pricked four times a day, disturbed, or left undisturbed during the first neonatal week. At 8 weeks, the animals were subjected to MAS, and plasma was collected before (t0), after MAS (t20), and at recovery (t60). Corticosterone levels were analyzed using an enzyme-linked immunosorbent assay, and mechanical sensitivity was assessed with von Frey filaments. Results demonstrate that repetitive neonatal procedural pain reduces stress-induced plasma corticosterone increase after MAS only in young adult females and not in males. Furthermore, MAS does not affect mechanical sensitivity in young adult rats. Altogether, the results suggest an age- and sex-dependent effect of repetitive neonatal procedural pain on HPA axis reprogramming.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sinno H P Simons
- Deptartment of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Centre Rotterdam - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Louwies T, Mohammadi E, Greenwood-Van Meerveld B. Epigenetic mechanisms underlying stress-induced visceral pain: Resilience versus vulnerability in a two-hit model of early life stress and chronic adult stress. Neurogastroenterol Motil 2023; 35:e14558. [PMID: 36893055 DOI: 10.1111/nmo.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Women with a history of early life stress (ELS) have a higher risk of developing irritable bowel syndrome (IBS). In addition, chronic stress in adulthood can exacerbate IBS symptoms such as abdominal pain due to visceral hypersensitivity. We previously showed that sex and the predictability of ELS determine whether rats develop visceral hypersensitivity in adulthood. In female rats, unpredictable ELS confers vulnerability and results in visceral hypersensitivity, whereas predictable ELS induces resilience and does not induce visceral hypersensitivity in adulthood. However, this resilience is lost after exposure to chronic stress in adulthood leading to an exacerbation of visceral hypersensitivity. Evidence suggests that changes in histone acetylation at the promoter regions of glucocorticoid receptor (GR) and corticotrophin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) underlie stress-induced visceral hypersensitivity. Here, we aimed to investigate the role of histone acetylation in the CeA on visceral hypersensitivity in a two-hit model of ELS followed by chronic stress in adulthood. METHODS Male and female neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, rats underwent stereotaxic implantation of indwelling cannulas. Rats were exposed to chronic water avoidance stress (WAS, 1 h/day for 7 days) or SHAM stress and received infusions of vehicle, the histone deacetylase inhibitor trichostatin A (TSA) or the histone acetyltransferase inhibitor garcinol (GAR) after each WAS session. 24 h after the final infusion, visceral sensitivity was assessed and the CeA was removed for molecular experiments. RESULTS In the two-hit model (ELS + WAS), female rats previously exposed to predictable ELS, showed a significant reduction in histone 3 lysine 9 (H3K9) acetylation at the GR promoter and a significant increase in H3K9 acetylation at the CRF promoter. These epigenetic changes were associated with changes in GR and CRF mRNA expression in the CeA and an exacerbation of stress-induced visceral hypersensitivity in female animals. TSA infusions in the CeA attenuated the exacerbated stress-induced visceral hypersensitivity, whereas GAR infusions only partially ameliorated ELS+WAS induced visceral hypersensitivity. CONCLUSION The two-hit model of ELS followed by WAS in adulthood revealed that epigenetic dysregulation occurs after exposure to stress in two important periods of life and contributes to the development of visceral hypersensitivity. These aberrant underlying epigenetic changes may explain the exacerbation of stress-induced abdominal pain in IBS patients.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ehsan Mohammadi
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
9
|
Liu J, Wang C, Gao Y, Tian Y, Wang Y, Wang S. Sex-Specific Associations Between Preoperative Chronic Pain and Moderate to Severe Chronic Postoperative Pain in Patients 2 Years After Cardiac Surgery. J Pain Res 2022; 15:4007-4015. [PMID: 36569983 PMCID: PMC9784391 DOI: 10.2147/jpr.s384463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose Chronic postoperative pain (CPSP) after cardiac surgery can cause severe health problems. As demonstrated in noncardiac surgeries, preoperative chronic pain can potentially lead to CPSP. However, the association between preoperative chronic pain and CPSP over follow-up in cardiac surgical settings in the context of sex differences is still lacking. This observational study aims to explore the role and sex differences of preoperative chronic pain in the occurrence and development of long-term CPSP and CPSP-related complications after cardiac surgery. Patients and Methods This observational study enrolled 495 patients (35.3% women) who underwent cardiac surgery via median sternotomy in March 2019. Validated questionnaires were delivered to assess preoperative chronic pain and moderate to severe CPSP at 3 and 24 months following surgical procedures. The secondary outcomes included the occurrence of moderate to severe chronic pruritus, sleep disturbance, and daily activities interference at follow-up. Multivariable logistic regression was employed. Results Of 495 patients analyzed, the incidences of preoperative chronic pain (29.7% versus 20.6%) and moderate to severe CPSP (14.8% versus 8.1%) were both higher in females than males. Female sex (P = 0.048) and preoperative chronic pain (P = 0.008) were identified as significant risk factors for CPSP occurrence. However, preoperative chronic pain contributed significantly to CPSP (P = 0.008), sleep disturbance (P =0.047), and daily activities interference (P =0.019) in females, but not in males. Conclusion The 2-year prevalence of moderate to severe CPSP after cardiac surgery was 10.5%. Compared to males, females are more susceptible to CPSP and pain-related outcomes in the long term. In addition, preoperative chronic pain was associated with a higher risk of CPSP in females but not in males.
