1
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2024; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
4
|
Blank N, Weiner M, Patel S, Köhler S, Thaiss CA. Mind the GAPS: Glia associated with psychological stress. J Neuroendocrinol 2024:e13451. [PMID: 39384366 DOI: 10.1111/jne.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Glial cells are an integral component of the nervous system, performing crucial functions that extend beyond structural support, including modulation of the immune system, tissue repair, and maintaining tissue homeostasis. Recent studies have highlighted the importance of glial cells as key mediators of stress responses across different organs. This review focuses on the roles of glial cells in peripheral tissues in health and their involvement in diseases linked to psychological stress. Populations of glia associated with psychological stress ("GAPS") emerge as a promising target cell population in our basic understanding of stress-associated pathologies, highlighting their role as mediators of the deleterious effects of psychological stress on various health conditions. Ultimately, new insights into the impact of stress on glial cell populations in the periphery may support clinical efforts aimed at improving the psychological state of patients for improved health outcomes.
Collapse
Affiliation(s)
- Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly Weiner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Köhler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Sun X, Ni S, Zhou Q, Zou D. Exogenous NT-3 Promotes Phenotype Switch of Resident Macrophages and Improves Sciatic Nerve Injury through AMPK/NF-κB Signaling Pathway. Neurochem Res 2024; 49:2600-2614. [PMID: 38904909 DOI: 10.1007/s11064-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Neurotrophin-3 (NT-3) is an important family of neurotrophic factors with extensive neurotrophic activity, which can maintain the survival and regeneration of nerve cells. However, the mechanism of NT-3 on macrophage phenotype transformation after sciatic nerve injury is not clear. In this study, we constructed a scientific nerve compression injury animal model and administered different doses of NT-3 treatment through osmotic minipump. 7 days after surgery, we collected sciatic nerve tissue and observed the distribution of macrophage phenotype through iNOS and CD206 immunofluorescence. During the experiment, regular postoperative observations were conducted on rats. After the experiment, sciatic nerve tissue was collected for HE staining, myelin staining, immunofluorescence staining, and Western blot analysis. To verify the role of the AMPK/NF-κB pathway, we applied the AMPK inhibitor Compound C and the NF-κB inhibitor BAY11-7082 to repeat the above experiment. Our experimental results reveal that NT-3 promotes sciatic nerve injury repair and polarization of M2 macrophage phenotype, promotes AMPK activation, and inhibits NF-κB activation. The repair effect of high concentration NT-3 on sciatic nerve injury is significantly enhanced compared to low concentration. Compound C administration can weaken the effect of NT-3, while BAY 11-7082 can enhance the effect of NT-3. In short, NT-3 significantly improves sciatic nerve injury in rats, promotes sciatic nerve function repair, accelerates M2 macrophage phenotype polarization, and improves neuroinflammatory response. The protective effects of NT-3 mentioned above are partially related to the AMPK/NF-κB signal axis.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Shuqin Ni
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Qingsheng Zhou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Dexin Zou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China.
| |
Collapse
|
6
|
Kim KH, Noh K, Lee J, Lee S, Lee SJ. NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100355. [PMID: 39170714 PMCID: PMC11338060 DOI: 10.1016/j.bpsgos.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024] Open
Abstract
Background Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved. Methods With Negr1 -/- mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the k-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms. Results When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas Negr1 -/- mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and Negr1 -/- mice used their olfaction for social interaction in the experimental context, but Negr1 -/- mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in Negr1 -/- mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in Negr1 -/- mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb. Conclusions NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.
Collapse
Affiliation(s)
- Kwang Hwan Kim
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Republic of Korea
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jaesung Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Wong CE, Liu W, Huang CC, Lee PH, Huang HW, Chang Y, Lo HT, Chen HF, Kuo LC, Lee JS. Sciatic nerve stimulation alleviates neuropathic pain and associated neuroinflammation in the dorsal root ganglia in a rodent model. J Transl Med 2024; 22:770. [PMID: 39143617 PMCID: PMC11325705 DOI: 10.1186/s12967-024-05573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.
Collapse
Affiliation(s)
- Chia-En Wong
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Han-Wei Huang
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hsin-Tien Lo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Fang Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Chen L, Hua B, He Q, Han Z, Wang Y, Chen Y, Ni H, Zhu Z, Xu L, Yao M, Ni C. Curcumin analogue NL04 inhibits spinal cord central sensitization in rats with bone cancer pain by inhibiting NLRP3 inflammasome activation and reducing IL-1β production. Eur J Pharmacol 2024; 970:176480. [PMID: 38490468 DOI: 10.1016/j.ejphar.2024.176480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
The management and therapy of bone cancer pain (BCP) remain formidable clinical challenges. Curcumin and its analogues have been shown to have anti-inflammatory and analgesic properties. In the present study, we investigated the efficacy of curcumin analogue NL04 (NL04) in modulating inflammation in spinal dorsal horn (SDH), thereby exploring its potential to reduce central sensitization of BCP in a rat model. Differing doses of NL04 and curcumin were administered intrathecally either once (on day 12 of BCP) or over seven consecutive days (from day 6-12 of BCP). Results indicated that the ED50 for NL04 and curcumin ameliorating BCP-induced mechanical hyperalgesia is 49.08 μg/kg and 489.6 μg/kg, respectively. The analgesic effects at various doses of NL04 lasted between 4 and 8 h, with sustained administration over a week maintaining pain relief for 1-4 days, while also ameliorating locomotor gait via gait analysis and reducing depressive and anxiety-like behaviors via open-field and light-dark transition tests. The analgesic effects at various doses of curcumin lasted 4 h, with sustained administration over a week maintaining pain relief for 0-2 days. ELISA, Western blotting, qPCR, and immunofluorescence assays substantiated that intrathecal administration of NL04 on days 6-12 of BCP dose-dependently lowered spinal IL-1β and IL-18 levels and significantly reduced the expression of IKKβ genes and proteins, as well as the downstream cleavage of the trans-Golgi network (TGN). Whole-cell patch-clamp results demonstrated that NL04 inhibits potassium ion efflux in rat primary spinal neurons. Thus, NL04 exhibits significant analgesic effects in a BCP rat model by downregulating IKKβ expression and inhibiting neuronal potassium ion efflux, which, in turn, suppresses the activation of NLRP3 inflammasomes and reduces IL-1β production, potentially ameliorating pain management in BCP.
