1
|
Roca E, Aujayeb A, Astoul P. Diagnosis of Pleural Mesothelioma: Is Everything Solved at the Present Time? Curr Oncol 2024; 31:4968-4983. [PMID: 39329996 PMCID: PMC11430569 DOI: 10.3390/curroncol31090368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Ranked high in worldwide growing health issues, pleural diseases affect approximately one million people globally per year and are often correlated with a poor prognosis. Among these pleural diseases, malignant pleural mesothelioma (PM), a neoplastic disease mainly due to asbestos exposure, still remains a diagnostic challenge. Timely diagnosis is imperative to define the most suitable therapeutic approach for the patient, but the choice of diagnostic modalities depends on operator experience and local facilities while bearing in mind the yield of each diagnostic procedure. Since the analysis of pleural fluid cytology is not sufficient in differentiating historical features in PM, histopathological and morphological features obtained via tissue biopsies are fundamental. The quality of biopsy samples is crucial and often requires highly qualified expertise. Since adequate tissue biopsy is essential, medical or video-assisted thoracoscopy (MT or VATS) is proposed as the most suitable approach, with the former being a physician-led procedure. Indeed, MT is the diagnostic gold standard for malignant pleural pathologies. Moreover, this medical or surgical approach can allow diagnostic and therapeutic procedures: it provides the possibility of video-assisted biopsies, the drainage of high volumes of pleural fluid and the administration of sterile calibrated talcum powder under visual control in order to achieve pleurodesis, placement of indwelling pleural catheters if required and in a near future potential intrapleural therapy. In this context, dedicated diagnostic pathways remain a crucial need, especially to quickly and properly diagnose PM. Lastly, the interdisciplinary approach and multidisciplinary collaboration should always be implemented in order to direct the patient to the best customised diagnostic and therapeutic pathway. At the present time, the diagnosis of PM remains an unsolved problem despite MDT (multidisciplinary team) meetings, mainly because of the lack of standardised diagnostic work-up. This review aims to provide an overview of diagnostic procedures in order to propose a clear strategy.
Collapse
Affiliation(s)
- Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera Del Garda, VR, Italy;
| | - Avinash Aujayeb
- Respiratory Department, Northumbria Health Care NHS Foundation Trust, Care of Gail Hewitt, Newcastle NE23 6NZ, UK;
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, North Hospital, Aix-Marseille University, Chemin des Bourrely, 13005 Marseille, France
- La Timone Campus, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
2
|
Wang H, Lin L, Liang C, Pang J, Yin JC, Zhang J, Shao Y, Sun C, Guo R. Landscape of Concomitant Driver Alterations in Classical EGFR-Mutated Non-Small Cell Lung Cancer. JCO Precis Oncol 2024; 8:e2300520. [PMID: 39102631 DOI: 10.1200/po.23.00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE Next-generation sequencing (NGS) has enabled the detection of concomitant driver alterations in non-small cell lung cancer (NSCLC). However, the magnitude and clinical relevance of concomitant drivers remain to be explored. METHODS We profiled concomitant driver alterations of EGFR+ NSCLC by using targeted NGS. The associated genomic and clinical features were analyzed and validated in an independent The Cancer Genome Atlas cohort of patients with EGFR+ NSCLC. RESULTS Out of the total patient population, 334 patients had EGFR mutations along with concomitant driver mutations, comprising 3.09% of the entire cohort. The most frequent co-occurring mutations with sensitizing EGFR mutations include KRAS at 53.9%, followed by ERBB2 at 24.3%, MET at 16.5%, and BRAF at 3.3%. KRAS mutations in concomitant drivers were frequently hyperexchange mutations (25.6% v 8.2%, P < .001), compared with KRAS single drivers. EGFR/ERBB2 drivers exhibited a higher incidence of ERBB2 amplification (40.7% v 16.5%, P < .001) and p.S310F/Y mutations (44.4% v 4.3%, P < .001) compared with ERBB2 alone. EGFR/MET drivers had a higher frequency of MET amplification (71.4% v 43.3%) than MET single drivers. At the genomic level, the median number of additional concurrent mutations was four, with TSC2 (4%), CD274 (1%), and TP53 (63%) being the most frequently coaltered genes in concomitant driver tumors. Interestingly, clonality analysis indicated that EGFR mutations were more likely to occur as clonal events, whereas the codrivers were more often subclonal. Patients with concomitant drivers or with concomitant MET amplification exhibited worse prognosis. CONCLUSION These findings might aid in the selection of effective therapeutic regimens and facilitate the development of combination therapies.
