1
|
Kawai H, Miura T, Kawamatsu N, Nakagawa T, Shiba-Ishii A, Yoshimoto T, Amano Y, Kihara A, Sakuma Y, Fujita K, Shibano T, Ishikawa S, Ushiku T, Fukayama M, Tsubochi H, Endo S, Hagiwara K, Matsubara D, Niki T. Expression patterns of HNF4α, TTF-1, and SMARCA4 in lung adenocarcinomas: impacts on clinicopathological and genetic features. Virchows Arch 2024:10.1007/s00428-024-03816-6. [PMID: 38710944 DOI: 10.1007/s00428-024-03816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION HNF4α expression and SMARCA4 loss were thought to be features of non-terminal respiratory unit (TRU)-type lung adenocarcinomas, but their relationships remained unclear. MATERIALS AND METHODS HNF4α-positive cases among 241 lung adenocarcinomas were stratified based on TTF-1 and SMARCA4 expressions, histological subtypes, and driver mutations. Immunohistochemical analysis was performed using xenograft tumors of lung adenocarcinoma cell lines with high HNF4A expression. RESULT HNF4α-positive adenocarcinomas(n = 33) were divided into two groups: the variant group(15 mucinous, 2 enteric, and 1 colloid), where SMARCA4 was retained in all cases, and the conventional non-mucinous group(6 papillary, 5 solid, and 4 acinar), where SMARCA4 was lost in 3/15 cases(20%). All variant cases were negative for TTF-1 and showed wild-type EGFR and frequent KRAS mutations(10/18, 56%). The non-mucinous group was further divided into two groups: TRU-type(n = 7), which was positive for TTF-1 and showed predominantly papillary histology(6/7, 86%) and EGFR mutations(3/7, 43%), and non-TRU-type(n = 8), which was negative for TTF-1, showed frequent loss of SMARCA4(2/8, 25%) and predominantly solid histology(4/8, 50%), and never harbored EGFR mutations. Survival analysis of 230 cases based on histological grading and HNF4α expression revealed that HNF4α-positive poorly differentiated (grade 3) adenocarcinoma showed the worst prognosis. Among 39 cell lines, A549 showed the highest level of HNF4A, immunohistochemically HNF4α expression positive and SMARCA4 lost, and exhibited non-mucinous, high-grade morphology in xenograft tumors. CONCLUSION HNF4α-positive non-mucinous adenocarcinomas included TRU-type and non-TRU-type cases; the latter tended to exhibit the high-grade phenotype with frequent loss of SMARCA4, and A549 was a representative cell line.
Collapse
Affiliation(s)
- Hitomi Kawai
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Natsumi Kawamatsu
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tomoki Nakagawa
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Aya Shiba-Ishii
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Taichiro Yoshimoto
- Department of Pathology, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-Shi, Tokyo, 187-851, Japan
| | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Sapporo Medical University, 1-17, Minami Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Kazutaka Fujita
- Department of Respiratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Koichi Hagiwara
- Omiya Medical Association Medical Examination Center, 2-107, Higashioonari-Chou, Kita-Ku, Saitama-Shi, Saitama, 331-8689, Japan
| | - Daisuke Matsubara
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Yadav AK, Wang S, Shin YM, Jang BC. PHA-665752's Antigrowth and Proapoptotic Effects on HSC-3 Human Oral Cancer Cells. Int J Mol Sci 2024; 25:2871. [PMID: 38474118 DOI: 10.3390/ijms25052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
c-Met is a tyrosine-kinase receptor, and its aberrant activation plays critical roles in tumorigenesis, invasion, and metastatic spread in many human tumors. PHA-665752 (PHA) is an inhibitor of c-Met and has antitumor effects on many hematological malignancies and solid cancers. However, the activation and expression of c-Met and its role and the antitumor effect of PHA on human oral squamous cell carcinoma (OSCC) cells remain unclear. Here, we investigated the activation and expression of c-Met and the effects of PHA on the growth of a highly tumorigenic HSC-3 human OSCC cell line with high c-Met phosphorylation and expression. Of note, c-Met was highly expressed and phosphorylated on Y1234/1235 in HSC-3 cells, and PHA treatment significantly suppressed the growth and induced apoptosis of these cells. Moreover, PHA that inhibited the phosphorylation (activation) of c-Met further caused the reduced phosphorylation and expression levels of Src, protein kinase B (PKB), mammalian target of rapamycin (mTtor), and myeloid cell leukemia-1 (Mcl-1) in HSC-3 cells. In addition, the antiangiogenic property of PHA in HSC-3 cells was shown, as evidenced by the drug's suppressive effect on the expression of hypoxia-inducible factor-1α (HIF-1α), a critical tumor angiogenic transcription factor. Importantly, genetic ablation of c-Met caused the reduced growth of HSC-3 cells and decreased Src phosphorylation and HIF-1α expression. Together, these results demonstrate that c-Met is highly activated in HSC-3 human oral cancer cells, and PHA exhibits strong antigrowth, proapoptotic, and antiangiogenic effects on these cells, which are mediated through regulation of the phosphorylation and expression of multiple targets, including c-Met, Src, PKB, mTOR, Mcl-1, and HIF-1α.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
- The Hormel Institute, University of Minnesota, Austin, MN 55455, USA
| | - Saini Wang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Young-Min Shin
- Department of Dentistry, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Reischmann N, Schmelas C, Molina-Vila MÁ, Jordana-Ariza N, Kuntze D, García-Roman S, Simard MA, Musch D, Esdar C, Albers J, Karachaliou N. Overcoming MET-mediated resistance in oncogene-driven NSCLC. iScience 2023; 26:107006. [PMID: 37534190 PMCID: PMC10391663 DOI: 10.1016/j.isci.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
This study evaluates the efficacy of combining targeted therapies with MET or SHP2 inhibitors to overcome MET-mediated resistance in different NSCLC subtypes. A prevalence study was conducted for MET amplification and overexpression in samples from patients with NSCLC who relapsed on ALK, ROS1, or RET tyrosine kinase inhibitors. MET-mediated resistance was detected in 37.5% of tissue biopsies, which allow the detection of MET overexpression, compared to 7.4% of liquid biopsies. The development of drug resistance by MET overexpression was confirmed in EGFRex19del-, KRASG12C-, HER2ex20ins-, and TPM3-NTRK1-mutant cell lines. The combination of targeted therapy with MET or SHP2 inhibitors was found to overcome MET-mediated resistance in both in vitro and in vivo assays. This study highlights the importance of considering MET overexpression as a resistance driver to NSCLC targeted therapies to better identify patients who could potentially benefit from combination approaches with MET or SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Kuntze
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | - Doreen Musch
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Joachim Albers
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
4
|
Greenwell JC, Torres-Gonzalez E, Ritzenthaler JD, Roman J. Fibroblast-derived conditioned media promotes lung cancer progression. Am J Med Sci 2023; 365:189-197. [PMID: 36087640 DOI: 10.1016/j.amjms.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/30/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Lung cancer is the leading cause of cancer death in men and women in the United States. Recent studies have implicated the tumor microenvironment as a new chemotherapeutic target by demonstrating the importance of tumor cell-stromal interactions in cancer progression. However, the exact mechanisms by which tumor cell-stromal interactions drive lung cancer progression remain undefined, particularly in the lung. We suspect host fibroblasts represent an important component of the tumor microenvironment that drives tumor progression. We found that human non-small cell lung carcinoma cell lines show alterations in cell morphology, proliferation, migration, and colony formation on soft agar when exposed to fibroblast-conditioned media (FCM). Interestingly, FCM also promoted tumor cell resistance to cisplatin-induced apoptosis. These effects varied depending on the cancer cell line used. Similar observations were made when exposing murine Lewis Lung Carcinoma cells to conditioned media harvested from primary murine lung fibroblasts. Certain effects of FCM, but not all, could be prevented by using a cMET inhibitor. In vivo, we observed enhanced growth of the primary tumors when treated with FCM, but no changes in metastatic behavior. Although the identity of the stimulating agent(s) in the fibroblast-conditioned media was not unveiled, further studies revealed that the activity is more than one factor with a high-molecular weight (over 100 kDa). These studies implicate lung fibroblast-derived factors in lung cancer progression. These data suggest that targeting the lung tumor stroma alone, or in combination with other interventions, is a promising concept that warrants further study in the setting of lung cancer.