Collapse
Affiliation(s)
- Liping Chen
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Bohan Hua
- Anesthesia Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zixin Han
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yujing Chen
- Department of Pathology, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zefeng Zhu
- Department of Radiology, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
10
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
13
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
14
|
Shin MJ, Park JY, Park JY, Lim SH, Lim H, Choi JK, Park CK, Kang YJ, Khang D. Inflammation-Targeting Mesenchymal Stem Cells Combined with Photothermal Treatment Attenuate Severe Joint Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304333. [PMID: 38096399 DOI: 10.1002/adma.202304333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Current clinical therapeutic efficacy for the treatment of osteo- and rheumatoid-arthritis is obviously limited. Although mesenchymal stem cells (MSCs) are considered as a source of promising regenerative therapy, un-modified or genetically engineered MSCs injected in vivo restrict their clinical utility because of the low drug efficacy and unpredicted side effect, respectively. Herein, a strategy to enhance the migration efficacy of MSCs to inflamed joints via an inflammation-mediated education process is demonstrated. To reinforce the limited anti-inflammatory activity of MSCs, gold nanostar loaded with triamcinolone is conjugated to MSC. Furthermore, near-infrared laser-assisted photothermal therapy (PTT) induced by gold nanostar significantly elevates the anti-inflammatory efficacy of the developed drugs, even in advanced stage arthritis model. An immunological regulation mechanism study of PTT is first suggested in this study; the expression of the interleukin 22 receptor, implicated in the pathogenesis of arthritis, is downregulated in T lymphocytes by PTT, and Th17 differentiation from naïve CD4 T cell is inhibited. Collectively, inflammation-targeting MSCs conjugated with triamcinolone-loaded gold nanostar (Edu-MSCs-AuS-TA) promote the repolarization of macrophages and decrease neutrophil recruitment in joints. In addition, Edu-MSCs-AuS-TA significantly alleviate arthritis-associated pain, improve general locomotor activity, and more importantly, induce cartilage regeneration even for severe stages of arthritis model.
Collapse
Affiliation(s)
- Min Jun Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Su Hyun Lim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Hyoungsub Lim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jin Kyeong Choi
- Department of Immunology, School of Medicine, Jeonbuk National University, Jeonju, 54907, South Korea
| | - Chul-Kyu Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| | - Youn Joo Kang
- Department of Rehabilitation Medicine, Eulji Hospital, School of Medicine, Eulji University, Seoul, 01830, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
- Ectosome Inc., Incheon, 21999, South Korea
| |
Collapse
|
15
|
Sun S, Fan Z, Liu X, Wang L, Ge Z. Microglia TREM1-mediated neuroinflammation contributes to central sensitization via the NF-κB pathway in a chronic migraine model. J Headache Pain 2024; 25:3. [PMID: 38177990 PMCID: PMC10768449 DOI: 10.1186/s10194-023-01707-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.
Collapse
Affiliation(s)
- Songtang Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Si W, Li X, Jing B, Chang S, Zheng Y, Chen Z, Zhao G, Zhang D. Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate neuropathic pain. Phytother Res 2024; 38:265-279. [PMID: 37871970 DOI: 10.1002/ptr.8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
(Switching from the microglial M1 phenotype to the M2 phenotype is a promising therapeutic strategy for neuropathic pain (NP). This study aimed to investigate the potential use of stigmasterol for treating NP. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, chronic constriction injury (CCI) group, CCI + ibuprofen group, and CCI + stigmasterol group. We performed behavioral tests, enzyme-linked immunosorbent assay, hematoxylin-esoin staining (H&E) staining and immunohistochemistry, immunofluorescence, and Western blotting. In cell experiments, we performed flow cytometry, immunofluorescence, Western blotting, and qRT-PCR. Stigmasterol reduced thermal and mechanical hyperalgesia and serum IL-1β and IL-8 levels and increased serum IL-4 and TGF-β levels in CCI rats. Stigmasterol reduced IL-1β, COX-2, and TLR4 expression in the right sciatic nerve and IL-1β expression in the spinal cord. Stigmasterol reduced the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, COX-2, IL-1β, and CD32 in the spinal cord of CCI rats while increasing the expression of IL-10 and CD206. Stigmasterol decreased M1 polarization markers and increased M2 polarization markers in lipopolysaccharide (LPS)-induced microglia and decreased the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, iNOS, COX-2, and IL-1β in LPS-treated microglia while increasing the expression of Arg-1 and IL-10. Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate NP.
Collapse
Affiliation(s)
- Waimei Si
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Bei Jing
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shiquan Chang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yachun Zheng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhenni Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guoping Zhao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
18
|
Yang Y, Rao C, Yin T, Wang S, Shi H, Yan X, Zhang L, Meng X, Gu W, Du Y, Hong F. Application and underlying mechanism of acupuncture for the nerve repair after peripheral nerve injury: remodeling of nerve system. Front Cell Neurosci 2023; 17:1253438. [PMID: 37941605 PMCID: PMC10627933 DOI: 10.3389/fncel.2023.1253438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Peripheral nerve injury (PNI) is a structural event with harmful consequences worldwide. Due to the limited intrinsic regenerative capacity of the peripheral nerve in adults, neural restoration after PNI is difficult. Neurological remodeling has a crucial effect on the repair of the form and function during the regeneration of the peripheral nerve after the peripheral nerve is injured. Several studies have demonstrated that acupuncture is effective for PNI-induced neurologic deficits, and the potential mechanisms responsible for its effects involve the nervous system remodeling in the process of nerve repair. Moreover, acupuncture promotes neural regeneration and axon sprouting by activating related neurotrophins retrograde transport, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), N-cadherin, and MicroRNAs. Peripheral nerve injury enhances the perceptual response of the central nervous system to pain, causing central sensitization and accelerating neuronal cell apoptosis. Together with this, the remodeling of synaptic transmission function would worsen pain discomfort. Neuroimaging studies have shown remodeling changes in both gray and white matter after peripheral nerve injury. Acupuncture not only reverses the poor remodeling of the nervous system but also stimulates the release of neurotrophic substances such as nerve growth factors in the nervous system to ameliorate pain and promote the regeneration and repair of nerve fibers. In conclusion, the neurological remodeling at the peripheral and central levels in the process of acupuncture treatment accelerates nerve regeneration and repair. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of PNI.
Collapse
Affiliation(s)
- Yongke Yang
- Beilun District People’s Hospital, Ningbo, China
| | - Chang Rao
- Tianjin Union Medical Center, Tianjin, China
| | - Tianlong Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaokang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiyan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin Yan
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, China
| | - Lili Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianggang Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenlong Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Hong
- Beilun District People’s Hospital, Ningbo, China
| |
Collapse
|
19
|
Du T, Ni B, Shu W, Ren Z, Guo S, Zhang X, Zhu H, Hu Y. Dorsal Root Entry Zone Lesioning Following Unresponsive Spinal Cord Stimulation for Post-Traumatic Neuropathic Pain. World Neurosurg 2023; 178:e300-e306. [PMID: 37473865 DOI: 10.1016/j.wneu.2023.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) and dorsal root entry zone (DREZ) lesioning are important therapeutic options for intractable post-traumatic neuropathic pain (PNP). However, surgical choice is controversial due to the need to maximize pain relief and reduce complications. This study aims to retrospectively analyze the effect and complications of DREZ lesioning for patients with PNP who were unresponsive to SCS and provide a surgical reference. METHODS Demographic data and surgical characteristics of patients with PNP who underwent DREZ lesioning after an unresponsive SCS were reviewed. Long-term outcomes including numeric rating scale, global impression of change, and long-term complications were assessed. Kaplan-Meier analysis was used to evaluate pain-free survival. RESULTS Of 19 patients with PNP, 8 had brachial plexus injury (BPI), 7 had spinal cord injury, 2 had cauda equina injury, 1 had intercostal nerve injury, and 1 had lumbosacral plexus injury. All patients were unresponsive or had a recurrence of pain after SCS, with an average pain-relief rate of 9.3%. After DREZ lesioning, the mean numeric rating scale scores significantly decreased from 7.6 ± 1.5 to 1.8 ± 1.7, with an average pain-relief rate of 75.3%. Seven patients (36.8%) experienced worsened neurologic dysfunction at the last follow-up. Patients with BPI had a significantly better outcome than other pathologies (P < 0.001) after DREZ lesioning. CONCLUSIONS DREZ lesioning is an effective alternative procedure to SCS for patients with PNP who have lost limb function. Particularly for those with BPI, DREZ lesioning has shown good efficacy and can be considered a preferred surgical option.