Collapse
Affiliation(s)
- Huaying Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, China
| | - Lie Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chuqiao Liang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Jiani C Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Junli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengming Sun
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Renhua Guo
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Bertoli E, De Carlo E, Bortolot M, Stanzione B, Del Conte A, Spina M, Bearz A. Targeted Therapy in Mesotheliomas: Uphill All the Way. Cancers (Basel) 2024; 16:1971. [PMID: 38893092 PMCID: PMC11171080 DOI: 10.3390/cancers16111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mesothelioma (MM) is an aggressive and lethal disease with few therapeutic opportunities. Platinum-pemetrexed chemotherapy is the backbone of first-line treatment for MM. The introduction of immunotherapy (IO) has been the only novelty of the last decades, allowing an increase in survival compared to standard chemotherapy (CT). However, IO is not approved for epithelioid histology in many countries. Therefore, therapy for relapsed MM remains an unmet clinical need, and the prognosis of MM remains poor, with an average survival of only 18 months. Increasing evidence reveals MM complexity and heterogeneity, of which histological classification fails to explain. Thus, scientific focus on possibly new molecular markers or cellular targets is increasing, together with the search for target therapies directed towards them. The molecular landscape of MM is characterized by inactivating tumor suppressor alterations, the most common of which is found in CDKN2A, BAP1, MTAP, and NF2. In addition, cellular targets such as mesothelin or metabolic enzymes such as ASS1 could be potentially amenable to specific therapies. This review examines the major targets and relative attempts of therapeutic approaches to provide an overview of the potential prospects for treating this rare neoplasm.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| |
Collapse
|
4
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
6
|
Ito F, Kato K, Yanatori I, Maeda Y, Murohara T, Toyokuni S. Matrigel-based organoid culture of malignant mesothelioma reproduces cisplatin sensitivity through CTR1. BMC Cancer 2023; 23:487. [PMID: 37254056 DOI: 10.1186/s12885-023-10966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Organoids are a three-dimensional (3D) culture system that simulate actual organs. Therefore, tumor organoids are expected to predict precise response to chemotherapy in patients. However, to date, few studies have studied the drug responses in organoids of malignant mesothelioma (MM). The poor prognosis of MM emphasizes the importance of establishing a protocol for generating MM-organoid for research and clinical use. Here, we established murine MM organoids from p53+/- or wild-type C57BL/6 strain by intraperitoneal injection either with crocidolite or carbon nanotube. Established MM-organoids proliferated in Matrigel as spheroids. Subcutaneous injection assays revealed that the MM-organoids mimicked actual tissue architecture and maintained the original histological features of the primary MM. RNA sequencing and pathway analyses revealed that the significant expressional differences between the 2D- and 3D-culture systems were observed in receptor tyrosine kinases, including IGF1R and EGFR, glycosylation and cholesterol/steroid metabolism. MM-organoids exhibited a more sensitive response to cisplatin through stable plasma membrane localization of a major cisplatin transporter, copper transporter 1/Slc31A1 (Ctr1) in comparison to 2D-cultures, presumably through glycosylation and lipidation. The Matrigel culture system facilitated the localization of CTR1 on the plasma membrane, which simulated the original MMs and the subcutaneous xenografts. These results suggest that the newly developed protocol for MM-organoids is useful to study strategies to overcome chemotherapy resistance to cisplatin.