Collapse
Affiliation(s)
- Jia Liu
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chunrong Wang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuchen Gao
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Tian
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuefu Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China,Correspondence: Yuefu Wang, Department of Anesthesiology and Surgical Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, People’s Republic of China, Tel +86-10-88398082, Email
| | - Sudena Wang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
10
|
A Study on THE Mechanism of Electroacupuncture to Alleviate Visceral Pain and NGF Expression. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3755439. [PMID: 36275969 PMCID: PMC9586762 DOI: 10.1155/2022/3755439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Visceral pain is unbearable, and natural methods are needed to relieve it. Electroacupuncture is a relatively new technique that helps relieve visceral pain by improving blood circulation and providing energy to clogged parts of the body. However, its analgesic effect and mechanism in colorectal pain are still unknown. In this study, the visceral pain models of electroacupuncture in rats were compared and discussed, using nanocomponents to stimulate the expression and mechanism of the nerve growth factor in colorectal pain and electroacupuncture and to observe the expression and mechanism of nerve growth factor in visceral pain relief rats induced by nanocomponents and electroacupuncture. The results show that nanocomponents can effectively relieve visceral pain under the action of electroacupuncture. NGF can activate endogenous proliferation, migration, differentiation, and integration. NSC can promote nerve regeneration and recovery after injury.
Collapse
|
11
|
Demaestri C, Gallo M, Mazenod E, Hong AT, Arora H, Short AK, Stern H, Baram TZ, Bath KG. Resource scarcity but not maternal separation provokes unpredictable maternal care sequences in mice and both upregulate Crh-associated gene expression in the amygdala. Neurobiol Stress 2022; 20:100484. [PMID: 36120094 PMCID: PMC9475315 DOI: 10.1016/j.ynstr.2022.100484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for the development of pathology, including anxiety disorders. Neurodevelopmental and behavioral outcomes following ELA are multifaceted and are influenced heavily by the type of adversity experienced and sex of the individual experiencing ELA. It remains unclear what properties of ELA portend differential neurobiological risk and the basis of sex-differences for negative outcomes. Predictability of the postnatal environment has emerged as being a core feature supporting development, with the most salient signals deriving from parental care. Predictability of parental care may be a distinguishing feature of different forms of ELA, and the degree of predictability afforded by these manipulations may contribute to the diversity of outcomes observed across models. Further, questions remain as to whether differing levels of predictability may contribute to differential effects on neurodevelopment and expression of genes associated with risk for pathology. Here, we tested the hypothesis that changes in maternal behavior in mice would be contingent on the type of ELA experienced, directly comparing predictability of care in the limited bedding and nesting (LBN) and maternal separation (MS) paradigms. We then tested whether the predictability of the ELA environment altered the expression of corticotropin-releasing hormone (Crh), a sexually-dimorphic neuropeptide that regulates threat-related learning, in the amygdala of male and female mice. The LBN manipulation reliably increased the entropy of maternal care, a measure that indicates lower predictability between sequences of dam behavior. LBN and MS rearing similarly increased the frequency of nest sorties and licking of pups but had mixed effects on other aspects of dam-, pup-, and nest-related behaviors. Increased expression of Crh-related genes was observed in pups that experienced ELA, with gene expression measures showing a significant interaction with sex and type of ELA manipulation. Specifically, MS was associated with increased expression of Crh-related genes in males, but not females, and LBN primarily increased expression of these genes in females, but not males. The present study provides evidence for predictability as a distinguishing feature of models of ELA and demonstrates robust consequences of these differing experience on sex-differences in gene expression critically associated with stress responding and sex differences in risk for pathology.
Collapse
Affiliation(s)
- Camila Demaestri
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Meghan Gallo
- Doctoral Program in Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, Inc./ New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Elisa Mazenod
- Doctoral Program in Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Alexander T. Hong
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Hina Arora
- Department of Statistics, University of California-Irvine, Irvine, CA, USA
| | - Annabel K. Short
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Hal Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, CA, USA
| | - Kevin G. Bath
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, Inc./ New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
13
|
Chen F, Yang J, Zhang H, Shen L, Wang JQ, Jin T, Yu XY. The role of amygdala neuropsin/serpinb6 pathway in the regulation of gastric hypersensitivity and anxiety by electroacupuncture. J Dig Dis 2022; 23:149-156. [PMID: 35179294 DOI: 10.1111/1751-2980.13089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate whether the neuropsin pathway in the amygdala and stomach may participate in the development of anxiety-related gastric hypersensitivity, and whether electroacupuncture (EA) at the Zusanli acupoint could improve this condition by regulating such pathway in the rat model of functional dyspepsia (FD). METHODS A total of 48 SD rats were randomly divided into the control group, FD model group and FD + EA group (stimulation at Zusanli acupoint for 30 min daily for 7 consecutive days). Abdominal withdrawal reflex (AWR) score and open field test were used to evaluate visceral hypersensitivity and anxiety-like disorder, respectively. Electrical activity in the amygdala nucleus in each group was recorded by extracellular electrophysiology. Neuropsin and serpinb6 protein expressions in the amygdala and stomach were detected by Western blot. RESULTS AWR score in the FD group increased but did not differ after EA therapy than that in the contro group. Both the center square entries and center entries ratio in the FD group were lower than those in the control and FD + EA groups. The total number and frequency of amygdala nucleus discharges induced by gastric distension in the FD group were significantly higher than those in the control and FD + EA groups. Expression of neuropsin increased and that of serpinb6 decreased in the gastric mucosa and amygdale in the FD group, while no change was observed in gastric mucosa after EA therapy. CONCLUSION EA stimulation at the Zusanli acupoint may improve visceral hypersensitivity and anxiety in FD rats through the neuropsin/serpinb6 pathway.