Collapse
Affiliation(s)
- Tao Du
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bing Ni
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Shu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Song Guo
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongsheng Hu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
22
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
23
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Zhang SB, Zhao GH, Lv TR, Gong CY, Shi YQ, Nan W, Zhang HH. Bibliometric and visual analysis of microglia-related neuropathic pain from 2000 to 2021. Front Mol Neurosci 2023; 16:1142852. [PMID: 37273906 PMCID: PMC10233022 DOI: 10.3389/fnmol.2023.1142852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Background Microglia has gradually gained researchers' attention in the past few decades and has shown its promising prospect in treating neuropathic pain. Our study was performed to comprehensively evaluate microglia-related neuropathic pain via a bibliometric approach. Methods We retrospectively reviewed publications focusing on microglia-related neuropathic pain from 2000 to 2021 in WoSCC. VOS viewer software and CiteSpace software were used for statistical analyses. Results A total of 2,609 articles were finally included. A steady increase in the number of relevant publications was observed in the past two decades. China is the most productive country, while the United States shares the most-cited and highest H-index country. The University of London, Kyushu University, and the University of California are the top 3 institutions with the highest number of publications. Molecular pain and Pain are the most productive and co-cited journals, respectively. Inoue K (Kyushu University) is the most-contributed researcher and Ji RR (Duke University) ranks 1st in both average citations per article and H-index. Keywords analyses revealed that pro-inflammatory cytokines shared the highest burst strength. Sex differences, neuroinflammation, and oxidative stress are the emerging keywords in recent years. Conclusion In the field of microglia-related neuropathic pain, China is the largest producer and the United States is the most influential country. The signaling communication between microglia and neurons has continued to be vital in this field. Sexual dimorphism, neuroinflammation, and stem-cell therapies might be emerging trends that should be closely monitored.
Collapse
Affiliation(s)
- Shun-Bai Zhang
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guang-Hai Zhao
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Tian-Run Lv
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Chao-Yang Gong
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wei Nan
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
25
|
Schulte A, Lohner H, Degenbeck J, Segebarth D, Rittner HL, Blum R, Aue A. Unbiased analysis of the dorsal root ganglion after peripheral nerve injury: no neuronal loss, no gliosis, but satellite glial cell plasticity. Pain 2023; 164:728-740. [PMID: 35969236 PMCID: PMC10026836 DOI: 10.1097/j.pain.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain syndromes are often accompanied by complex molecular and cellular changes in dorsal root ganglia (DRG). However, the evaluation of cellular plasticity in the DRG is often performed by heuristic manual analysis of a small number of representative microscopy image fields. In this study, we introduce a deep learning-based strategy for objective and unbiased analysis of neurons and satellite glial cells (SGCs) in the DRG. To validate the approach experimentally, we examined serial sections of the rat DRG after spared nerve injury (SNI) or sham surgery. Sections were stained for neurofilament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) and imaged using high-resolution large-field (tile) microscopy. After training of deep learning models on consensus information of different experts, thousands of image features in DRG sections were analyzed. We used known (GFAP upregulation), controversial (neuronal loss), and novel (SGC phenotype switch) changes to evaluate the method. In our data, the number of DRG neurons was similar 14 d after SNI vs sham. In GFAP-positive subareas, the percentage of neurons in proximity to GFAP-positive cells increased after SNI. In contrast, GS-positive signals, and the percentage of neurons in proximity to GS-positive SGCs decreased after SNI. Changes in GS and GFAP levels could be linked to specific DRG neuron subgroups of different size. Hence, we could not detect gliosis but plasticity changes in the SGC marker expression. Our objective analysis of DRG tissue after peripheral nerve injury shows cellular plasticity responses of SGCs in the whole DRG but neither injury-induced neuronal death nor gliosis.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Hannah Lohner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Degenbeck
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Dennis Segebarth
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Annemarie Aue
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Wang J, He W, Zhang J. A richer and more diverse future for microglia phenotypes. Heliyon 2023; 9:e14713. [PMID: 37025898 PMCID: PMC10070543 DOI: 10.1016/j.heliyon.2023.e14713] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are the only resident innate immune cells derived from the mesoderm in the nerve tissue. They play a role in the development and maturation of the central nervous system (CNS). Microglia mediate the repair of CNS injury and participate in endogenous immune response induced by various diseases by exerting neuroprotective or neurotoxic effects. Traditionally, microglia are considered to be in a resting state, the M0 type, under physiological conditions. In this state, they perform immune surveillance by constantly monitoring pathological responses in the CNS. In the pathological state, microglia undergo a series of morphological and functional changes from the M0 state and eventually polarize into classically activated microglia (M1) and alternatively activated microglia (M2). M1 microglia release inflammatory factors and toxic substances to inhibit pathogens, while M2 microglia exert neuroprotective effects by promoting nerve repair and regeneration. However, in recent years, the view regarding M1/M2 polarization of microglia has gradually changed. According to some researchers, the phenomenon of microglia polarization is not yet confirmed. The M1/M2 polarization term is used for a simplified description of its phenotype and function. Other researchers believe that the microglia polarization process is rich and diverse, and consequently, the classification method of M1/M2 has limitations. This conflict hinders the academic community from establishing more meaningful microglia polarization pathways and terms, and therefore, a careful revision of the concept of microglia polarization is required. The present article briefly reviews the current consensus and controversy regarding microglial polarization typing to provide supporting materials for a more objective understanding of the functional phenotype of microglia.