Collapse
Affiliation(s)
- Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Izumi Yanatori
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
7
|
Zito Marino F, Della Corte CM, Ciaramella V, Erra S, Ronchi A, Fiorelli A, Vicidomini G, Santini M, Scognamiglio G, Morgillo F, Ciardiello F, Franco R, Accardo M. AXL and MET Tyrosine Kinase Receptors Co-Expression as a Potential Therapeutic Target in Malignant Pleural Mesothelioma. J Pers Med 2022; 12:jpm12121993. [PMID: 36556214 PMCID: PMC9783837 DOI: 10.3390/jpm12121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal malignancy that unfortunately cannot benefit from molecularly targeted therapies. Although previous results showed the pivotal role of various receptor tyrosine kinases (RTKs) in MPM tumorigenesis, the treatment with a single inhibitor targeting one specific RTK has been shown to be ineffective in MPM patients. The main aim of the present study was to investigate the potential role of AXL and MET receptors in MPM and the possible efficacy of treatment with AXL and MET multitarget inhibitors. Immunohistochemical and FISH analyses were performed in a wide series of formalin-fixed paraffin-embedded MPM samples to detect the expression of two receptors and the potential gene amplification. In vitro studies were performed to evaluate putative correlations between the target's expression and the cell sensitivity to AXL-MET multitarget inhibitors. In our series, 10.4% of cases showed a co-expression of AXL and MET, regardless of their ligand expression, and the gene amplification. Furthermore, our in vitro results suggest that the concomitant pharmacological inhibition of AXL and MET may affect the proliferative and aggressiveness of MPM cells. In conclusion, the subset of MPM patients with AXL-MET co-activation could benefit from treatment with specific multitarget inhibitors.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (F.Z.M.); (C.M.D.C.)
| | - Carminia Maria Della Corte
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
- Correspondence: (F.Z.M.); (C.M.D.C.)
| | - Vincenza Ciaramella
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
| | - Stefania Erra
- Pathology Unit, ASL AL, 15033 Casale Monferrato, Italy
| | - Andrea Ronchi
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Fiorelli
- Translational Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Vicidomini
- Translational Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mario Santini
- Translational Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marina Accardo
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
8
|
Dong C, Fang X, Xiong J, Zhang J, Gan H, Song C, Wang L. Simultaneous Visualization of Dual Intercellular Signal Transductions via SERS Imaging of Membrane Proteins Dimerization on Single Cells. ACS NANO 2022; 16:14055-14065. [PMID: 35969886 DOI: 10.1021/acsnano.2c03914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The visualization of protein dimerization on live cells is an urgent need and of vital importance for facile monitoring the signal transduction during intercellular communication. Herein, a highly sensitive and specific SERS strategy for simultaneously imaging dual homodimerizations of membrane proteins on single live cells was proposed by networking of AuNPs-based dual-recognition probes (dual-RPs) and SERS tags via proximity ligation-assisted catalytic hairpin assembly (CHA). The dual-RPs were prepared by comodifying hairpin-structured ssDNAs H1-Met and H1-TβRII on 50 nm AuNPs and two SERS tags for membrane proteins Met and TβRII were prepared respectively by labeling their corresponding Raman molecules and hairpin-structured single-stranded DNAs H2-Met or H2-TβRII on 15 nm AuNPs. The membrane proteins were ligated proximally by specific aptamers, and the dimerizations of proteins resulted in the proximity ligation-assisted CHA-based networking of dual-RPs and SERS tags to form 15Au-50Au network nanostructures with significantly enhanced SERS effect. The SERS strategy for visualizing the membrane protein dimerization was established and the good performance on simultaneously SERS imaging dual dimerizations of membrane proteins (i.e., Met-Met and TβRII-TβRII) was confirmed. Furthermore, the membrane protein dimerization-based signaling pathways between cancer cells and stromal cells or stem cells were observed by SERS, which indicates that the proposed SERS strategy is a good method for high-sensitivity monitoring of membrane proteins dimerizations-based multiple intercellular signal transductions in a natural and complex cellular microenvironment.