Collapse
Affiliation(s)
- John C Greenwell
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States
| | - Edilson Torres-Gonzalez
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jesse Roman
- Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Matsubara D, Yoshimoto T, Akolekar N, Totsuka T, Amano Y, Kihara A, Miura T, Isagawa Y, Sakuma Y, Ishikawa S, Ushiku T, Fukayama M, Niki T. Genetic and phenotypic determinants of morphologies in 3D cultures and xenografts of lung tumor cell lines. Cancer Sci 2022; 114:1757-1770. [PMID: 36533957 PMCID: PMC10067422 DOI: 10.1111/cas.15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
We previously proposed the classification of lung adenocarcinoma into two groups: the bronchial epithelial phenotype (BE phenotype) with high-level expressions of bronchial epithelial markers and actionable genetic abnormalities of tyrosine kinase receptors and the non-BE phenotype with low-level expressions of bronchial Bronchial epithelial (BE) epithelial markers and no actionable genetic abnormalities of tyrosine kinase receptors. Here, we performed a comprehensive analysis of tumor morphologies in 3D cultures and xenografts across a panel of lung cancer cell lines. First, we demonstrated that 40 lung cancer cell lines (23 BE and 17 non-BE) can be classified into three groups based on morphologies in 3D cultures on Matrigel: round (n = 31), stellate (n = 5), and grape-like (n = 4). The latter two morphologies were significantly frequent in the non-BE phenotype (1/23 BE, 8/17 non-BE, p = 0.0014), and the stellate morphology was only found in the non-BE phenotype. SMARCA4 mutations were significantly frequent in stellate-shaped cells (4/4 stellate, 4/34 non-stellate, p = 0.0001). Next, from the 40 cell lines, we successfully established 28 xenograft tumors (18 BE and 10 non-BE) in NOD/SCID mice and classified histological patterns of the xenograft tumors into three groups: solid (n = 20), small nests in desmoplasia (n = 4), and acinar/papillary (n = 4). The latter two patterns were characteristically found in the BE phenotype. The non-BE phenotype exhibited a solid pattern with significantly less content of alpha-SMA-positive fibroblasts (p = 0.0004) and collagen (p = 0.0006) than the BE phenotype. Thus, the morphology of the tumors in 3D cultures and xenografts, including stroma genesis, reflects the intrinsic properties of the cancer cell lines. Furthermore, this study serves as an excellent resource for lung adenocarcinoma cell lines, with clinically relevant information on molecular and morphological characteristics and drug sensitivity.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.,Department of Pathology, University of Tsukuba, Ibaraki, Japan
| | - Taichiro Yoshimoto
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | | | | | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuriko Isagawa
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuji Sakuma
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Matsubara D, Yoshimoto T, Soda M, Amano Y, Kihara A, Funaki T, Ito T, Sakuma Y, Shibano T, Endo S, Hagiwara K, Ishikawa S, Fukayama M, Murakami Y, Mano H, Niki T. Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas. Cancer Sci 2020; 111:2183-2195. [PMID: 32237253 PMCID: PMC7293082 DOI: 10.1111/cas.14403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapies against EGFR and ALK have improved the quality of life of lung adenocarcinoma patients. However, targetable driver mutations are mainly found in thyroid transcription factor‐1 (TTF‐1)/NK2 homeobox 1 (NKX2‐1)‐positive terminal respiratory unit (TRU) types and rarely in non‐TRU types. To elucidate the molecular characteristics of the major subtypes of non‐TRU‐type adenocarcinomas, we analyzed 19 lung adenocarcinoma cell lines (11 TRU types and 8 non‐TRU types). A characteristic of non‐TRU‐type cell lines was the strong expression of TFF‐1 (trefoil factor‐1), a gastric mucosal protective factor. An immunohistochemical analysis of 238 primary lung adenocarcinomas resected at Jichi Medical University Hospital revealed that TFF‐1 was positive in 31 cases (13%). Expression of TFF‐1 was frequently detected in invasive mucinous (14/15, 93%), enteric (2/2, 100%), and colloid (1/1, 100%) adenocarcinomas, less frequent in acinar (5/24, 21%), papillary (7/120, 6%), and solid (2/43, 5%) adenocarcinomas, and negative in micropapillary (0/1, 0%), lepidic (0/23, 0%), and microinvasive adenocarcinomas or adenocarcinoma in situ (0/9, 0%). Expression of TFF‐1 correlated with the expression of HNF4‐α and MUC5AC (P < .0001, P < .0001, respectively) and inversely correlated with that of TTF‐1/NKX2‐1 (P < .0001). These results indicate that TFF‐1 is characteristically expressed in non‐TRU‐type adenocarcinomas with gastrointestinal features. The TFF‐1‐positive cases harbored KRAS mutations at a high frequency, but no EGFR or ALK mutations. Expression of TFF‐1 correlated with tumor spread through air spaces, and a poor prognosis in advanced stages. Moreover, the knockdown of TFF‐1 inhibited cell proliferation and soft‐agar colony formation and induced apoptosis in a TFF‐1‐high and KRAS‐mutated lung adenocarcinoma cell line. These results indicate that TFF‐1 is not only a biomarker, but also a potential molecular target for non‐TRU‐type lung adenocarcinomas.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Yoshimoto
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Amano
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Atsushi Kihara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Toko Funaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakuma
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
7
|
Acquired savolitinib resistance in non-small cell lung cancer arises via multiple mechanisms that converge on MET-independent mTOR and MYC activation. Oncotarget 2018; 7:57651-57670. [PMID: 27472392 PMCID: PMC5295379 DOI: 10.18632/oncotarget.10859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.