Collapse
|
27
|
TRPV4 Role in Neuropathic Pain Mechanisms in Rodents. Antioxidants (Basel) 2022; 12:antiox12010024. [PMID: 36670886 PMCID: PMC9855176 DOI: 10.3390/antiox12010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by a disease or damage to the somatosensory nervous system. The knowledge about the complete mechanisms is incomplete, but the role of oxidative compounds has been evaluated. In this context, we highlight the transient potential receptor vanilloid 4 (TRPV4), a non-selective cation channel, that can be activated by oxidated compounds. In clinical trials, the TRPV4 antagonist (GSK2798745) has been well-tolerated in healthy volunteers. The TRPV4 activation by oxidative compounds, such as hydrogen peroxide (H2O2) and nitric oxide (NO), has been researched in neuropathic pain models. Thus, the modulation of TRPV4 activation by decreasing oxidated compounds could represent a new pharmacological approach for neuropathic pain treatment. Most models evaluated the TRPV4 using knockout mice, antagonist or antisense treatments and detected mechanical allodynia, hyposmotic solution-induced nociception and heat hyperalgesia, but this channel is not involved in cold allodynia. Only H2O2 and NO were evaluated as TRPV4 agonists, so one possible target to reduce neuropathic pain should focus on reducing these compounds. Therefore, this review outlines how the TRPV4 channel represents an innovative target to tackle neuropathic pain signaling in models induced by trauma, surgery, chemotherapy, cancer, diabetes and alcohol intake.
Collapse
|
28
|
Jin X, Guan K, Chen Z, Sun Y, Huo H, Wang J, Dong H. The protective effects of nesfatin-1 in neurological dysfunction after spinal cord injury by inhibiting neuroinflammation. Brain Behav 2022; 12:e2778. [PMID: 36271663 PMCID: PMC9660404 DOI: 10.1002/brb3.2778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
AIMS Spinal cord injury (SCI) is one of the most severe neurological diseases. However, there is still no effective treatment for it. Nesfatin, a precursor neuropeptide derived from nucleobindin 2 (NUCB2), has displayed a wide range of protective effects in different types of cells and tissue. However, the effects of nesfatin-1 in SCI have not been reported before. MATERIALS AND METHODS A SCI model was established. The behavior of mice was assessed using the Basso, Beattie, and Bresnahan (BBB) assessment. RESULTS Here, we report that the administration of nesfatin-1 improved neurological recovery in SCI mice by increasing BBB scores, reducing lesion area volume and spinal cord water content. Also, nesfatin-1 ameliorated oxidative stress by reducing reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. We also found that nesfatin-1 prevented neuronal apoptosis in SCI mice by reducing caspase 3 activity and the expression of Bax, as well as increasing B-cell lymphoma-2 (Bcl-2). Additionally, nesfatin-1 reduced the levels of interleukin 6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). Nesfatin-1 also promoted microglia towards M2 polarization by increasing the marker CD206 but reducing CD16. Importantly, nesfatin-1 enhanced the phosphorylation of signal transducer and activator of transcription 1 (STAT1) but reduced the expression levels of toll-like receptor 4 (TLR4) and phosphorylated nuclear factor kappa-B p65 (p-NF-κB p65). CONCLUSION Our findings imply that nesfatin-1 exerts neuroprotective actions in SCI by promoting the activation of M2 microglia, and its underlying mechanisms might be related to the activation of STAT1 and inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Kai Guan
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Zhengyu Chen
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Yongwei Sun
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Hongjun Huo
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Jinle Wang
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Huihui Dong
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| |
Collapse
|
29
|
Corydalis decumbens Can Exert Analgesic Effects in a Mouse Neuropathic Pain Model by Modulating MAPK Signaling. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7722951. [PMID: 35669365 PMCID: PMC9166945 DOI: 10.1155/2022/7722951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Objectives This study is aimed at investigating the analgesic effect of the administration of Corydalis decumbens (CD) in a mouse model of postherpetic neuralgia (PHN) and at elucidating its mechanism of analgesic action. Methods Adult Kunming (KM) mice were randomly divided into control, CD, and vehicle-treated groups. Neuropathic pain was induced with a single intraperitoneal injection of resiniferatoxin (RTX). Thermal hyperalgesia was assessed with a hot/cold plate test, and mechanical allodynia was evaluated using von Frey filaments. The activation states of astrocytes, microglia, and the mitogen-activated protein kinase (MAPK) pathway in the spinal cord were determined by immunofluorescence staining and Western blot analysis of Iba-1, GFAP, phospho-p38, and phospho-Jun N-terminal kinase (JNK). Results RTX diminished thermal sensitivity and gradually increased sensitivity to tactile stimulation. The expression of Iba-1, GFAP, phospho-p38 MAPK, and phospho-JNK was upregulated in the RTX-induced postherpetic neuralgia mouse model. Systemic treatment with CD significantly ameliorated thermal sensitivity and mechanical hyperalgesia and was accompanied by a reduction in the expression of Iba-1 and GFAP and reduced phosphorylation of p38 and JNK. Conclusions This study suggests that CD is effective at ameliorating mechanical hyperalgesia in PHN mice and that its mechanism of action may involve modulation of MAPK phosphorylation and glial cell activation. Thus, CD may be a promising alternative therapy for PHN.