Collapse
Affiliation(s)
- Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
9
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
10
|
Chen Y, Jiang B, He Y, Zhang C, Zhou W, Fang C, Gu D, Zhang M, Ji M, Shi J, Yang X. A lung adenocarcinoma patient with co-mutations of MET and EGFR exon20 insertion responded to crizotinib. BMC Med Genomics 2022; 15:141. [PMID: 35739536 PMCID: PMC9229853 DOI: 10.1186/s12920-022-01291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Background Targeted therapy has revolutionized the treatment of patients with malignancies harboring mutations in driver genes and has brought a favorable survival benefit to the population with actionable oncogenic mutations. In recent years, the MET exon14 skipping mutation has been recognized as a potentially promising therapeutic target in non-small cell lung cancer (NSCLC). These changes are mutually exclusive with molecular drivers such as EGFR, KRAS, HER-2, BRAF, ALK and ROS1. The prevalence rate of coexisting MET exon 14 mutations and EGFR sensitive mutations (L858R, exon 19 deletions) in Chinese population was reported to be 0.2% (3/1590). However, the coexistence of MET exon 14 mutations with EGFR exon 20 insertion mutations has never been reported and the management of this subtype is not identified. Case presentation A 69-year-old male with a right lung adenocarcinoma (T4N2M0, IIIB) was confirmed to be positive for MET exon 14 skipping (c.3028_3028+1delGGinsTT, 44.4%), MET amplification (copy number 4.4), and EGFR exon 20 insertion (p. N771_H773dup, 22.1%) mutations. After the progression of one cycle of chemotherapy (Pemetrexed 0.8 g d1), the patient was subsequently accepted treatment with Crizotinib (250 mg twice a day) and achieved an important clinical remission for six months until the development of brain metastases. Then, he was submitted to a cycle of anti-programmed cell death-1 (PD-1) therapy after failure of Crizotinib and eventually acquired resistance despite of the high expression of programmed death ligand-1 (PD-L1) and tumor mutational burden (TMB) status. Conclusion This case report provides treatment strategies for epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-untreated lung adenocarcinoma patients simultaneously carrying MET alterations and EGFR exon 20 insertion mutations. In addition, the signatures of PD-L1 or TMB expression were not the candidate for predicting the efficacy of immunotherapy in this context.
Collapse
Affiliation(s)
- Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China
| | - Bo Jiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China
| | - Yuange He
- Geneplus-Beijing, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Chu Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China
| | - Wenjie Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China
| | - Dejian Gu
- Geneplus-Beijing, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Minxia Zhang
- Geneplus-Beijing, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China
| | - Juntao Shi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China.
| | - Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No 185 Juqian Road, Tianning District, Changzhou, 213000, China.
| |
Collapse
|
11
|
Rada P, Lamballe F, Carceller-López E, Hitos AB, Sequera C, Maina F, Valverde ÁM. Enhanced Wild-Type MET Receptor Levels in Mouse Hepatocytes Attenuates Insulin-Mediated Signaling. Cells 2022; 11:cells11050793. [PMID: 35269415 PMCID: PMC8909847 DOI: 10.3390/cells11050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Compelling evidence points to the MET receptor tyrosine kinase as a key player during liver development and regeneration. Recently, a role of MET in the pathophysiology of insulin resistance and obesity is emerging. Herein, we aimed to determine whether MET regulates hepatic insulin sensitivity. To achieve this, mice in which the expression of wild-type MET in hepatocytes is slightly enhanced above endogenous levels (Alb-R26Met mice) were analyzed to document glucose homeostasis, energy balance, and insulin signaling in hepatocytes. We found that Alb-R26Met mice exhibited higher body weight and food intake when compared to R26stopMet control mice. Metabolic analyses revealed that Alb-R26Met mice presented age-related glucose and pyruvate intolerance in comparison to R26stopMet controls. Additionally, in Alb-R26Met mice, high MET levels decreased insulin-induced insulin receptor (IR) and AKT phosphorylation compared to control mice. These results were corroborated in vitro by analyzing IR and AKT phosphorylation in primary mouse hepatocytes from Alb-R26Met and R26stopMet mice upon insulin stimulation. Moreover, co-immunoprecipitation assays revealed MET-IR interaction under both basal and insulin stimulation conditions; this effect was enhanced in Alb-R26Met hepatocytes. Altogether, our results indicate that enhanced MET levels alter hepatic glucose homeostasis, which can be an early event for subsequent liver pathologies.
Collapse
Affiliation(s)
- Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (P.R.); (F.M.); (Á.M.V.)
| | - Fabienne Lamballe
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France; (F.L.); (C.S.)
| | - Elena Carceller-López
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
| | - Ana B. Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Celia Sequera
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France; (F.L.); (C.S.)
| | - Flavio Maina
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France; (F.L.); (C.S.)