Collapse
|
8
|
Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M. Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun 2018; 9:535. [PMID: 29416033 PMCID: PMC5803212 DOI: 10.1038/s41467-018-02929-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/09/2018] [Indexed: 12/01/2022] Open
Abstract
Platforms for targeted drug-delivery must simultaneously exhibit serum stability, efficient directed cell internalization, and triggered drug release. Here, using lipid-mediated self-assembly of aptamers, we combine multiple structural motifs into a single nanoconstruct that targets hepatocyte growth factor receptor (cMet). The nanocarrier consists of lipidated versions of a cMet-binding aptamer and a separate lipidated GC-rich DNA hairpin motif loaded with intercalated doxorubicin. Multiple 2',6'-dimethylazobenzene moieties are incorporated into the doxorubicin-binding motif to trigger the release of the chemotherapeutics by photoisomerization. The lipidated DNA scaffolds self-assemble into spherical hybrid-nanoconstructs that specifically bind cMet. The combined features of the nanocarriers increase serum nuclease resistance, favor their import into cells presumably mediated by endocytosis, and allow selective photo-release of the chemotherapeutic into the targeted cells. cMet-expressing H1838 tumor cells specifically internalize drug-loaded nanoconstructs, and subsequent UV exposure enhances cell mortality. This modular approach thus paves the way for novel classes of powerful aptamer-based therapeutics.
Collapse
Affiliation(s)
- Deepak K Prusty
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
- Stiftung Caesar, Max-Planck-Fellowship Group Chemical Biology, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Volker Adam
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Reza M Zadegan
- Nanoscale Materials & Device Group, Micron School of Materials Science and Engineering, Boise State University, Boise, USA
| | - Stephan Irsen
- Stiftung Caesar, Elektronenmikroskopie und Analytik, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Michael Famulok
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.
- Stiftung Caesar, Max-Planck-Fellowship Group Chemical Biology, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
9
|
Yochum ZA, Cades J, Mazzacurati L, Neumann NM, Khetarpal SK, Chatterjee S, Wang H, Attar MA, Huang EHB, Chatley SN, Nugent K, Somasundaram A, Engh JA, Ewald AJ, Cho YJ, Rudin CM, Tran PT, Burns TF. A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer. Mol Cancer Res 2017; 15:1764-1776. [PMID: 28851812 DOI: 10.1158/1541-7786.mcr-17-0298] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells. Harmine treatment phenocopied genetic loss of TWIST1 by inducing oncogene-induced senescence or apoptosis. Mechanistic investigation revealed that harmine targeted the TWIST1 pathway through its promotion of TWIST1 protein degradation. As dimerization is critical for TWIST1 function and stability, the effect of harmine on specific TWIST1 dimers was examined. TWIST1 and its dimer partners, the E2A proteins, which were found to be required for TWIST1-mediated functions, regulated the stability of the other heterodimeric partner posttranslationally. Harmine preferentially promoted degradation of the TWIST1-E2A heterodimer compared with the TWIST-TWIST1 homodimer, and targeting the TWIST1-E2A heterodimer was required for harmine cytotoxicity. Finally, harmine had activity in both transgenic and patient-derived xenograft mouse models of KRAS-mutant NSCLC. These studies identified harmine as a first-in-class TWIST1 inhibitor with marked anti-tumor activity in oncogene-driven NSCLC including EGFR mutant, KRAS mutant and MET altered NSCLC.Implications: TWIST1 is required for oncogene-driven NSCLC tumorigenesis and EMT; thus, harmine and its analogues/derivatives represent a novel therapeutic strategy to treat oncogene-driven NSCLC as well as other solid tumor malignancies. Mol Cancer Res; 15(12); 1764-76. ©2017 AACR.
Collapse
Affiliation(s)
- Zachary A Yochum
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Cades
- Department of Pharmacology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucia Mazzacurati
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susheel K Khetarpal
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Suman Chatterjee
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myriam A Attar
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Eric H-B Huang
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Sarah N Chatley
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashwin Somasundaram
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Johnathan A Engh
- Department of Neurological Surgery University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, Oregon
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy F Burns
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Kanaji N, Yokohira M, Nakano-Narusawa Y, Watanabe N, Imaida K, Kadowaki N, Bandoh S. Hepatocyte growth factor produced in lung fibroblasts enhances non-small cell lung cancer cell survival and tumor progression. Respir Res 2017; 18:118. [PMID: 28619066 PMCID: PMC5473007 DOI: 10.1186/s12931-017-0604-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/07/2017] [Indexed: 01/07/2023] Open
Abstract
Background The influence of lung fibroblasts on lung cancer progression is not fully understood. Methods Lung fibroblasts (HFL1, MRC5, and IMR90 cells) and non-small cell lung cancer (NSCLC)-derived cell lines (A549, EBC1, and HI1017) were cultured under serum-free conditions, and the resulting culture media were designated “cell-conditioned media”. Cell survival (viability) was assessed by WST-1 assay. Concentrations of hepatocyte growth factor (HGF) were measured by ELISA. The BALB/c-nu mouse strain was used for the xenograft model. Results Lung fibroblast-conditioned media enhanced the survival of the three NSCLC cell lines tested. HGF was produced to a greater extent by lung fibroblasts than NSCLC cells. Exogenous HGF enhanced the survival of NSCLC cells. Either an anti-HGF neutralizing antibody or the Met inhibitor PHA-665752 inhibited the fibroblast-conditioned media-enhanced survival of NSCLC cells. The co-inoculation of mice with NSCLC cells and fibroblasts enhanced tumorigenicity and tumor progression in a mouse xenograft model. PHA-665752 significantly inhibited tumor progression that occurred after the co-inoculation of NSCLC cells and fibroblasts. In addition, HGF production by fibroblasts was stimulated by NSCLC cells. Conclusions The current study provides evidence for an interaction between fibroblasts and NSCLC cells via the HGF/Met signaling pathway, which affects NSCLC cell survival and tumor progression. These findings may contribute to the development of anti-cancer-associated fibroblast therapeutic strategies. Trial registration No trial registration is required because this study is not a clinical trial. This study does not include any participants or patients.