Collapse
|
30
|
Zhang LQ, Zhou YQ, Li JY, Sun J, Zhang S, Wu JY, Gao SJ, Tian XB, Mei W. 5-HT1F Receptor Agonist Ameliorates Mechanical Allodynia in Neuropathic Pain via Induction of Mitochondrial Biogenesis and Suppression of Neuroinflammation. Front Pharmacol 2022; 13:834570. [PMID: 35308244 PMCID: PMC8927783 DOI: 10.3389/fphar.2022.834570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is a devastating disease that affects millions of people worldwide. Serotonin (5-hydroxytryptamine, 5-HT) is involved in pain modulation. Several lines of evidence have indicated that 5-HT1F receptor agonists are potent inducers of mitochondrial biogenesis. In this study, we tested the hypothesis that 5-HT1F receptor agonists ameliorate mechanical allodynia in neuropathic pain via the induction of mitochondrial biogenesis and suppression of neuroinflammation. Male Sprague–Dawley rats were used to establish a neuropathic pain model via spared nerve injury (SNI). The paw withdrawal threshold (PWT) was used to evaluate mechanical allodynia. Real-time polymerase chain reaction was used to examine the mitochondrial DNA (mtDNA) copy number. Western blotting and immunofluorescence were used to examine the expression of target proteins. Our results showed that mitochondrial biogenesis was impaired in the spinal cord of rats with SNI. Moreover, activation of PGC-1α, the master regulator of mitochondrial biogenesis, attenuates established mechanical allodynia in rats with neuropathic pain. In addition, the neuronal 5-HT1F receptor is significantly downregulated in the spinal cord of rats with neuropathic pain. Furthermore, the selective 5-HT1F receptor agonist lasmiditan attenuated established mechanical allodynia in rats with neuropathic pain. Finally, lasmiditan (Las) treatment restored mitochondrial biogenesis and suppressed neuroinflammation in the spinal cord of rats with SNI. These results provide the first evidence that lasmiditan ameliorates mechanical allodynia in neuropathic pain by inducing mitochondrial biogenesis and suppressing neuroinflammation in the spinal cord. Inducers of mitochondrial biogenesis may be an encouraging therapeutic option for the management of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Mei
- *Correspondence: Wei Mei, ; Xue-Bi Tian,
| |
Collapse
|
31
|
HDAC6 inhibitor ACY-1215 improves neuropathic pain and its comorbidities in rats of peripheral nerve injury by regulating neuroinflammation. Chem Biol Interact 2022; 353:109803. [PMID: 34998817 DOI: 10.1016/j.cbi.2022.109803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022]
Abstract
The fact that neuropathic pain (NP) has no effective therapy and is frequently accompanied by psychiatric comorbidities is well established. Aberrant neuroinflammation plays an important role in the development and maintenance of NP. HDAC6 inhibitors have been demonstrated to ameliorate mechanical allodynia brought on by chemotherapy and peripheral nerve damage. However, its pharmacological mechanisms and its effects on NP-related mental disorders have not been fully elucidated. The present study was dedicated to exploring the effects of ACY-1215 (a specific HDAC6 inhibitor) on neuroinflammation and behavioral abnormalities associated with NP. In this work, spinal nerve ligation (SNL) was performed as an NP model on rats. Mechanical allodynia, cognitive impairment, and depressive-like behavior caused by SNL were attenuated by continuous intraperitoneal injection of ACY-1215. Moreover, ACY-1215 administration suppressed SNL-induced neuroinflammatory responses (including microgliosis, the elevation of pro-inflammatory factors IL-1β and TNF-α) in ligation of the ipsilateral spinal dorsal horn (iSDH), hippocampus (HPC) and prefrontal cortex (PFC). Mechanistically, MyD88-dependent pro-inflammatory pathways (MyD88/NF-κB and MyD88/ERK) were activated in the iSDH following SNL and were inhibited by ACY-1215. Moreover, ACY-1215 enhanced the acetylation modification of MyD88 and inhibited the SNL-induced elevation of MyD88 without affecting its transcription in the iSDH. These findings suggest that pharmacological inhibition of HDAC6 can ameliorate NP and its psychiatric complications through modulating neuroinflammation, in part by blocking the MyD88-mediated pro-inflammatory pathways. The possible mechanism is that ACY-1215 prevents the elevation of MyD88 reactivity by increasing its acetylation level. Notably, neither SNL nor ACY-1215 significantly altered MyD88 expression in HPC and PFC, indicating differentiated pro-inflammatory mechanisms in the supraspinal neural regions.
Collapse
|
32
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
33
|
Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, Li CY, Wu Z, Guo JH, Zhou XF, Li LY. Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother 2021; 144:112273. [PMID: 34700232 DOI: 10.1016/j.biopha.2021.112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Neurogenesis in the adult brain is well recognized and plays a critical role in the maintenance of brain function and homeostasis. However, whether neurogenesis also occurs in the adult peripheral nervous system remains unknown. Here, using sensory ganglia (dorsal root ganglia, DRGs) as a model, we show that neurogenesis also occurs in the peripheral nervous system, but in a manner different from that in the central nervous system. Satellite glial cells (SGCs) express the neuronal precursor markers Nestin, POU domain, class 4, transcription factor 1, and p75 pan-neurotrophin receptor. Following sciatic nerve injury, the suppression of endogenous proBDNF by proBDNF antibodies resulted in the transformation of proliferating SGCs into doublecortin-positive cells in the DRGs. Using purified SGCs migrating out from the DRGs, the inhibition of endogenous proBDNF promoted the conversion of SGCs into neuronal phenotypes in vitro. Our findings suggest that SGCs are neuronal precursors, and that proBDNF maintains the SGC phenotype. Furthermore, the suppression of proBDNF signaling is necessary for neuronal phenotype acquisition by SGCs. Thus, we propose that peripheral neurogenesis may occur via the direct conversion of SGCs into neurons, and that this process is negatively regulated by proBDNF.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Department of Rehabilitation Medicine, Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Tao Luo
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Medical college of Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital 12 de Octubre, Instituto de Investigación imas12, Universidad Complutense de Madrid, Madrid, Spain
| | - Hongyun Li
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, NSW 2050, Australia
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Faculty of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
34
|
Gadepalli A, Akhilesh, Uniyal A, Modi A, Chouhan D, Ummadisetty O, Khanna S, Solanki S, Allani M, Tiwari V. Multifarious Targets and Recent Developments in the Therapeutics for the Management of Bone Cancer Pain. ACS Chem Neurosci 2021; 12:4195-4208. [PMID: 34723483 DOI: 10.1021/acschemneuro.1c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone cancer pain (BCP) is a distinct pain state showing characteristics of both neuropathic and inflammatory pain. On average, almost 46% of cancer patients exhibit BCP with numbers flaring up to as high as 76% for terminally ill patients. Patients suffering from BCP experience a compromised quality of life, and the unavailability of effective therapeutics makes this a more devastating condition. In every individual cancer patient, the pain is driven by different mechanisms at different sites. The mechanisms behind the manifestation of BCP are very complex and poorly understood, which creates a substantial barrier to drug development. Nevertheless, some of the key mechanisms involved have been identified and are being explored further to develop targeted molecules. Developing a multitarget approach might be beneficial in this case as the underlying mechanism is not fixed and usually a number of these pathways are simultaneously dysregulated. In this review, we have discussed the role of recently identified novel modulators and mechanisms involved in the development of BCP. They include ion channels and receptors involved in sensing alteration of temperature and acidic microenvironment, immune system activation, sodium channels, endothelins, protease-activated receptors, neurotrophins, motor proteins mediated trafficking of glutamate receptor, and some bone-specific mechanisms. Apart from this, we have also discussed some of the novel approaches under preclinical and clinical development for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Khanna
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Solanki
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| |
Collapse
|
35
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
37
|
Fan Y, Dong R, Zhang H, Yu B, Lu H. Role of SIRT1 in Neuropathic Pain from the Viewpoint of Neuroimmunity. Curr Pharm Des 2021; 28:280-286. [PMID: 34225609 DOI: 10.2174/1381612827666210705162610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
The current clinical first-line treatment of neuropathic pain still considers only the nervous system as the target, and its therapeutic effect is limited. An increasing number of studies support the opinion that neuropathic pain is a result of the combined action of the sensory nervous system and the related immune system. Under physiological conditions, both the nervous system and the immune system can maintain homeostasis by adjusting the mitochondrial function when sensing noxious stimulation. However, in the case of neuropathic pain, mitochondrial regulatory dysfunction occurs, which may result from the decreased expression of SIRT1. In this study, we review the role of SIRT1 in neuropathic pain from the viewpoint of neuroimmunity.