Collapse
Affiliation(s)
- Fei Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Department of Gastroenterology, First Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jie Yang
- Department of Gastroenterology, First Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hao Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jia Qi Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tian Jin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Yun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
14
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Agoglia AE, Zhu M, Quadir SG, Bluitt MN, Douglass E, Hanback T, Tella J, Ying R, Hodge CW, Herman MA. Sex-specific plasticity in CRF regulation of inhibitory control in central amygdala CRF1 neurons after chronic voluntary alcohol drinking. Addict Biol 2022; 27:e13067. [PMID: 34075665 PMCID: PMC8636550 DOI: 10.1111/adb.13067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023]
Abstract
Despite strong preclinical evidence for the ability of corticotropin releasing factor 1 (CRF1) antagonists to regulate alcohol consumption, clinical trials have not yet demonstrated therapeutic effects of these compounds in alcohol use disorder (AUD) patients. Several confounding factors may limit the translation of preclinical CRF1 research to patients, including reliance on experimenter-administered alcohol instead of voluntary consumption, a preponderance of evidence collected in male subjects only and an inability to assess the effects of alcohol on specific brain circuits. A population of particular interest is the CRF1-containing neurons of the central amygdala (CeA). CRF1 CeA neurons are sensitive to ethanol, but the effects of alcohol drinking on CRF signalling within this population are unknown. In the present study, we assessed the effects of voluntary alcohol drinking on inhibitory control of CRF1+ CeA neurons from male and female CRF1:GFP mice using ex vivo electrophysiology and determined the contributions of CRF1 signalling to inhibitory control and voluntary alcohol drinking. Chronic alcohol drinking produced neuroadaptations in CRF1+ neurons that increased the sensitivity of GABAA receptor-mediated sIPSCs to the acute effects of alcohol, CRF and the CRF1 antagonist R121919, but these adaptations were more pronounced in male versus female mice. The CRF1 antagonist CP-154,526 reduced voluntary alcohol drinking in both sexes and abolished sex differences in alcohol drinking. The lack of alcohol-induced adaptation in the female CRF1 system may be related to the elevated alcohol intake exhibited by female mice and could contribute to the ineffectiveness of CRF1 antagonists in female AUD patients.
Collapse
Affiliation(s)
- AE Agoglia
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M Zhu
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - SG Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - MN Bluitt
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - E Douglass
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - T Hanback
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J Tella
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - R Ying
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - CW Hodge
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - MA Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
16
|
Louwies T, Orock A, Greenwood-Van Meerveld B. Stress-induced visceral pain in female rats is associated with epigenetic remodeling in the central nucleus of the amygdala. Neurobiol Stress 2021; 15:100386. [PMID: 34584907 PMCID: PMC8456109 DOI: 10.1016/j.ynstr.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022] Open
Abstract
Stress and anxiety contribute to the pathophysiology of irritable bowel syndrome (IBS), a female-predominant disorder of the gut-brain axis, characterized by abdominal pain due to heightened visceral sensitivity. In the current study, we aimed to evaluate in female rats whether epigenetic remodeling in the limbic brain, specifically in the central nucleus of the amygdala (CeA), is a contributing factor in stress-induced visceral hypersensitivity. Our results showed that 1 h exposure to water avoidance stress (WAS) for 7 consecutive days decreased histone acetylation at the GR promoter and increased histone acetylation at the CRH promoter in the CeA. Changes in histone acetylation were mediated by the histone deacetylase (HDAC) SIRT-6 and the histone acetyltransferase CBP, respectively. Administration of the HDAC inhibitor trichostatin A (TSA) into the CeA prevented stress-induced visceral hypersensitivity through blockade of SIRT-6 mediated histone acetylation at the GR promoter. In addition, HDAC inhibition within the CeA prevented stress-induced histone acetylation of the CRH promoter. Our results suggest that, in females, epigenetic modifications in the limbic brain regulating GR and CRH expression contribute to stress-induced visceral hypersensitivity and offer a potential explanation of how stress can trigger symptoms in IBS patients.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Albert Orock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Beverley Greenwood-Van Meerveld
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Lyubashina OA, Sivachenko IB, Busygina II. Amygdalofugal Modulation of Visceral Nociceptive Transmission in the Rat Caudal Ventrolateral Medulla under Normal Conditions and Intestinal Inflammation. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Orock A, Louwies T, Ligon CO, Mohammadi E, Greenwood-Van Meerveld B. Environmental enrichment prevents stress-induced epigenetic changes in the expression of glucocorticoid receptor and corticotrophin releasing hormone in the central nucleus of the amygdala to inhibit visceral hypersensitivity. Exp Neurol 2021; 345:113841. [PMID: 34390704 DOI: 10.1016/j.expneurol.2021.113841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Stress is a known trigger for the symptoms of irritable bowel syndrome (IBS), a gastrointestinal (GI) disorder that presents with abnormal bowel habits and abdominal pain due to visceral hypersensitivity. While behavioral therapies have been used to attenuate IBS symptoms, the underlying mechanisms by which these therapies interact with stress-induced pathology remains to be delineated. Here we use a rat model to test the hypothesis that exposure to environmental enrichment (EE) inhibits stress-induced changes within the brain-gut axis to prevent visceral and somatic hypersensitivity and colonic hyperpermeability. METHODS Female rats (n = 8/group) were housed in EE one week before and one week during exposure to water avoidance stress (WAS) while