Collapse
Affiliation(s)
- Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuko Nakano-Narusawa
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Watanabe
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsumi Imaida
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Shuji Bandoh
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
11
|
Erickson CA, Ray B, Wink LK, Bayon BL, Pedapati EV, Shaffer R, Schaefer TL, Lahiri DK. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism. J Psychiatr Res 2017; 84:153-160. [PMID: 27743527 PMCID: PMC5903443 DOI: 10.1016/j.jpsychires.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. METHOD We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. RESULTS Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. CONCLUSIONS The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive functioning on ERK activation. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Craig A Erickson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Balmiki Ray
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Baindu L Bayon
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| | - Ernest V Pedapati
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rebecca Shaffer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Tori L Schaefer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Debomoy K Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Ma PC. Special issue: "MET as actionable target in cancer therapy". ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:1. [PMID: 28164086 DOI: 10.21037/atm.2017.01.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick C Ma
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26505, USA;; West Virginia Clinical and Translational Science Institute, Morgantown, WV 26505, USA
| |
Collapse
|
13
|
Tsubouchi H, Onomura H, Saito Y, Yanagi S, Miura A, Matsuo A, Matsumoto N, Nakazato M. Ghrelin does not influence cancer progression in a lung adenocarcinoma cell line. Endocr J 2017; 64:S41-S46. [PMID: 28652543 DOI: 10.1507/endocrj.64.s41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), is produced in the human stomach. Although ghrelin has therapeutic potential for cancer cachexia, ghrelin treatment may have a concern about accelerating cancer progression. Here, using the human lung adenocarcinoma cell line HLC-1, we investigated the effects of ghrelin on molecular mechanisms linked to cancer progression, including cell viability, proliferation, resistance to apoptosis, and mitochondrial activity. Both types of mouse alveolar epithelial cells (types I and II) expressed the GHSR, as did the human normal airway cell lines BEAS-2B and HLC-1. Treatment with ghrelin (10-2, 10-1, 1, 10 μM) did not affect cell viability or proliferation. Pretreatment of HLC-1 cells with ghrelin (10 μM) did not affect resistance to paclitaxel-induced apoptosis. The parameters of mitochondrial respiration, including basal respiration, proton leak, ATP production, maximal respiration, spare respiratory capacity, and non-mitochondrial respiration, of the HLC-1 cells pretreated with or without ghrelin were unchanged. Taken together, ghrelin does not influence cancer progression in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Hironobu Tsubouchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hitomi Onomura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shigehisa Yanagi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Matsuo
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nobuhiro Matsumoto
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
- Research director of CREST, Japan Agency for Medical Research and Development (AMED)
| |
Collapse
|
14
|
Ito T, Matsubara D, Tanaka I, Makiya K, Tanei ZI, Kumagai Y, Shiu SJ, Nakaoka HJ, Ishikawa S, Isagawa T, Morikawa T, Shinozaki-Ushiku A, Goto Y, Nakano T, Tsuchiya T, Tsubochi H, Komura D, Aburatani H, Dobashi Y, Nakajima J, Endo S, Fukayama M, Sekido Y, Niki T, Murakami Y. Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci 2016; 107:1527-1538. [PMID: 27418196 PMCID: PMC5084673 DOI: 10.1111/cas.13013] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023] Open
Abstract
YAP1, the main Hippo pathway effector, is a potent oncogene and is overexpressed in non‐small‐cell lung cancer (NSCLC); however, the YAP1 expression pattern in small‐cell lung cancer (SCLC) has not yet been elucidated in detail. We report that the loss of YAP1 is a special feature of high‐grade neuroendocrine lung tumors. A hierarchical cluster analysis of 15 high‐grade neuroendocrine tumor cell lines containing 14 SCLC cell lines that depended on the genes of Hippo pathway molecules and neuroendocrine markers clearly classified these lines into two groups: the YAP1‐negative and neuroendocrine marker‐positive group (n = 11), and the YAP1‐positive and neuroendocrine marker‐negative group (n = 4). Among the 41 NSCLC cell lines examined, the loss of YAP1 was only observed in one cell line showing the strong expression of neuroendocrine markers. Immunostaining for YAP1, using the sections of 189 NSCLC, 41 SCLC, and 30 large cell neuroendocrine carcinoma (LCNEC) cases, revealed that the loss of YAP1 was common in SCLC (40/41, 98%) and LCNEC (18/30, 60%), but was rare in NSCLC (6/189, 3%). Among the SCLC and LCNEC cases tested, the loss of YAP1 correlated with the expression of neuroendocrine markers, and a survival analysis revealed that YAP1‐negative cases were more chemosensitive than YAP1‐positive cases. Chemosensitivity test for cisplatin using YAP1‐positive/YAP1‐negative SCLC cell lines also showed compatible results. YAP1‐sh‐mediated knockdown induced the neuroendocrine marker RAB3a, which suggested the possible involvement of YAP1 in the regulation of neuroendocrine differentiation. Thus, we showed that the loss of YAP1 has potential as a clinical marker for predicting neuroendocrine features and chemosensitivity.
Collapse
Affiliation(s)
- Takeshi Ito
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.
| | - Ichidai Tanaka
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kanae Makiya
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zen-Ichi Tanei
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuki Kumagai
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shu-Jen Shiu
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroki J Nakaoka
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Isagawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Teppei Morikawa
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasushi Goto
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Thoracic Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Daisuke Komura
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yoh Dobashi
- Department of Pathology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, University of Tokyo, Tokyo, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Fukayama
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Sun X, Song Q, He L, Yan L, Liu J, Zhang Q, Yu Q. Receptor Tyrosine Kinase Phosphorylation Pattern-Based Multidrug Combination Is an Effective Approach for Personalized Cancer Treatment. Mol Cancer Ther 2016; 15:2508-2520. [PMID: 27458140 DOI: 10.1158/1535-7163.mct-15-0735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Receptor tyrosine kinases (RTK) are key signaling molecules in regulating cancer cell growth and are important cancer drug targets. Despite the success of specific RTK-targeting therapy in certain cancer treatments, the overall response rates are limited to the drug target-stratified populations. We have systematically studied RTK activations in a panel of cancer cell lines, primary cancers, and cancer xenografts and found that different combinations of RTKs were activated in different cancer cells regardless of their tissue origins. Combinations of specific RTK inhibitors (RTKi) preferentially inhibited proliferation of the cancer cells with corresponding RTK activation profiles. We also found that the activations of RTKs were regulated by both cell-autonomous and environment-dependent mechanisms and demonstrated that inhibition of all activated RTKs was essential to completely block cancer cell proliferation. In addition, c-Myc downregulation was identified as an indicator for the effectiveness of the RTKi combination treatments. Our findings demonstrated that the RTK activation profile is a valid biomarker for diagnosis and stratification of cancers, and a corresponding combination of RTKis is a promising strategy to treat cancers, particularly the single RTKi therapy-resistant cancers, selectively and effectively. Mol Cancer Ther; 15(10); 2508-20. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiaoling Song
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li He
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yan
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingli Liu
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Zhang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Yu
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
16
|
Pelosi G, Gasparini P, Conte D, Fabbri A, Perrone F, Tamborini E, Pupa SM, Ciravolo V, Caserini R, Rossi G, Cavazza A, Papotti M, Nakatani Y, Maisonneuve P, Pastorino U, Sozzi G. Synergistic Activation upon MET and ALK Coamplification Sustains Targeted Therapy in Sarcomatoid Carcinoma, a Deadly Subtype of Lung Cancer. J Thorac Oncol 2016; 11:718-728. [DOI: 10.1016/j.jtho.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
|
17
|
Heist RS, Shim HS, Gingipally S, Mino-Kenudson M, Le L, Gainor JF, Zheng Z, Aryee M, Xia J, Jia P, Jin H, Zhao Z, Pao W, Engelman JA, Iafrate AJ. MET Exon 14 Skipping in Non-Small Cell Lung Cancer. Oncologist 2016; 21:481-6. [PMID: 27022036 DOI: 10.1634/theoncologist.2015-0510] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Non-small cell lung cancers (NSCLCs) harboring specific genetic alterations can be highly sensitive to targeted therapies. MATERIALS AND METHODS We performed a targeted rearrangement assay on 54 NSCLCs across all stages that were from patients who were never smokers and did not have driver mutations. Because MET exon 14 skipping was the most frequent alteration found, we surveyed the results for MET exon 14 skipping at Massachusetts General Hospital (MGH) since the inclusion of this alteration into our current molecular profiling panel. RESULTS In a cohort of 54 never-smokers with lung cancers that were wild-type for known driver mutations, MET exon 14 skipping was the most frequently recurring alteration, occurring in 10 cancers (19%). Clinical testing at MGH via our next-generation sequencing (NGS) and NGS-rearrangement panels showed an additional 16 cases of MET exon 14 skipping, for an overall estimated frequency of 5.6%. A clinical case of a patient with MET exon 14 skipping treated with the MET inhibitor crizotinib is also described. CONCLUSION MET exon 14 skipping is a targetable gene alteration found in NSCLC. Patients with these alterations may respond well to MET inhibition. IMPLICATIONS FOR PRACTICE MET exon 14 skipping occurs with an approximately 5% frequency in NSCLC and is seen in both squamous and adenocarcinoma histology. Patients whose cancers have MET exon 14 skipping can respond well to MET inhibitors. Molecular testing for MET exon 14 skipping should be performed on all lung cancers because this is a targetable alteration.