- Correspondence: (P.R.); (F.M.); (Á.M.V.)
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (P.R.); (F.M.); (Á.M.V.)
| |
Collapse
|
12
|
Chia PL, Parakh S, Russell P, Gan HK, Asadi K, Gebski V, Murone C, Walkiewicz M, Liu Z, Thapa B, Scott FE, Scott AM, John T. Expression of EGFR and conformational forms of EGFR in malignant pleural mesothelioma and its impact on survival. Lung Cancer 2020; 153:35-41. [PMID: 33453471 DOI: 10.1016/j.lungcan.2020.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 01/24/2023]
Abstract
AIM Conformational forms of the epidermal growth factor receptor (EGFR) are pro-tumorigenic. The prevalence and impact of conformational forms of EGFR in malignant mesothelioma (MM) is unknown. We investigated expression of EGFR and conformational forms of EGFR by immunohistochemistry using EGFR-targeting monoclonal antibodies (mAb). In addition, EGFR gene amplification was investigated by fluorescent in-situ hybridization (FISH). Findings were correlated with survival. METHODS Patients treated between 1988 and 2014 were identified from the thoracic surgery database of the Austin Hospital, Melbourne, Australia. Tissue microarrays (TMAs) were constructed, subjected to wild type (wt) EGFR IHC staining and FISH analysis. Conformational and mutation forms of EGFR were detected by IHC using mAb806, and LMH-151 which detects EGFRVIII. `H-scores` were derived and EGFR expression correlated with survival by Kaplan-Meier and log rank analysis. RESULTS WtEGFR expression was seen in 93 % (299/321) of cases with overexpression (defined as an H-score ≥200) seen in more than half of cases (64 %). EGFR overexpression in MM was seen more commonly in the epithelioid subtype. EGFR overexpression was not associated with true EGFR amplification, although multiple copies were appreciated in samples with polysomy. EGFR expression did not correlate with survival. A conformational form of EGFR associated with EGFR dysregulation was found in 8.2 % of cases, and patients with these tumors had a trend towards a poorer outcome. No cases of the EGFRVIII mutation were identified. CONCLUSION MM consistently demonstrated high expression of EGFR, with a subset of tumors showing conformational EGFR forms consistent with EGFR dysregulation, but withoutEGFR amplification or EGFR VIII mutation. wtEGFR expression did not influence survival. The impact of EGFR conformation on survival warrants further investigation.
Collapse
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Sagun Parakh
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Prudence Russell
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Pathology, St Vincent's, Melbourne, Australia
| | - Hui K Gan
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Khashayer Asadi
- Department of Pathology, Austin Health, Melbourne, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, Sydney, Australia
| | - Carmel Murone
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | | | - Zhanqi Liu
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Bibhusal Thapa
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | - Fiona E Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
13
|
Belfiore A, Busico A, Bozzi F, Brich S, Dallera E, Conca E, Capone I, Gloghini A, Volpi CC, Cabras AD, Pilotti S, Baratti D, Guaglio M, Deraco M, Kusamura S, Perrone F. Molecular Signatures for Combined Targeted Treatments in Diffuse Malignant Peritoneal Mesothelioma. Int J Mol Sci 2019; 20:ijms20225817. [PMID: 31752449 PMCID: PMC6888071 DOI: 10.3390/ijms20225817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background—There are currently no effective therapies for diffuse malignant peritoneal mesothelioma (DMPM) patients with disease recurrence. In this study, we investigated the biology of DMPM by analyzing the EGFR family, Axl, and MET, in order to assess the presence of cross-talk between these receptors, suggesting the effectiveness of combined targeted treatments in DMPM. Method—We analyzed a series of 22 naïve epithelioid DMPM samples from a single institute, two of which showed higher-grade malignancy (“progressed”). EGFR, HER2, HER3, Axl, and MET activation and expression were investigated by biochemical analysis, real-time PCR immunofluorescence, immunohistochemistry, next-generation sequencing, miRNA, and mRNA in situ hybridization. Results—In most DMPMs, a strong EGFR activation was associated with HER2, HER3, Axl, and MET co-activation, mediated mainly by receptor heterodimerization and autocrine-paracrine loops induced by the expression of their cognate ligands. Axl expression was downregulated by miRNA34a. Mutations in MET Sema domain were exclusively found in two “progressed” DMPMs, and the combined Axl and MET inhibition reduced cellular motility in a DMPM cell line obtained from a “progressed” DMPM. Conclusion—The results indicate that the coordinated activity of multiple cross-talks between RTKs is directly involved in the biology of DMPM, suggesting the combined inhibition of PIK3 and mTOR as an effective strategy that may be easily implemented in clinical practice, and indicating that the combined inhibition of EGFR/HER2 and HER3 and of Axl and MET deserves further investigation.