controls were housed in standard cages (SH). One day after the final WAS exposure, colonic and somatic sensitivity were assessed by the visceromotor response (VMR) to colorectal distension (CRD) and withdrawal threshold elicited by an electronic von Frey on the hind paw of the rats respectively. All rats were returned to SH for 3 weeks before colonic and somatic sensitivity were reassessed on day 28. The rats were then immediately euthanized and the spinal cord was collected to assess changes in neuronal activation (assessed via ERK phosphorylation) in response to noxious CRD. A separate cohort of animals (n = 8/group) that did not undergo behavioral assessments was euthanized the day after the final WAS exposure and the central nucleus of the amygdala (CeA) was collected to investigate WAS and EE induced epigenetic changes at the glucocorticoid receptor (GR) and corticotrophin releasing hormone (CRH) promoter. The colon from these rats was also collected to assess colonic permeability via changes in transepithelial electrical resistance (TEER) in vitro. RESULTS Exposure to stress persistently increased VMR to CRD (P < 0.01) and decreased the hind paw withdrawal threshold (P < 0.001) in female rats. WAS also decreased TEER in the colon tissue of female rats (p = 0.05). In the CeA, WAS induced a decrease in histone acetylation at the GR promoter but increased histone acetylation at the CRH promoter and reduced GR-CRH interactions in the CeA. Analysis of the spinal cord showed that WAS increased CRD-evoked ERK phosphorylation in the dorsal horn. Exposure to EE prevented WAS-induced changes in the CeA, dorsal horn and colon respectively to prevent visceral and somatic hypersensitivity. CONCLUSION Our data reveals that behavioral therapies can produce long lasting molecular and epigenetic changes that can prevent stress-induced pathologies even after completion of the therapy. These results highlight the potential mechanisms by which behavioral therapies may ameliorate visceral pain associated stress-related pathologies such as the irritable bowel syndrome.
Collapse
Affiliation(s)
- A Orock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
| | - T Louwies
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - C O Ligon
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - E Mohammadi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - B Greenwood-Van Meerveld
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Veterans Affairs Health Care System, Oklahoma City, OK, United States of America
| |
Collapse
|
19
|
Sugimoto M, Takahashi Y, Sugimura YK, Tokunaga R, Yajima M, Kato F. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain. Pain 2021; 162:2273-2286. [PMID: 33900711 PMCID: PMC8280967 DOI: 10.1097/j.pain.0000000000002224] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Widespread or ectopic sensitization is a hallmark symptom of chronic pain, characterized by aberrantly enhanced pain sensitivity in multiple body regions remote from the site of original injury or inflammation. The central mechanism underlying widespread sensitization remains unidentified. The central nucleus of the amygdala (also called the central amygdala, CeA) is well situated for this role because it receives nociceptive information from diverse body sites and modulates pain sensitivity in various body regions. In this study, we examined the role of the CeA in a novel model of ectopic sensitization of rats. Injection of formalin into the left upper lip resulted in latent bilateral sensitization in the hind paw lasting >13 days in male Wistar rats. Chemogenetic inhibition of gamma-aminobutyric acid-ergic neurons or blockade of calcitonin gene-related peptide receptors in the right CeA, but not in the left, significantly attenuated this sensitization. Furthermore, chemogenetic excitation of gamma-aminobutyric acid-ergic neurons in the right CeA induced de novo bilateral hind paw sensitization in the rats without inflammation. These results indicate that the CeA neuronal activity determines hind paw tactile sensitivity in rats with remote inflammatory pain. They also suggest that the hind paw sensitization used in a large number of preclinical studies might not be simply a sign of the pain at the site of injury but rather a representation of the augmented CeA activity resulting from inflammation/pain in any part of the body or from activities of other brain regions, which has an active role of promoting defensive/protective behaviors to avoid further bodily damage.
Collapse
Affiliation(s)
- Mariko Sugimoto
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Tokunaga
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
21
|
The Role of Epigenomic Regulatory Pathways in the Gut-Brain Axis and Visceral Hyperalgesia. Cell Mol Neurobiol 2021; 42:361-376. [PMID: 34057682 DOI: 10.1007/s10571-021-01108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
The gut-brain axis (GBA) is broadly accepted to describe the bidirectional circuit that links the gastrointestinal tract with the central nervous system (CNS). Interest in the GBA has grown dramatically over past two decades along with advances in our understanding of the importance of the axis in the pathophysiology of numerous common clinical disorders including mood disorders, neurodegenerative disease, diabetes mellitus, non-alcohol fatty liver disease (NAFLD) and enhanced abdominal pain (visceral hyperalgesia). Paralleling the growing interest in the GBA, there have been seminal developments in our understanding of how environmental factors such as psychological stress and other extrinsic factors alter gene expression, primarily via epigenomic regulatory mechanisms. This process has been driven by advances in next-generation multi-omics methods and bioinformatics. Recent reviews address various components of GBA, but the role of epigenomic regulatory pathways in chronic stress-associated visceral hyperalgesia in relevant regions of the GBA including the amygdala, spinal cord, primary afferent (nociceptive) neurons, and the intestinal barrier has not been addressed. Rapidly developing evidence suggests that intestinal epithelial barrier dysfunction and microbial dysbiosis play a potentially significant role in chronic stress-associated visceral hyperalgesia in nociceptive neurons innervating the lower intestine via downregulation in intestinal epithelial cell tight junction protein expression and increase in paracellular permeability. These observations support an important role for the regulatory epigenome in the development of future diagnostics and therapeutic interventions in clinical disorders affecting the GBA.