Collapse
Affiliation(s)
- Rebecca S Heist
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hyo Sup Shim
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA Department of Pathology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Shalini Gingipally
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Long Le
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Justin F Gainor
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zongli Zheng
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Aryee
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Junfeng Xia
- Institute of Health Sciences, Anhui University, Hefei, Anhui, People's Republic of China Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Peilin Jia
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Hailing Jin
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - William Pao
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey A Engelman
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Li E, Hu Z, Sun Y, Zhou Q, Yang B, Zhang Z, Cao W. Small molecule inhibitor of c-Met (PHA665752) suppresses the growth of ovarian cancer cells and reverses cisplatin resistance. Tumour Biol 2015; 37:7843-52. [PMID: 26695152 DOI: 10.1007/s13277-015-4318-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022] Open
Abstract
c-Met as a tyrosine-kinase receptor plays a major role in tumorigenesis, invasion, and metastatic spread of human tumors, including ovarian cancer. Expressing high levels of c-Met proteins is often associated with resistance to chemotherapy and an adverse prognosis. In this study, we have determined the effect of PHA665752, a small molecule inhibitor of c-Met proteins, with and without cisplatin and the role of c-Met in several ovarian cancer cell lines having high c-Met expression. The methyl thiazolyl tetrazolium (MTT) assay was used to detect cell proliferation, and apoptosis was evaluated by flow cytometry. Western blotting was carried out to determine protein expression levels. Gene silencing was used to detect the influence of c-Met gene silence on the resistance to cisplatin. Compared to more sensitive ovarian cancer cell lines SKOV3 and 3AO, we found that the expression of c-Met was significantly increased in SKOV3(DDP), OVCAR3, and OV-90 ovarian cancer cell lines, which were resistant to cisplatin. Our data indicated that cisplatin sustained activated phosphor-Met in SKOV3(DDP), OVCAR3, and OV-90 cell lines. We also observed a significant transient activation of c-Met phosphorylation in SKOV3 and 3AO cells. Treatment with PHA665752 inhibited c-Met expression inhibited cell growth, induced apoptosis, and enhanced cisplatin-induced proliferation inhibition and apoptosis in c-Met over-expressed cell lines. In addition, blocking c-Met expression with small interfering RNA (siRNA) overcame the resistance of cancer cells to cisplatin. Thus, blocking c-Met expression presents a promising therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Enze Li
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Zheng Hu
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Yi Sun
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
| | - Qi Zhou
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Bin Yang
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhiguo Zhang
- Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China.
| | - Wenwu Cao
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China. .,Department of Mathematics and Materials Research Institute, Pennsylvania State University, 164 Materials Research Lab, University Park, PA, 16802, USA.
| |
Collapse
|
19
|
Sacco JJ, Clague MJ. Dysregulation of the Met pathway in non-small cell lung cancer: implications for drug targeting and resistance. Transl Lung Cancer Res 2015; 4:242-52. [PMID: 26207212 PMCID: PMC4483475 DOI: 10.3978/j.issn.2218-6751.2015.03.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/16/2022]
Abstract
The receptor tyrosine kinase, Met, orchestrates a complex signalling network that physiologically drives a programme of 'invasive growth'. In cancer however, this process may be co-opted to promote proliferation, survival and metastasis of cancer cells. Met is thus a key therapeutic target, not least in non-small cell lung cancer (NSCLC) where it is one of the most commonly dysregulated driver oncogenes. Identifying robust biomarkers that allow the selection of patients most likely to respond to Met targeted therapies will however be essential to realising their potential. This has been underlined recently by the early termination of three pivotal phase III trials investigating Met targeted agents in NSCLC, all of which failed to show clinical benefit. In contrast to these trials, which were relatively unselective, a couple of early phase trials have recently been instigated that select patients on the basis of Met amplification. While still at an early stage, interim results are relatively encouraging and strengthen the rationale for using Met amplifaction as a biomarker. Here we will discuss this and other aberrations in Met signalling in relation to their significance in the therapeutic targeting of Met.
Collapse
|
20
|
Regulation of metastatic ability and drug resistance in pulmonary adenocarcinoma by matrix rigidity via activating c-Met and EGFR. Biomaterials 2015; 60:141-50. [PMID: 26000960 DOI: 10.1016/j.biomaterials.2015.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
Abstract
Lung fibrosis is a poor prognostic factor for pulmonary adenocarcinoma, and the effect of a rigid microenvironment on cancer behavior is unclear. We cultured A549 cells on matrices of 0.2, 2, and 25 kPa to mimic the rigidities of normal lung parenchyma, progressive fibrotic change, and lung fibrosis, respectively. Lung tissue from patients with pulmonary adenocarcinoma was used to confirm the in vitro findings. Increased matrix rigidity promoted cell proliferation and upregulated the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-Met), and Snail expression in A549 cells. A549 cells became more resistant to the EGFR inhibitor (Erlotinib) and c-Met inhibitor (PHA-665752) when matrix rigidity increased; however, a high concentration of PHA-665752 reversed the rigidity-induced morphological pleomorphism. In human lung tissue, expression of type I collagen was more consistent with clinical fibrosis than the expression of alpha-smooth muscle antibody was. c-Met- and Snail-expressing tumor cells, rather than EGFR-experssing cells, were localized with lung parenchyma rich in type I collagen. Our findings suggest that c-Met causes the rigidity-induced biophysical reaction in pulmonary adenocarcinoma. Treatment targeting both EGFR and c-Met should be considered for patients with lung fibrosis and who are abundant type I collagen expression in the tumor mass.