Collapse
Affiliation(s)
- Youjia Fan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Dong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
38
|
IKBKB siRNA-Encapsulated Poly (Lactic- co-Glycolic Acid) Nanoparticles Diminish Neuropathic Pain by Inhibiting Microglial Activation. Int J Mol Sci 2021; 22:ijms22115657. [PMID: 34073390 PMCID: PMC8203094 DOI: 10.3390/ijms22115657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Activation of nuclear factor-kappa B (NF-κB) in microglia plays a decisive role in the progress of neuropathic pain, and the inhibitor of kappa B (IκB) is a protein that blocks the activation of NF-κB and is degraded by the inhibitor of NF-κB kinase subunit beta (IKBKB). The role of IKBKB is to break down IκB, which blocks the activity of NF-kB. Therefore, it prevents the activity of NK-kB. This study investigated whether neuropathic pain can be reduced in spinal nerve ligation (SNL) rats by reducing the activity of microglia by delivering IKBKB small interfering RNA (siRNA)-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles. PLGA nanoparticles, as a carrier for the delivery of IKBKB genes silencer, were used because they have shown potential to enhance microglial targeting. SNL rats were injected with IKBKB siRNA-encapsulated PLGA nanoparticles intrathecally for behavioral tests on pain response. IKBKB siRNA was delivered for suppressing the expression of IKBKB. In rats injected with IKBKB siRNA-encapsulated PLGA nanoparticles, allodynia caused by mechanical stimulation was reduced, and the secretion of pro-inflammatory mediators due to NF-κB was reduced. Delivering IKBKB siRNA through PLGA nanoparticles can effectively control the inflammatory response and is worth studying as a treatment for neuropathic pain.
Collapse
|
39
|
Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Rep 2021; 6:e883. [PMID: 33981926 PMCID: PMC8108585 DOI: 10.1097/pr9.0000000000000883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Molecular and cellular interactions among spinal dorsal horn neurons and microglia, the resident macrophages of the central nervous system, contribute to the induction and maintenance of neuropathic pain after peripheral nerve injury. Emerging evidence also demonstrates that reciprocal interactions between macrophages and nociceptive sensory neurons in the dorsal root ganglion contribute to the initiation and persistence of nerve injury-induced mechanical hypersensitivity (allodynia). We previously reported that sensory neuron-derived colony-stimulating factor 1 (CSF1), by engaging the CSF1 receptor (CSF1R) that is expressed by both microglia and macrophages, triggers the nerve injury-induced expansion of both resident microglia in the spinal cord and macrophages in the dorsal root ganglion and induces their respective contributions to the neuropathic pain phenotype. Here, we review recent research and discuss unanswered questions regarding CSF1/CSF1R-mediated microglial and macrophage signaling in the generation of neuropathic pain.
Collapse
|
40
|
Up-regulating TIPE2 alleviates inflammatory pain by suppressing microglial activation-mediated inflammatory response via inhibiting Rac1/NF-κB pathway. Exp Cell Res 2021; 404:112631. [PMID: 33933441 DOI: 10.1016/j.yexcr.2021.112631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
TNF-α-inducible protein 8-like 2 (TIPE2) is a recently discovered regulator of inflammation that can maintain immune homeostasis, exerting a significant role in the development of inflammation-related diseases. Here, we aimed to explore the role and potential regulatory mechanism of TIPE2 in the progression of inflammatory pain. In the present study, a mouse BV2 microglia cell activation-mediated inflammatory model was developed with LPS induction, and a mouse inflammatory pain model was established with complete Freund's adjuvant (CFA) injection. In vitro, the TIPE2 expression was decreased in LPS-induced BV2 cells. Overexpression of TIPE2 mitigated LPS-medicated microglial activation via decreasing nitric oxide (NO) generation and the expression of microglia marker IBA-1. Notably, increasing TIPE2 expression alleviated microglial activation-triggered expression levels and releases of proinflammatory factors such as TNF-α, IL-1β, and IL-6. Mechanism analysis verified that overexpression of TIPE2 blunted Rac1-mediated activation of NF-κB pathway following LPS stimulation. More importantly, CFA injection reduced the expression of TIPE2 in a mouse inflammatory pain model and overexpression of TIPE2 alleviated CFA-mediated pain hypersensitivity and inflammatory response, and inactivated microglia cell in vivo. Furthermore, overexpression of TIPE2 decreased Rac1 expression and suppressed the activation of NF-κB pathway in spinal cord after CFA injection. In summary, the present study revealed that overexpression of TIPE2 mitigated inflammatory pain through suppressing microglial activation-induced inflammation by inactivating Rac1/NF-κB pathway. The study provides a novel theoretical foundation for the therapy of inflammatory pain.
Collapse
|
41
|
Dexmedetomidine alleviated neuropathic pain in dorsal root ganglion neurons by inhibition of anaerobic glycolysis activity and enhancement of ROS tolerance. Biosci Rep 2021; 40:222638. [PMID: 32285913 PMCID: PMC7201561 DOI: 10.1042/bsr20191994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/23/2020] [Accepted: 04/08/2020] [Indexed: 01/29/2023] Open
Abstract
Neuropathic pain is a kind of chronic pain that is triggered or caused primarily by damage to the nervous system and neurological dysfunction. It’s known that dexmedetomidine is a new type of highly selective alpha2-adrenoceptor agonist with sedation, anti-anxiety, analgesic and other effects. However, the function and mechanism of dexmedetomidine on neuropathic pain are not clear. Rat DRG neurons were isolated and identified using immunofluorescence assay. Following treatment with H2O2, dexmedetomidine or ROS inhibitor (NAC), the apoptosis and ROS levels were examined by flow cytometery; apoptosis- and anaerobic glycolysis-related proteins were determined by Western blot assay; glucose consumption, pyruvic acid, lactic acid and ATP/ADP ratios were also measured. The results revealed that dexmedetomidine inhibited H2O2-induced apoptosis and reactive oxygen species (ROS) in rat DRG neurons and in addition, dexmedetomidine down-regulated the expression levels of anaerobic glycolysis-related proteins, significantly reduced glucose, pyruvic acid and lactic acid levels. It also increased the ATP/ADP ratio in H2O2-treated rat dorsal root ganglion (DRG) neurons. Moreover, we also demonstrated that ROS inhibitor (NAC) also inhibited H2O2-induced apoptosis and anaerobic glycolysis in rat DRG neurons. In conclusion, dexmedetomidine suppressed H2O2-induced apoptosis and anaerobic glycolysis activity by inhibiting ROS, in rat DRG neurons. Therefore, dexmedetomidine might play a pivotal role in neuropathic pain by the inhibition of ROS.