Collapse
|
22
|
Davis SM, Zuke JT, Berchulski MR, Burman MA. Amygdalar Corticotropin-Releasing Factor Signaling Is Required for Later-Life Behavioral Dysfunction Following Neonatal Pain. Front Physiol 2021; 12:660792. [PMID: 34045975 PMCID: PMC8144524 DOI: 10.3389/fphys.2021.660792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal pain such as that experienced by infants in the neonatal intensive care unit is known to produce later-life dysfunction including heightened pain sensitivity and anxiety, although the mechanisms remain unclear. Both chronic pain and stress in adult organisms are known to influence the corticotropin-releasing factor (CRF) system in the Central Nucleus of the Amygdala, making this system a likely candidate for changes following neonatal trauma. To examine this, neonatal rats were subjected to daily pain, non-painful handling or left undisturbed for the first week of life. Beginning on postnatal day, 24 male and female rats were subjected to a 4-day fear conditioning and sensory testing protocol. Some subjects received intra-amygdalar administration of either Vehicle, the CRF receptor 1 (CRF1) receptor antagonist Antalarmin, or the CRF receptor 2 (CRF2) receptor antagonist Astressin 2B prior to fear conditioning and somatosensory testing, while others had tissue collected following fear conditioning and CRF expression in the CeA and BLA was assessed using fluorescent in situ hybridization. CRF1 antagonism attenuated fear-induced hypersensitivity in neonatal pain and handled rats, while CRF2 antagonism produced a general antinociception. In addition, neonatal pain and handling produced a lateralized sex-dependent decrease in CRF expression, with males showing a diminished number of CRF-expressing cells in the right CeA and females showing a similar reduction in the number of CRF-expressing cells in the left BLA compared to undisturbed controls. These data show that the amygdalar CRF system is a likely target for alleviating dysfunction produced by early life trauma and that this system continues to play a major role in the lasting effects of such trauma into the juvenile stage of development.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jared T Zuke
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Mariah R Berchulski
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
23
|
Masuo Y, Satou T, Takemoto H, Koike K. Smell and Stress Response in the Brain: Review of the Connection between Chemistry and Neuropharmacology. Molecules 2021; 26:molecules26092571. [PMID: 33924992 PMCID: PMC8124235 DOI: 10.3390/molecules26092571] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022] Open
Abstract
The stress response in the brain is not fully understood, although stress is one of the risk factors for developing mental disorders. On the other hand, the stimulation of the olfactory system can influence stress levels, and a certain smell has been empirically known to have a stress-suppressing effect, indeed. In this review, we first outline what stress is and previous studies on stress-responsive biomarkers (stress markers) in the brain. Subsequently, we confirm the olfactory system and review previous studies on the relationship between smell and stress response by species, such as humans, rats, and mice. Numerous studies demonstrated the stress-suppressing effects of aroma. There are also investigations showing the effects of odor that induce stress in experimental animals. In addition, we introduce recent studies on the effects of aroma of coffee beans and essential oils, such as lavender, cypress, α-pinene, and thyme linalool on the behavior and the expression of stress marker candidates in the brain. The transfer of volatile components into the brain is also discussed while using the results of thyme linalool as an example. These studies may provide a good opportunity to connect chemical research at the molecular level with neuropharmacological approaches in the future.
Collapse
Affiliation(s)
- Yoshinori Masuo
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
- Correspondence: ; Tel.: +81-47-472-5257
| | - Tadaaki Satou
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan;
| | - Hiroaki Takemoto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (H.T.); (K.K.)
| | - Kazuo Koike
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (H.T.); (K.K.)
| |
Collapse
|
24
|
Oswald LM, Dunn KE, Seminowicz DA, Storr CL. Early Life Stress and Risks for Opioid Misuse: Review of Data Supporting Neurobiological Underpinnings. J Pers Med 2021; 11:315. [PMID: 33921642 PMCID: PMC8072718 DOI: 10.3390/jpm11040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
A robust body of research has shown that traumatic experiences occurring during critical developmental periods of childhood when neuronal plasticity is high increase risks for a spectrum of physical and mental health problems in adulthood, including substance use disorders. However, until recently, relatively few studies had specifically examined the relationships between early life stress (ELS) and opioid use disorder (OUD). Associations with opioid use initiation, injection drug use, overdose, and poor treatment outcome have now been demonstrated. In rodents, ELS has also been shown to increase the euphoric and decrease antinociceptive effects of opioids, but little is known about these processes in humans or about the neurobiological mechanisms that may underlie these relationships. This review aims to establish a theoretical model that highlights the mechanisms by which ELS may alter opioid sensitivity, thereby contributing to future risks for OUD. Alterations induced by ELS in mesocorticolimbic brain circuits, and endogenous opioid and dopamine neurotransmitter systems are described. The limited but provocative evidence linking these alterations with opioid sensitivity and risks for OUD is presented. Overall, the findings suggest that better understanding of these mechanisms holds promise for reducing vulnerability, improving prevention strategies, and prescribing guidelines for high-risk individuals.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - Kelly E. Dunn
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21230, USA;
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Carla L. Storr
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| |
Collapse
|
25
|
Narayanan SP, Anderson B, Bharucha AE. Sex- and Gender-Related Differences in Common Functional Gastroenterologic Disorders. Mayo Clin Proc 2021; 96:1071-1089. [PMID: 33814075 PMCID: PMC8075061 DOI: 10.1016/j.mayocp.2020.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Functional gastrointestinal (GI) disorders (FGIDs) result from central and peripheral mechanisms, cause chronic remitting-relapsing symptoms, and are associated with comorbid conditions and impaired quality of life. This article reviews sex- and gender-based differences in the prevalence, pathophysiologic factors, clinical characteristics, and management of functional dyspepsia (FD) and irritable bowel syndrome (IBS) that together affect approximately 1 in 4 people in the United States. These conditions are more common in women. Among patients with IBS, women are more likely to have severe symptoms and coexistent anxiety or depression; constipation or bloating and diarrhea are more common in women and men, respectively, perhaps partly because defecatory disorders, which cause constipation, are more common in women. Current concepts suggest that biological disturbances (eg, persistent mucosal inflammation after acute gastroenteritis) interact with other environmental factors (eg, abuse) and psychological stressors, which influence the brain and gut to alter GI tract motility or sensation, thereby causing symptoms. By comparison to a considerable understanding of sex-based differences in the pathogenesis of visceral hypersensitivity in animal models, we know less about the contribution of these differences to FGID in humans. Slow gastric emptying and colon transit are more common in healthy women than in men, but effects of gonadal hormones on colon transit are less important than in rodents. Although increased visceral sensation partly explains symptoms, the effects of sex on visceral sensation, colonic permeability, and the gut microbiome are less prominent in humans than rodents. Whether sex or gender affects response to medications or behavioral therapy in FD or IBS is unclear because most patients in these studies are women.