Collapse
|
21
|
Menis J, Giaj Levra M, Novello S. MET inhibition in lung cancer. Transl Lung Cancer Res 2015; 2:23-39. [PMID: 25806202 DOI: 10.3978/j.issn.2218-6751.2012.12.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/17/2012] [Indexed: 01/06/2023]
Abstract
Targeted agents have completely changed cancer treatment strategy, leading it from a "one size fits all" approach to a customized therapy. In this scenario Met, a heterodimere receptor tyrosine kinase deeply involved into embryogenesis and organogenesis, has been introduced many years ago as a potential target for biological agents, becoming "druggable" only in this last period of time. Met can be altered through receptor overexpression, genomic amplification, mutations or alternative splicing, autocrine or paracrine secretion of hepatic growth factor (HGF): these dysregulations stimulate tumorigenesis (in terms of cell-cell detachment, proliferation, invasion, angiogenesis and survival) and metastatization. Met is overexpressed in lung cancer and Met gene amplification can drive the dependency of cell survival and proliferation upon the Met signaling. Both Met overexpression and amplification seem to correlate with poor prognosis. Met amplification is also described to be linked to EGFR acquired resistance. Several Met inhibitors have been tested both in preclinical and human trials, demonstrating activity in lung cancer treatment. This paper aims to summarize data on Met biological function, on its interaction with cell signaling and other pathways and to present data on those Met inhibitors currently under evaluation.
Collapse
Affiliation(s)
- Jessica Menis
- Department of Oncology, A.O.U Santa Maria della Misericordia of Udine, Italy
| | - Matteo Giaj Levra
- Department of Oncology, A.O.U San Luigi - Orbassano, University of Turin, Italy
| | - Silvia Novello
- Department of Oncology, A.O.U San Luigi - Orbassano, University of Turin, Italy
| |
Collapse
|
22
|
Calles A, Kwiatkowski N, Cammarata BK, Ercan D, Gray NS, Jänne PA. Tivantinib (ARQ 197) efficacy is independent of MET inhibition in non-small-cell lung cancer cell lines. Mol Oncol 2015; 9:260-9. [PMID: 25226813 PMCID: PMC5528687 DOI: 10.1016/j.molonc.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/21/2014] [Indexed: 01/15/2023] Open
Abstract
MET targeted therapies are under clinical evaluation for non-small-cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKI) against MET have varying degrees of specificity. Tivantinib (ARQ 197) is reported to be a non-ATP competitive selective MET inhibitor. We aimed to compare the activity of tivantinib to established MET TKIs in a panel of NSCLC cell lines characterized by their MET dependency and by different relevant genotypes. A549, H3122, PC9 and HCC827, their respective resistant clones PC9 GR4 and HCC827 GR6 and the MET amplified cell lines H1993 and EBC-1 were treated in vitro with tivantinib, crizotinib or PHA-665752. Crizotinib and PHA-665752 showed growth inhibition restricted to MET dependent cell lines. The pattern of activity was related to MET inhibition and downstream signaling inhibition of AKT and ERK1/2, resulting in G0/G1 cycle arrest and apoptosis. In contrast, tivantinib possessed more potent anti-proliferative activity that was not restricted to only MET dependent cell lines. Tivantinib did not inhibit cellular MET activity or phosphorylation of downstream signaling proteins AKT or ERK1/2 in either MET dependent or independent cell lines. Cell cycle analysis demonstrated that tivantinib induced a G2/M arrest and induced apoptosis. Tivantinib but not crizotinib effected microtubule dynamics, disrupting mitotic spindles by a mechanism consistent with it functioning as a microtubule depolymerizer. Tivantinib activity is independent of MET signaling in NSCLC and suggests alternative mechanisms of action that should be considered when interpreting the results from on-going clinical studies.
Collapse
Affiliation(s)
- Antonio Calles
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Bernard K Cammarata
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dalia Ercan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ. The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. Onco Targets Ther 2014; 7:969-83. [PMID: 24959084 PMCID: PMC4061161 DOI: 10.2147/ott.s40241] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepatocyte growth factor (HGF) receptor, a member of the receptor tyrosine kinase (RTK) family. HGF, also known as scatter factor (SF), is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis), mobility (motogenesis), and differentiation (morphogenesis); it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development.
Collapse
Affiliation(s)
- Rahul A Parikh
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Peng Wang
- Division of Medical Oncology, University of Kentucky College of Medicine, Markey Cancer Center, Lexington, KY, USA
| | - Jan H Beumer
- University of Pittsburgh School of Pharmacy, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Leonard J Appleman
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Lai AZ, Cory S, Zhao H, Gigoux M, Monast A, Guiot MC, Huang S, Tofigh A, Thompson C, Naujokas M, Marcus VA, Bertos N, Sehat B, Perera RM, Bell ES, Page BDG, Gunning PT, Ferri LE, Hallett M, Park M. Dynamic reprogramming of signaling upon met inhibition reveals a mechanism of drug resistance in gastric cancer. Sci Signal 2014; 7:ra38. [PMID: 24757178 DOI: 10.1126/scisignal.2004839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Met receptor tyrosine kinase is activated or genetically amplified in some gastric cancers, but resistance to small-molecule inhibitors of Met often emerges in patients. We found that Met abundance correlated with a proliferation marker in patient gastric tumor sections, and gastric cancer cell lines that have MET amplifications depended on Met for proliferation and anchorage-independent growth in culture. Inhibition of Met induced temporal changes in gene expression in the cell lines, initiated by a rapid decrease in the expression of genes encoding transcription factors, followed by those encoding proteins involved in epithelial-mesenchymal transition, and finally those encoding cell cycle-related proteins. In the gastric cancer cell lines, microarray and chromatin immunoprecipitation analysis revealed considerable overlap between genes regulated in response to Met stimulation and those regulated by signal transducer and activator of transcription 3 (STAT3). The activity of STAT3, extracellular signal-regulated kinase (ERK), and the kinase Akt was decreased by Met inhibition, but only inhibitors of STAT3 were as effective as the Met inhibitor in decreasing tumor cell proliferation in culture and in xenografts, suggesting that STAT3 mediates the pro-proliferative program induced by Met. However, the phosphorylation of ERK increased after prolonged Met inhibition in culture, correlating with decreased abundance of the phosphatases DUSP4 and DUSP6, which inhibit ERK. Combined inhibition of Met and the mitogen-activated protein kinase kinase (MEK)-ERK pathway induced greater cell death in cultured gastric cancer cells than did either inhibitor alone. These findings indicate combination therapies that may counteract resistance to Met inhibitors.
Collapse
Affiliation(s)
- Andrea Z Lai
- 1Department of Biochemistry, McGill University, Montréal, Québec H3A 0G4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gelsomino F, Facchinetti F, Haspinger E, Garassino M, Trusolino L, De Braud F, Tiseo M. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol 2014; 89:284-99. [DOI: 10.1016/j.critrevonc.2013.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/06/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022] Open
|
26
|
Koudelakova V, Kneblova M, Trojanec R, Drabek J, Hajduch M. Non-small cell lung cancer - genetic predictors. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 157:125-36. [DOI: 10.5507/bp.2013.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/25/2013] [Indexed: 01/14/2023] Open
|
27
|
Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol 2013; 7:1872-1876. [PMID: 23154560 DOI: 10.1097/jto.0b013e3182721ed1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rearranged during transfection (RET) fusions have been newly identified in approximately 1% of patients with primary lung tumors. However, patient-derived lung cancer cell lines harboring RET fusions have not yet been established or identified, and therefore, the effectiveness of an RET inhibitor on lung tumors with endogenous RET fusion has not yet been studied. In this study, we report identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line LC-2/ad. LC-2/ad showed distinctive sensitivity to the RET inhibitor, vandetanib, among 39 non-small lung cancer cell lines. The xenograft tumor of LC-2/ad showed cribriform acinar structures, a morphologic feature of primary RET fusion-positive lung adenocarcinomas. LC-2/ad cells could provide useful resources to analyze molecular functions of RET-fusion protein and its response to RET inhibitors.