Collapse
Affiliation(s)
- Antonino Belfiore
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Adele Busico
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Fabio Bozzi
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Silvia Brich
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Elena Dallera
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Elena Conca
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Iolanda Capone
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Annunziata Gloghini
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Chiara C. Volpi
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Antonello D. Cabras
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy;
| | - Silvana Pilotti
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
| | - Dario Baratti
- Peritoneal Surface Malignancy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (D.B.); (M.G.); (M.D.); (S.K.)
| | - Marcello Guaglio
- Peritoneal Surface Malignancy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (D.B.); (M.G.); (M.D.); (S.K.)
| | - Marcello Deraco
- Peritoneal Surface Malignancy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (D.B.); (M.G.); (M.D.); (S.K.)
| | - Shigeki Kusamura
- Peritoneal Surface Malignancy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (D.B.); (M.G.); (M.D.); (S.K.)
| | - Federica Perrone
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy; (A.B.); (A.B.); (F.B.); (S.B.); (E.D.); (E.C.); (I.C.); (A.G.); (C.C.V.); (S.P.)
- Correspondence: ; Tel.: +39-02-2390-2614; Fax: +39-02-2390-2877
| |
Collapse
|
14
|
Hinz TK, Heasley LE. Translating mesothelioma molecular genomics and dependencies into precision oncology-based therapies. Semin Cancer Biol 2019; 61:11-22. [PMID: 31546009 DOI: 10.1016/j.semcancer.2019.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare, yet lethal asbestos-induced cancer and despite marked efforts to reduce occupational exposure, the incidence has not yet significantly declined. Since 2003, combined treatment with a platinum-based agent and pemetrexed has been the first-line therapy and no effective or approved second-line treatments have emerged. The seemingly slow advance in developing new MPM treatments does not appear to be related to a low level of clinical and pre-clinical research activity. Rather, we suggest that a key hurdle in successfully translating basic discovery into novel MPM therapeutics is the underlying assumption that as a rare cancer, it will also be molecularly and genetically homogeneous. In fact, lung adenocarcinoma and melanoma only benefitted from precision oncology upon full appreciation of the high degree of molecular heterogeneity inherent in these cancers, especially regarding the diversity of oncogenic drivers. Herein, we consider the recent explosion of molecular and genetic information that has become available regarding MPM and suggest ways in which the unfolding landscape may guide identification of novel therapeutic vulnerabilities within subsets of MPM that can be targeted in a manner consistent with the tenets of precision oncology.
Collapse
Affiliation(s)
- Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
15
|
Suzawa K, Offin M, Schoenfeld AJ, Plodkowski AJ, Odintsov I, Lu D, Lockwood WW, Arcila ME, Rudin CM, Drilon A, Yu HA, Riely GJ, Somwar R, Ladanyi M. Acquired MET Exon 14 Alteration Drives Secondary Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in EGFR-Mutated Lung Cancer. JCO Precis Oncol 2019; 3. [PMID: 31157314 PMCID: PMC6541452 DOI: 10.1200/po.19.00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ken Suzawa
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Igor Odintsov
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Lu
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Helena A Yu
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Romel Somwar
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Chia PL, Scott AM, John T. Epidermal growth factor receptor (EGFR)-targeted therapies in mesothelioma. Expert Opin Drug Deliv 2019; 16:441-451. [PMID: 30916586 DOI: 10.1080/17425247.2019.1598374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Malignant mesothelioma (MM) is an aggressive malignancy arising from the mesothelial cells lining the pleura and other serosal membranes. It is associated with an extremely poor prognosis and has limited therapeutic options. AREAS COVERED Epidermal growth factor receptor (EGFR) is known to be highly overexpressed in mesothelioma with reported EGFR overexpression between 44 to 97%. Given this, several anti-EGFR agents have been trialed in mesothelioma. In this review, we provide an overview of the current available data on anti-EGFR therapies in MM and future directions of investigation with these targeted agents in MM. EXPERT OPINION While many anti-EGFR therapies have failed to show significant efficacy in the management of MM, the pathway is biologically active and its abrogation preclinically points toward it being a valid target. Toward targeting the pathway, many novel EGFR-based therapies are still being investigated. Current ongoing research of interest in MM include EGFR-targeted nanotechnology approach for drug delivery, antibodies targeting the extracellular EGFR and potentially anti-EGFR antibody drug conjugates.