Collapse
Affiliation(s)
| | | | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
26
|
Okumura T, Ishioh M, Nozu T. Central regulatory mechanisms of visceral sensation in response to colonic distension with special reference to brain orexin. Neuropeptides 2021; 86:102129. [PMID: 33636498 DOI: 10.1016/j.npep.2021.102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Visceral hypersensitivity is a major pathophysiology in irritable bowel syndrome (IBS). Although brain-gut interaction is considered to be involved in the regulation of visceral sensation, little had been known how brain controls visceral sensation. To improve therapeutic strategy in IBS, we should develop a novel approach to control visceral hypersensitivity. Here, we summarized recent data on central control of visceral sensation by neuropeptides in rats. Orexin, ghrelin or oxytocin in the brain is capable of inducing visceral antinociception. Dopamine, cannabinoid, adenosine, serotonin or opioid in the central nervous system (CNS) plays a role in the visceral hyposensitivity. Central ghrelin, levodopa or morphine could induce visceral antinociception via the orexinergic signaling. Orexin induces visceral antinociception through dopamine, cannabinoid, adenosine or oxytocin. Orexin nerve fibers are identified widely throughout the CNS and orexins are implicated in a number of functions. With regard to gastrointestinal functions, in addition to its visceral antinociception, orexin acts centrally to stimulate gastrointestinal motility and improve intestinal barrier function. Brain orexin is also involved in regulation of sleep/awake cycle and anti-depressive action. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with IBS who are frequently accompanied with sleep disturbance, depressive state and disturbed gut functions such as gut motility disturbance, leaky gut and visceral hypersensitivity.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan.
| | - Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| |
Collapse
|
27
|
Ligon CO, Hannig G, Greenwood-Van Meerveld B. Peripheral Guanylate Cyclase-C modulation of corticolimbic activation and corticotropin-releasing factor signaling in a rat model of stress-induced colonic hypersensitivity. Neurogastroenterol Motil 2021; 33:e14076. [PMID: 33373484 DOI: 10.1111/nmo.14076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psychological stress is a risk factor for irritable bowel syndrome, a functional gastrointestinal pain disorder featuring abnormal brain-gut connectivity. The guanylate cyclase-C (GC-C) agonist linaclotide has been shown to relieve abdominal pain in IBS-C and exhibits antinociceptive effects in rodent models of post-inflammatory visceral hypersensitivity. However, the role GC-C signaling plays in psychological stress-induced visceral hypersensitivity is unknown. Here, we test the hypothesis that GC-C agonism reverses stress-induced colonic hypersensitivity via inhibition of nociceptive afferent signaling resulting in normalization of stress-altered corticotropin-releasing factor (CRF) expression in brain regions involved in pain perception and modulation. METHODS Adult female rats were exposed to water avoidance stress or sham stress for 10 days, and the effects of linaclotide on stress-induced changes in colonic sensitivity, corticolimbic phospho-extracellular signal-regulated kinase (pERK), and CRF expression were measured using a combination of behavioral assessments, immunohistochemistry, and qRT-PCR. KEY RESULTS Stressed rats exhibited colonic hypersensitivity and elevated corticolimbic pERK on day 11, which was inhibited by linaclotide. qRT-PCR analysis revealed dysregulated CRF expression in the medial prefrontal cortex, paraventricular nucleus of the hypothalamus, and central nucleus of the amygdala on day 28. Dysregulated CRF expression was not affected by linaclotide treatment. CONCLUSIONS AND INFERENCES Our results demonstrate that exposure to repeated stress induces chronic colonic hypersensitivity in conjunction with altered corticolimbic activation and CRF expression. GC-C agonism attenuated stress-induced colonic hypersensitivity and ERK phosphorylation, but had no effect on CRF expression, suggesting the analgesic effects of linaclotide occur independent of stress-driven CRF gene expression in corticolimbic circuitry.