Collapse
|
28
|
Tanahashi T, Osada S, Yamada A, Kato J, Yawata K, Mori R, Imai H, Sasaki Y, Saito S, Tanaka Y, Nonaka K, Yoshida K. Extracellular signal-regulated kinase and Akt activation play a critical role in the process of hepatocyte growth factor-induced epithelial-mesenchymal transition. Int J Oncol 2012; 42:556-64. [PMID: 23229794 DOI: 10.3892/ijo.2012.1726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/12/2012] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has recently been studied to elucidate mechanisms of the liver metastatic process. We investigated EMT in the process of liver metastasis and the effects of chemotherapy on EMT cells as therapeutic strategy for colorectal liver metastasis. We used the CT26 murine colorectal carcinoma cell line to create an in vivo mouse liver metastasis model. Liver tumors were stained immuno-histochemically. Expression of proteins associated with TGF-β/Smad and hepatocyte growth factor (HGF)/c-Met pathways were investigated by western blotting. Cells with c-Met mRNA knockdown by siRNA techniques showed clearly reduced liver metastases compared with regular cells at 21 days. TGF-β and HGF induced EMT expression, but signal transduction was quite different. TGF-β induced ERK, but not Akt phosphory-lation. HGF mediated both ERK and Akt phosphorylation. Akt inhibitor blocked Akt phosphorylation but did not affect TGF-β-induced activation of ERK, Snail and Slug. U-0126 did not reduce Snail activity by TGF-β at a concentration to block ERK phosphorylation. However, Akt inhibitor and U-0126 completely inhibited HGF-induced Slug activation. 5-FU mediated cell death in the EMT process induced by TGF-β more effectively than HGF. ERK/Akt signaling, but not the Smad pathway, may be one of the main processes in HGF-induced EMT, despite the Smad pathway, but not ERK/Akt, being critical for TGF-β-induced EMT. The MAPK/Akt pathway is indispensable in HGF/c-Met signaling. The ERK/Akt pathway particularly may be critical in the HGF-induced EMT process. However, long-term use of chemotherapeutic agents may induce drug resistance and distant metastases through EMT-related signaling pathway activation.
Collapse
Affiliation(s)
- Toshiyuki Tanahashi
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bagai R, Ma PC. The Role of the Insulin-like Growth Factor-1 Receptor (IGF-1R), Phosphatase and Tensin Homolog (PTEN), c-Met, and the PI3-Kinase Pathway in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Feng Y, Ma PC. MET targeted therapy for lung cancer: clinical development and future directions. LUNG CANCER-TARGETS AND THERAPY 2012; 3:53-67. [PMID: 28210125 DOI: 10.2147/lctt.s23423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MET, the receptor for hepatocyte growth factor, has been identified as a novel promising target in various human malignancies, including lung cancer. Research studies have demonstrated that MET signaling plays important physiologic roles in embryogenesis and early development, whereas its deregulation from an otherwise quiescent signaling state in mature adult tissues can lead to upregulated cell proliferation, survival, scattering, motility and migration, angiogenesis, invasion, and metastasis in tumorigenesis and tumor progression. The MET pathway can be activated through ligand (hepatocyte growth factor, HGF) or MET receptor overexpression, genomic amplification, MET mutations, and alternative splicing. A number of novel therapeutic agents that target the MET/hepatocyte growth factor pathway have been tested in early-phase clinical studies with promising results. Phase III studies of MET targeting agents have recently been initiated. This paper will review the MET signaling pathway and biology in lung cancer, and the recent clinical development and advances of MET/hepatocyte growth factor targeting agents. Emphasis will be placed on discussing various unanswered issues and key strategies needed to optimize further clinical development of MET targeting personalized lung cancer therapy.
Collapse
Affiliation(s)
- Yan Feng
- Translational Hematology and Oncology Research; Solid Tumor Oncology
| | - Patrick C Ma
- Translational Hematology and Oncology Research; Solid Tumor Oncology; Aerodigestive Oncology Translational Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| |
Collapse
|
31
|
Abstract
MET is a versatile receptor tyrosine kinase within the human kinome which is activated by its specific natural ligand hepatocyte growth factor (HGF). MET signaling plays an important physiologic role in embryogenesis and early development, whereas its deregulation from an otherwise quiescent signaling state in mature adult tissues can lead to upregulated cell proliferation, survival, scattering, motility and migration, angiogenesis, invasion, and metastasis in tumorigenesis and tumor progression. Studies have shown that MET pathway is activated in many solid and hematological malignancies, including lung cancer, and can be altered through ligand or receptor overexpression, genomic amplification, MET mutations, and alternative splicing. The MET signaling pathway is known to be an important novel target for therapeutic intervention in human cancer. A number of novel therapeutic agents that target the MET/HGF pathway have been tested in early-phase clinical studies with promising results. Phase 3 studies of MET targeting agents have just been initiated. We will review the MET signaling pathway and biology in lung cancer and the recent clinical development and advances of MET/HGF targeting agents with emphasis on discussion of issues and strategies needed to optimize the personalized therapy and further clinical development.
Collapse
|
32
|
Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci 2012; 13:3959-3978. [PMID: 22489192 PMCID: PMC3317752 DOI: 10.3390/ijms13033959] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/05/2012] [Accepted: 03/15/2012] [Indexed: 12/25/2022] Open
Abstract
Curcumin, a yellow pigment derived from Curcuma longa Linn, has attracted great interest in the research of cancer during the past decades. Extensive studies documented that curcumin attenuates cancer cell proliferation and promotes apoptosis in vivo and in vitro. Curcumin has been demonstrated to interact with multiple molecules and signal pathways, which makes it a potential adjuvant anti-cancer agent to chemotherapy. Previous investigations focus on the mechanisms of action for curcumin, which is shown to manipulate transcription factors and induce apoptosis in various kinds of human cancer. Apart from transcription factors and apoptosis, emerging studies shed light on latent targets of curcumin against epidermal growth factor receptor (EGFR), microRNAs (miRNA), autophagy and cancer stem cell. The present review predominantly discusses significance of EGFR, miRNA, autophagy and cancer stem cell in lung cancer therapy. Curcumin as a natural phytochemicals could communicate with these novel targets and show synergism to chemotherapy. Additionally, curcumin is well tolerated in humans. Therefore, EGFR-, miRNA-, autophagy- and cancer stem cell-based therapy in the presence of curcumin might be promising mechanisms and targets in the therapeutic strategy of lung cancer.