Collapse
|
42
|
Wang XY, Ma HJ, Xue M, Sun YL, Ren A, Li MQ, Huang ZH, Huang C. Anti-nociceptive effects of Sedum Lineare Thunb. on spared nerve injury-induced neuropathic pain by inhibiting TLR4/NF-κB signaling in the spinal cord in rats. Biomed Pharmacother 2021; 135:111215. [PMID: 33418303 DOI: 10.1016/j.biopha.2020.111215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Neuropathic pain is still a critical public health problem worldwide. Thereby, the search for novel and more effective strategies against neuropathic pain is urgently considered. It is known that neuroinflammation plays a crucial role in the pathogenesis of neuropathic pain. SedumLineare Thunb. (SLT), a kind of Chinese herb originated from the whole grass of Crassulaceae plant, was reported to possess anti-inflammatory activity. However, whether SLT has anti-nociceptive effect on neuropathic pain and its possible underlying mechanisms remains poorly elucidated. In this study, a rat model of neuropathic pain induced by spared nerve injury (SNI)was applied. SLT (p.o.) was administered to SNI rats once every day lasting for 14 days. Pain-related behaviors were assessed by using paw withdrawal threshold (PWT) and CatWalk gait parameters. Expression levels of inflammatory mediators and pain-related signaling molecules in the spinal cord were detected using western blotting assay. The results revealed that SLT (30, 100, and 300 mg/kg, p.o.) treatment for SNI rats ameliorated mechanical hypersensitivity in a dose-dependent manner. Application of SLT at the most effective dose of 100 mg/kg to SNI rats not only significantly blocked microglial activation, but also markedly reduced the protein levels of spinal HMGB1, TLR4, MyD88, TRAF6, IL-1β, IL-6, and TNF-α, along with an enhancement in gait parameters. Furthermore, SLT treatment dramatically inhibited the phosphorylation levels of both IKK and NF-κB p65 but obviously improved both IκB and IL-10 protein expression in the spinal cord of SNI rats. Altogether, these data suggested that SLT could suppress spinal TLR4/NF-κB signaling pathway in SNI rats, which might at least partly contribute to its anti-nociceptive action, indicating that SLT may serveas a potential therapeutic agent for neuropathic pain.
Collapse
Affiliation(s)
- Xin-Ying Wang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Hai-Juan Ma
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Ya-Lan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - An Ren
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Meng-Qi Li
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhi-Hua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China; Pain Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China; Pain Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
43
|
Li M, Rong ZJ, Cao Y, Jiang LY, Zhong D, Li CJ, Sheng XL, Hu JZ, Lu HB. Utx Regulates the NF-κB Signaling Pathway of Natural Stem Cells to Modulate Macrophage Migration during Spinal Cord Injury. J Neurotrauma 2020; 38:353-364. [PMID: 32977735 DOI: 10.1089/neu.2020.7075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs) play vital roles in the homeostasis of neurological function. Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) is an important regulator of stem cell phenotypes. In our current study, we aimed to investigate whether the conditional knockout of UTX on neural stem cells alters macrophage assembly in response to spinal cord injury (SCI). Conditional knockout Utx of NSC (Utx-KO) mice was used to generate SCI models by the modified Allen method. We reported that neurological function and scar hyperplasia significantly improved in Utx-KO mice after SCI, accompanied by significantly reduced assembly of macrophages. With a 45-fold pathway array and Western blot, we found that Utx-KO could significantly inhibit NF-κB signaling activation and promote the synthesis and secretion of macrophage migration inhibitory factor (MIF) in NSCs. Administration of the selective NF-κB p65 activator betulinic acid and the selective MIF inhibitor ISO-1 confirmed that the activation of NF-κB p65 phosphorylation or inhibition of MIF could eliminate the benefits of Utx-KO in SCI, such as inhibition of macrophage aggregation and reduction in scar proliferation. This study confirmed that UTX in NSCs could alter macrophage migration and improve neurological function recovery after SCI in mice.
Collapse
Affiliation(s)
- Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Dong Zhong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Cheng-Jun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Xiao-Long Sheng
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Hong-Bin Lu
- Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
44
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat. Int J Mol Sci 2020; 21:ijms21103509. [PMID: 32429243 PMCID: PMC7278943 DOI: 10.3390/ijms21103509] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammation is known to be an essential trigger of the pathological changes that have a critical impact on nerve repair and regeneration; moreover, damage to peripheral nerves can cause a loss of sensory function and produces persistent neuropathic pain. To date, various potential approaches for neuropathic pain have focused on controlling neuroinflammation. The aim of this study was to investigate the neuroprotective effects of a new association of ultramicronized Palmitoylethanolamide (PEAum), an Autacoid Local Injury Antagonist Amide (ALIAmide) with analgesic and anti-inflammatory properties, with Paracetamol, a common analgesic, in a rat model of sciatic nerve injury (SNI). The association of PEAum-Paracetamol, in a low dose (5 mg/kg + 30 mg/kg), was given by oral gavage daily for 14 days after SNI. PEAum-Paracetamol association was able to reduce hyperalgesia, mast cell activation, c-Fos and nerve growth factor (NGF) expression, neural histological damage, cytokine release, and apoptosis. Furthermore, the analgesic action of PEAum-Paracetamol could act in a synergistic manner through the inhibition of the NF-κB pathway, which leads to a decrease of cyclooxygenase 2-dependent prostaglandin E2 (COX-2/PGE2) release. In conclusion, we demonstrated that PEAum associated with Paracetamol was able to relieve pain and neuroinflammation after SNI in a synergistic manner, and this therapeutic approach could be relevant to decrease the demand of analgesic drugs.
Collapse
|
46
|
The AMPK pathway triggers autophagy during CSF1-induced microglial activation and may be implicated in inducing neuropathic pain. J Neuroimmunol 2020; 345:577261. [PMID: 32570135 DOI: 10.1016/j.jneuroim.2020.577261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The development and maintenance of neuropathic pain is now given far more attention in the clinic work. Increasing evidence has shown that colony-stimulating factor 1 (CSF1) is involved in microglial activation and may further induce pain. Here, we observed the signaling events that link the CSF1-induced microglial activated and consequences for pain processing. For the in vitro study, flow cytometry showed the microglial activity was markedly increased after CSF1 stimulation. Western blot showed the increased expression of p-PRKAA1/PRKAA1, p-AMPK/AMPK, p-ULK1/ULK1, p-S6k/S6k and LC3-II/LC3-I. QRT-PCR showed the IL-1, TNF-α and BDNF were simultaneously upregulated in the activated microglia cells, whereas the specific AMPK inhibitor compound C exhibited reverse effects in microglia. Using immunofluorescence staining and electron microscopy, we found CSF1 decreased microglial p62 expression and induced the number of autophagosomes, whereas compound C significantly exhibited the reverse effects. For the in vivo study, compared with the control and AMPK-siRNA transfection, the mice under CSF1 intrathecal injection increased CSF1 receptor and LC3 expressed in the activated spinal microglia. More importantly, qRT-PCR showed CSF1 intrathecal injection substantially upregulated BDNF and c-Fos mRNA expression as well as the ensuing neuropathic pain. Our findings demonstrated that CSF1 induced a significant upregulation of microglial activation via the AMPK signaling pathway and resulted in an increasing microglial autophagic level. An increasing CSF1 level in the central nervous system can mimic and cause pain syndromes by up-regulation of AMPK-depended autophagy, thus offering a new target for the therapy of neuropathic pain.