Collapse
Affiliation(s)
- Casey O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
28
|
Orock A, Yuan T, Greenwood-Van Meerveld B. Importance of Non-pharmacological Approaches for Treating Irritable Bowel Syndrome: Mechanisms and Clinical Relevance. FRONTIERS IN PAIN RESEARCH 2021; 1:609292. [PMID: 35295688 PMCID: PMC8915633 DOI: 10.3389/fpain.2020.609292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic visceral pain represents a major unmet clinical need with the severity of pain ranging from mild to so severe as to prevent individuals from participating in day-to-day activities and detrimentally affecting their quality of life. Although chronic visceral pain can be multifactorial with many different biological and psychological systems contributing to the onset and severity of symptoms, one of the major triggers for visceral pain is the exposure to emotional and physical stress. Chronic visceral pain that is worsened by stress is a hallmark feature of functional gastrointestinal disorders such as irritable bowel syndrome (IBS). Current pharmacological interventions for patients with chronic visceral pain generally lack efficacy and many are fraught with unwanted side effects. Cognitive behavioral therapy (CBT) has emerged as a psychotherapy that shows efficacy at ameliorating stress-induced chronic visceral pain; however, the molecular mechanisms underlying CBT remain incompletely understood. Preclinical studies in experimental models of stress-induced visceral pain employing environmental enrichment (EE) as an animal model surrogate for CBT are unraveling the mechanism by which environmental signals can lead to long-lasting changes in gene expression and behavior. Evidence suggests that EE signaling interacts with stress and nociceptive signaling. This review will (1) critically evaluate the behavioral and molecular changes that lead to chronic pain in IBS, (2) summarize the pharmacological and non-pharmacological approaches used to treat IBS patients, and (3) provide experimental evidence supporting the potential mechanisms by which CBT ameliorates stress-induced visceral pain.
Collapse
Affiliation(s)
- Albert Orock
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma City VA Health Care System, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Beverley Greenwood-Van Meerveld
| |
Collapse
|
29
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
30
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
31
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
32
|
Louwies T, Greenwood-Van Meerveld B. Sex differences in the epigenetic regulation of chronic visceral pain following unpredictable early life stress. Neurogastroenterol Motil 2020; 32:e13751. [PMID: 31667916 PMCID: PMC8628638 DOI: 10.1111/nmo.13751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND We previously reported that early life stress (ELS) dysregulated glucocorticoid receptor (GR) and corticotrophin-releasing hormone (CRH) expression in the central nucleus of the amygdala (CeA). Epigenetic modifications serve as memories of adverse events that occurred during early life. Therefore, we hypothesized that epigenetic mechanisms alter GR and CRH expression in the CeA and underlie chronic visceral pain after ELS. METHODS Neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, visceral sensitivity was assessed or the CeA was isolated for Western blot or ChiP-qPCR to study histone modifications at the GR and CRH promoters. Female adult rats underwent stereotaxic implantation of indwelling cannulas for microinjections of garcinol (HAT inhibitor) into the CeA. After 7 days of microinjections, visceral sensitivity was assessed or the CeA was isolated for ChIP-qPCR assays. RESULTS Unpredictable ELS increased visceral sensitivity in adult female rats, but not in male counterparts. ELS increased histone 3 lysine 9 (H3K9) acetylation in the CeA and H3K9 acetylation levels at the GR promoter in the CeA of adult female rats. After unpredictable ELS, H3K9 acetylation was increased and GR binding was decreased at the CRH promoter. Administration of garcinol in the CeA of adult females, that underwent unpredictable ELS, normalized H3K9 acetylation and restored GR binding at the CRH promoter. CONCLUSION Dysregulated histone acetylation and GR binding at the CRH promoter in the CeA are an important mechanism for "memorizing" ELS events mediating visceral pain in adulthood.
Collapse
Affiliation(s)
- Tijs Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
33
|
Jiang Y, Greenwood-Van Meerveld B, Johnson AC, Travagli RA. Role of estrogen and stress on the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G203-G209. [PMID: 31241977 PMCID: PMC6734369 DOI: 10.1152/ajpgi.00144.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023]
Abstract
Symptoms of functional gastrointestinal disorders (FGIDs), including fullness, bloating, abdominal pain, and altered gastrointestinal (GI) motility, present a significant clinical problem, with a reported prevalence of 25%-40% within the general population. More than 60% of those affected seek and require healthcare, and affected individuals report a significantly decreased quality of life. FGIDs are highly correlated with episodes of acute and chronic stress and are increased in prevalence and reported severity in women compared with men. Although there is evidence that sex and stress interact to exacerbate FGID symptoms, the physiological mechanisms that mediate these sex-dependent disparities are incompletely understood, although hormonal-related differences in GI motility and visceral sensitivity have been purported to play a significant role in the etiology. In this mini review, we will discuss brain-gut axis control of GI motility and sensitivity, the influence of estrogen on GI motility and sensitivity, and stress modulation of the brain-gut axis.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
- Veterans Affairs Health Care System, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Veterans Affairs Health Care System, Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
34
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
35
|
|
36
|
Chang L, Di Lorenzo C, Farrugia G, Hamilton FA, Mawe GM, Pasricha PJ, Wiley JW. Functional Bowel Disorders: A Roadmap to Guide the Next Generation of Research. Gastroenterology 2018; 154:723-735. [PMID: 29288656 DOI: 10.1053/j.gastro.2017.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In June 2016, the National Institutes of Health hosted a workshop on functional bowel disorders (FBDs), particularly irritable bowel syndrome, with the objective of elucidating gaps in current knowledge and recommending strategies to address these gaps. The workshop aimed to provide a roadmap to help strategically guide research efforts during the next decade. Attendees were a diverse group of internationally recognized leaders in basic and clinical FBD research. This document summarizes the results of their deliberations, including the following general conclusions and recommendations. First, the high prevalence, economic burden, and impact on quality of life associated with FBDs necessitate an urgent need for improved understanding of FBDs. Second, preclinical discoveries are at a point that they can be realistically translated into novel diagnostic tests and treatments. Third, FBDs are broadly accepted as bidirectional disorders of the brain-gut axis, differentially affecting individuals throughout life. Research must integrate each component of the brain-gut axis and the influence of biological sex, early-life stressors, and genetic and epigenetic factors in individual patients. Fourth, research priorities to improve diagnostic and management paradigms include enhancement of the provider-patient relationship, longitudinal studies to identify risk and protective factors of FBDs, identification of biomarkers and endophenotypes in symptom severity and treatment response, and incorporation of emerging "-omics" discoveries. These paradigms can be applied by well-trained clinicians who are familiar with multimodal treatments. Fifth, essential components of a successful program will include the generation of a large, validated, broadly accessible database that is rigorously phenotyped; a parallel, linkable biorepository; dedicated resources to support peer-reviewed, hypothesis-driven research; access to dedicated bioinformatics expertise; and oversight by funding agencies to review priorities, progress, and potential synergies with relevant stakeholders.