Collapse
|
33
|
Chattopadhyay C, Ellerhorst JA, Ekmekcioglu S, Greene VR, Davies MA, Grimm EA. Association of activated c-Met with NRAS-mutated human melanomas. Int J Cancer 2012; 131:E56-65. [PMID: 22020736 DOI: 10.1002/ijc.26487] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Cutaneous melanomas can be divided into three mutually exclusive genetic subsets: tumors with mutated BRAF, tumors with mutated NRAS and tumors wild type at both loci (wt/wt). Targeted therapy for melanoma has been advancing with agents directed to mutated BRAF, accounting for 50% of melanoma patients. The c-Met pathway is known to play a role in melanoma tumorigenesis and preliminary data from our laboratory suggested that this pathway is preferentially activated in NRAS-mutated tumors. The objective of this study was to test the hypothesis that melanomas carrying the mutated NRAS genotype are uniquely sensitively to c-Met inhibition, thus providing rationale for therapeutic targeting of c-Met in this patient cohort. Using primary human melanomas with known BRAF/NRAS genotypes, we observed greater immunostaining for phosphorylated (activated) c-Met in NRAS-mutated and wt/wt tumors, compared to BRAF-mutated tumors. NRAS-mutated and wt/wt cell lines also demonstrated more robust c-Met activation in response to hepatocyte growth factor (HGF). Knock-down of mutated N-Ras, but not wild type N-Ras, by RNA interference resulted in decreased c-Met phosphorylation. Compared to BRAF mutants, NRAS-mutated melanoma cells were more sensitive to pharmacologic c-Met inhibition in terms of c-Met activation, Akt phosphorylation, tumor cell proliferation, migration and apoptosis. This enhanced sensitivity was observed in wt/wt cells as well, but was a less consistent finding. On the basis of these experimental results, we propose that c-Met inhibition may be a useful therapeutic strategy for melanomas with NRAS mutations, as well as some tumors with a wt/wt genotype.
Collapse
Affiliation(s)
- Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Thunnissen E, Kerr KM, Herth FJF, Lantuejoul S, Papotti M, Rintoul RC, Rossi G, Skov BG, Weynand B, Bubendorf L, Katrien G, Johansson L, López-Ríos F, Ninane V, Olszewski W, Popper H, Jaume S, Schnabel P, Thiberville L, Laenger F. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 2011; 76:1-18. [PMID: 22138001 DOI: 10.1016/j.lungcan.2011.10.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 12/17/2022]
Abstract
Until recently, the division of pulmonary carcinomas into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) was adequate for therapy selection. Due to the emergence of new treatment options subtyping of NSCLC and predictive testing have become mandatory. A practical approach to the new requirements involving interaction between pulmonologist, oncologist and molecular pathology to optimize patient care is described. The diagnosis of lung cancer involves (i) the identification and complete classification of malignancy, (ii) immunohistochemistry is used to predict the likely NSCLC subtype (squamous cell vs. adenocarcinoma), as in small diagnostic samples specific subtyping is frequently on morphological grounds alone not feasible (NSCLC-NOS), (iii) molecular testing. To allow the extended diagnostic and predictive examination (i) tissue sampling should be maximized whenever feasible and deemed clinically safe, reducing the need for re-biopsy for additional studies and (ii) tissue handling, processing and sectioning should be optimized. Complex diagnostic algorithms are emerging, which will require close dialogue and understanding between pulmonologists and others who are closely involved in tissue acquisition, pathologists and oncologists who will ultimately, with the patient, make treatment decisions. Personalized medicine not only means the choice of treatment tailored to the individual patient, but also reflects the need to consider how investigative and diagnostic strategies must also be planned according to individual tumour characteristics.
Collapse
Affiliation(s)
- Erik Thunnissen
- Department of Pathology, VU Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 2011; 6:942-6. [PMID: 21623265 DOI: 10.1097/jto.0b013e31821528d3] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crizotinib is a dual MET and ALK inhibitor. Currently, clinical development of crizotinib is focused primarily on ALK rearranged non-small cell lung cancer (NSCLC). Here we report an NSCLC patient with de novo MET amplification but no ALK rearrangement who achieved a rapid and durable response to crizotinib indicating is also a bona fide MET inhibitor.
Collapse
|
36
|
Dimou A, Harrington K, Syrigos KN. From the bench to bedside: biological and methodology considerations for the future of companion diagnostics in nonsmall cell lung cancer. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:312346. [PMID: 21785682 PMCID: PMC3140218 DOI: 10.4061/2011/312346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/09/2011] [Accepted: 06/14/2011] [Indexed: 01/02/2023]
Abstract
Companion diagnostics are an emerging and exciting field in the care of oncology patients. These tests accompany standard diagnostic investigations in cancer patients and function as an aid in treatment decision making. A great number of new compounds are under clinical and laboratory testing in nonsmall cell lung cancer (NSCLC). As the variety of therapeutic options expands in the various settings of the disease, it becomes apparent that specific and sensitive molecular tests are necessary to define the subsets of patients who are going to derive clinical benefit. Testing for epidermal growth factor receptor (EGFR) somatic mutations for the appropriate administration of tyrosine kinase inhibitors is just the beginning. Anaplastic lymphoma kinase (ALK) fusion protein detection and molecular histology classification are promising candidate predictors for clinical benefit from crizotinib and pemetrexed, respectively. This paper summarizes such diagnostics and discusses unanswered questions concerning underlying biology and standardization issues.
Collapse
Affiliation(s)
- Anastasios Dimou
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | |
Collapse
|
37
|
Matsubara D, Ishikawa S, Sachiko O, Aburatani H, Fukayama M, Niki T. Co-activation of epidermal growth factor receptor and c-MET defines a distinct subset of lung adenocarcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2191-204. [PMID: 20934974 DOI: 10.2353/ajpath.2010.100217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) and MET are molecular targets for lung cancer treatment. The relationships between expression, activation, and gene abnormalities of these two targets are currently unclear. Here, we demonstrate that a panel of 40 lung cancer cell lines could be classified into two groups. Group I was characterized by (1) high phosphorylations of MET and EGFR, (2) frequent mutation or amplification of EGFR, MET, and human epidermal growth factor receptor-2 (HER2), (3) high expressions of bronchial epithelial markers (thyroid transcription factor-1 (TTF-1), MUC1, and Cytokeratin 7 (CK7)); and (4) high expressions of MET, human epidermal growth factor receptor-3, E-cadherin, cyclooxygenase-2, and laminin gamma2. In contrast, Group II exhibited little or no phosphorylation of MET and EGFR; no mutation or amplification of EGFR, MET, and HER2; were triple-negative for TTF-1, MUC1, and CK7; and showed high expressions of vimentin, fibroblast growth factor receptor-1, and transcription factor 8. Importantly, Group I was more sensitive to gefitinib and more resistant to cisplatin and paclitaxel than Group II. The clinical relevance was confirmed in publicly available data on 442 primary lung adenocarcinoma patients; survival benefits by postoperative chemotherapy were seen in only patients with tumors corresponding to Group II. Overall, co-activation of EGFR and MET defines a distinct subgroup of lung carcinoma with characteristic genetic abnormalities, gene expression pattern, and response to chemotherapeutic reagents.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | | | | | | | | | | |
Collapse
|