Collapse
|
47
|
Abstract
Careful attention to study design, bioactive material, and drug exposure was used in replication of a single study supporting efficacy of Meteorin in experimental neuropathic pain. Data from preclinical research have been suggested to suffer from a lack of inherent reproducibility across laboratories. The goal of our study was to replicate findings from a previous report that demonstrated positive effects of Meteorin, a novel neurotrophic factor, in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Notably, 5 to 6 intermittent subcutaneous (s.c.) injections of Meteorin had been reported to produce reversal of mechanical allodynia/thermal hyperalgesia after injury, wherein maximum efficacy of Meteorin was reached slowly and outlasted the elimination of the compound from the blood by several weeks. Here, we evaluated the efficacy of Meteorin in reversing hindpaw mechanical hyperalgesia and cold allodynia in male, Sprague-Dawley rats with CCI. Nociceptive behavior was monitored before and after CCI, and after drug treatment until day 42 after injury. Systemic administration of recombinant mouse Meteorin (0.5 and 1.8 mg/kg, s.c.) at days 10, 12, 14, 17, and 19 after CCI produced a prolonged reversal of neuropathic hypersensitivity with efficacy comparable with that obtained with gabapentin (100 mg/kg, orally). Despite some protocol deviations (eg, nociceptive endpoint, animal vendor, testing laboratory, investigator, etc.) being incurred, these did not affect study outcome. By paying careful attention to key facets of study design, using bioactive material, and confirming drug exposure, the current data have replicated the salient findings of the previous study, promoting confidence in further advancement of this novel molecule as a potential therapy for neuropathic pain.
Collapse
|
48
|
Yuan Q, Liu X, Xian YF, Yao M, Zhang X, Huang P, Wu W, Lin ZX. Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats. Biomed Pharmacother 2020; 127:110187. [PMID: 32361638 DOI: 10.1016/j.biopha.2020.110187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that activation of satellite glia cells (SGCs) in sensory ganglia play important roles in the development of neuropathic pain. The present study aimed to investigate the involvement of SGC activation in a novel model of motor nerve injury induced pain hypersensitivity. The neuropathic pain model was established by cervical 8 ventral root avulsion (C8VA). Glial fibrillary acidic protein (GFAP) was used as a marker of SGC activation. Unilateral C8VA resulted in mechanical allodynia, but not thermal hyperalgesia in bilateral paws. Expectedly, SGCs were robustly activated on as early as 1 day and persisted for at least 7 days in the ipsilateral and contralateral dorsal root ganglia (DRG) of C6, C7 and C8 after C8VA. Double immunofluorescence showed that almost all the activated SGCs enveloped neurofilament 200 (NF200) positive myelinated neurons in DRG. Local application of fluorocitrate (FC), a glial metabolism inhibitor, significantly decreased the number of activated SGCs and alleviated bilateral mechanical allodynia. These results suggest that SGC activation contributed to ipsilateral and mirror-image pain hypersensitivity after C8VA. Inhibition of SGC activation represented a promising therapeutic strategy for the management of neuropathic pain following brachial plexus root avulsion.
Collapse
Affiliation(s)
- Qiuju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Min Yao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Xie Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Pengyun Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, China.
| |
Collapse
|
49
|
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, Liang Y, Guo J, Li L. BDNF-TrkB and proBDNF-p75NTR/Sortilin Signaling Pathways are Involved in Mitochondria-Mediated Neuronal Apoptosis in Dorsal Root Ganglia after Sciatic Nerve Transection. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:66-82. [PMID: 31957620 DOI: 10.2174/1871527319666200117110056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Brain-Derived Neurotrophic Factor (BDNF) plays critical roles during development
of the central and peripheral nervous systems, as well as in neuronal survival after injury.
Although proBDNF induces neuronal apoptosis after injury in vivo, whether it can also act as a death
factor in vitro and in vivo under physiological conditions and after nerve injury, as well as its mechanism
of inducing apoptosis, is still unclear.
Objective:
In this study, we investigated the mechanisms by which proBDNF causes apoptosis in sensory
neurons and Satellite Glial Cells (SGCs) in Dorsal Root Ganglia (DRG) After Sciatic Nerve
Transection (SNT).
Methods:
SGCs cultures were prepared and a scratch model was established to analyze the role of
proBDNF in sensory neurons and SGCs in DRG following SNT. Following treatment with proBDNF
antiserum, TUNEL and immunohistochemistry staining were used to detect the expression of Glial
Fibrillary Acidic Protein (GFAP) and Calcitonin Gene-Related Peptide (CGRP) in DRG tissue; immunocytochemistry
and Cell Counting Kit-8 (CCK8) assay were used to detect GFAP expression and
cell viability of SGCs, respectively. RT-qPCR, western blot, and ELISA were used to measure mRNA
and protein levels, respectively, of key factors in BDNF-TrkB, proBDNF-p75NTR/sortilin, and apoptosis
signaling pathways.
Results:
proBDNF induced mitochondrial apoptosis of SGCs and neurons by modulating BDNF-TrkB
and proBDNF-p75NTR/sortilin signaling pathways. In addition, neuroprotection was achieved by inhibiting
the biological activity of endogenous proBDNF protein by injection of anti-proBDNF serum. Furthermore,
the anti-proBDNF serum inhibited the activation of SGCs and promoted their proliferation.
Conclusion:
proBDNF induced apoptosis in SGCs and sensory neurons in DRG following SNT. The
proBDNF signaling pathway is a potential novel therapeutic target for reducing sensory neuron and
SGCs loss following peripheral nerve injury.
Collapse
Affiliation(s)
- Xianbin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tongtong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Zhen Wu
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Kuangpin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunfei Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chenghao Zang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
50
|
Tsuda M. Microglia-Mediated Regulation of Neuropathic Pain: Molecular and Cellular Mechanisms. Biol Pharm Bull 2020; 42:1959-1968. [PMID: 31787711 DOI: 10.1248/bpb.b19-00715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pain is a defense system that responds rapidly to harmful internal and external stimuli through the somatosensory neuronal pathway. However, damage to the nervous system through cancer, diabetes, infection, autoimmune disease, chemotherapy or trauma often leads to neuropathic pain, a debilitating chronic pain condition. Neuropathic pain is not simply a temporal continuum of acute nociceptive signals from the periphery, but rather due to pathologically altered functions in the nervous system, which shift the net neuronal excitatory balance toward excitation. Although alterations were long thought to be a result of changes in neurons, but an increasing body of evidence over the past decades indicates the necessity and sufficiency of microglia, the tissue-resident macrophages of the spinal cord and brain, for nerve injury-induced malfunction of the nervous system. In this review article, I describe our current understanding of the molecular and cellular mechanisms underlying the role of microglia in the pathogenesis of neuropathic pain and discuss the therapeutic potential of microglia from recent advances in the development of new drugs targeting microglia.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|