Collapse
Affiliation(s)
- Lin Chang
- Division of Gastroenterology, Oppenheimer Center for Neurobiology of Stress and Resilience at University of California, Los Angeles, California
| | - Carlo Di Lorenzo
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Frank A Hamilton
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gary M Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | | | - John W Wiley
- Department Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
37
|
Ait-Belgnaoui A, Payard I, Rolland C, Harkat C, Braniste V, Théodorou V, Tompkins TA. Bifidobacterium longum and Lactobacillus helveticus Synergistically Suppress Stress-related Visceral Hypersensitivity Through Hypothalamic-Pituitary-Adrenal Axis Modulation. J Neurogastroenterol Motil 2018; 24:138-146. [PMID: 29291614 PMCID: PMC5753912 DOI: 10.5056/jnm16167] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Visceral pain and hypothalamic-pituitary-adrenal axis (HPA) dysregulation is a common characteristic in irritable bowel syndrome (IBS) patients. Previously, we reported that a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) prevents chronic stress-mediated brain function abnormalities by attenuating the HPA axis response. Here, we compared the effect between different probiotic treatments on the perception of visceral pain during colorectal distension (CRD) following a chronic stress and the consequences to the activity of the HPA axis. Methods After a 2-week treatment with a combined probiotic formulation, or L. helveticus or B. longum alone in stressed mice, the visceral pain in response to CRD was recorded. The expression of glucocorticoid receptors was determined in the different brain areas involved in the stress response (hypothalamus, hippocampus, and prefrontal cortex). The plasma levels of stress hormones were also measured. Results A pretreatment using the combination of probiotic formulation significantly reduces the chronic stress-induced visceral hypersensitivity respectively at 0.06, 0.08, and 0.10 mL CRD volume. However, a single probiotic (B. longum or L. helveticus) administration is less effective in reducing visceral pain in stressed mice. Moreover, the expression of the glucocorticoid receptor mRNA was consistently up-regulated in several brain areas after pretreatment with a combined probiotic, which correlated with the normalization of stress response compared to the inconsistent effects of a single probiotic. Conclusion The combination of L. helveticus and B. longum is more effective in regulating glucocorticoid negative feedback on the HPA axis than probiotic alone and subsequently in treating stress-induced visceral pain.
Collapse
Affiliation(s)
- Afifa Ait-Belgnaoui
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France.,Lallemand Health Solutions, Montreal, Canada
| | - Isabelle Payard
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | | | - Cherryl Harkat
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | - Viorica Braniste
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Vassillia Théodorou
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | | |
Collapse
|
38
|
Greenwood-Van Meerveld B, Johnson AC. Mechanisms of Stress-induced Visceral Pain. J Neurogastroenterol Motil 2018; 24:7-18. [PMID: 29291604 PMCID: PMC5753899 DOI: 10.5056/jnm17137] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that long-term stress facilitates visceral pain through sensitization of pain pathways and promotes chronic visceral pain disorders such as the irritable bowel syndrome (IBS). This review will describe the importance of stress in exacerbating IBS-induced abdominal pain. Additionally, we will briefly review our understanding of the activation of the hypothalamic-pituitary-adrenal axis by both chronic adult stress and following early life stress in the pathogenesis of IBS. The review will focus on the glucocorticoid receptor and corticotropin-releasing hormone-mediated mechanisms in the amygdala involved in stress-induced visceral hypersensitivity. One potential mechanism underlying persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in stress-induced visceral nociception, alterations in DNA methylation and histone acetylation patterns within the brain, have been linked to alterations in nociceptive signaling via increased expression of pro-nociceptive neurotransmitters. This review will discuss the latest studies investigating the long-term effects of stress on visceral sensitivity. Additionally, we will critically review the importance of experimental models of adult stress and early life stress in enhancing our understanding of the basic molecular mechanisms of nociceptive processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
| | - Anthony C Johnson
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
| |
Collapse
|
39
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
40
|
Abstract
Epidemiological studies indicate sex-related differences among functional gastrointestinal disorders (FGIDs) wherein females are more likely to receive a diagnosis than their male counterparts. However, the mechanism by which females exhibit an increased vulnerability for development of these pathophysiologies remains largely unknown, and therapeutic treatments are limited. The current chapter focuses on clinical research outlining our current knowledge of factors that contribute to the female predominance among FGID patients such as the menstrual cycle and sex hormones. In addition, we will discuss progress in preclinical research, including animal models, which serve as valuable tools for the investigation of the development and long term manifestation of symptoms observed within the patient population. Although much progress has been made, additional longitudinal studies in both clinical and preclinical research are necessary to identify more specific mechanisms underlying sex-related differences in FGIDs as well as targets for improved therapeutic approaches.
Collapse
|