Collapse
Affiliation(s)
- Puey Ling Chia
- a Department of Medical Oncology , Austin Health , Melbourne , Australia.,b Tumour Targeting Laboratory , Olivia-Newton John Cancer Research Institute , Melbourne , Australia.,c Faculty of Medicine , University of Melbourne , Melbourne , Australia
| | - Andrew M Scott
- b Tumour Targeting Laboratory , Olivia-Newton John Cancer Research Institute , Melbourne , Australia.,c Faculty of Medicine , University of Melbourne , Melbourne , Australia.,d School of Cancer Medicine , La Trobe University , Melbourne , Australia.,e Department of Molecular Imaging and Therapy , Austin Health, and University of Melbourne , Melbourne , Australia
| | - Thomas John
- a Department of Medical Oncology , Austin Health , Melbourne , Australia.,c Faculty of Medicine , University of Melbourne , Melbourne , Australia.,d School of Cancer Medicine , La Trobe University , Melbourne , Australia.,f Cancer Immunobiology Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia
| |
Collapse
|
17
|
Baird AM, Easty D, Jarzabek M, Shiels L, Soltermann A, Klebe S, Raeppel S, MacDonagh L, Wu C, Griggs K, Kirschner MB, Stanfill B, Nonaka D, Goparaju CM, Murer B, Fennell DA, O'Donnell DM, Barr MP, Mutti L, Reid G, Finn S, Cuffe S, Pass HI, Opitz I, Byrne AT, O'Byrne KJ, Gray SG. When RON MET TAM in Mesothelioma: All Druggable for One, and One Drug for All? Front Endocrinol (Lausanne) 2019; 10:89. [PMID: 30863365 PMCID: PMC6399142 DOI: 10.3389/fendo.2019.00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone.
Collapse
Affiliation(s)
- Anne-Marie Baird
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Easty
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Monika Jarzabek
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Liam Shiels
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alex Soltermann
- Department of Clinical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University of South Australia, Bedford Park, SA, Australia
| | | | - Lauren MacDonagh
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Chengguang Wu
- Department of Clinical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kim Griggs
- Department of Anatomical Pathology, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Michaela B. Kirschner
- Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, NSW, Australia
| | - Bryan Stanfill
- The Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| | - Daisuke Nonaka
- Department of Histopathology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Department of Cardiothoracic Surgery, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Chandra M. Goparaju
- Department of Cardiothoracic Surgery, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Bruno Murer
- Department of Clinical Pathology, Ospedale dell'Angelo, Venice, Italy
| | - Dean A. Fennell
- MRC Toxicology Unit, University of Leicester and Leicester University Hospitals, Leicester, United Kingdom
| | | | - Martin P. Barr
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, NSW, Australia
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Sinead Cuffe
- HOPE Directorate, St James's Hospital, Dublin, Ireland
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Annette T. Byrne
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kenneth J. O'Byrne
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, QLD, Australia
- HOPE Directorate, St James's Hospital, Dublin, Ireland
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Steven G. Gray
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Steven G. Gray
| |
Collapse
|
18
|
Suzawa K, Offin M, Lu D, Kurzatkowski C, Vojnic M, Smith RS, Sabari JK, Tai H, Mattar M, Khodos I, de Stanchina E, Rudin CM, Kris MG, Arcila ME, Lockwood WW, Drilon A, Ladanyi M, Somwar R. Activation of KRAS Mediates Resistance to Targeted Therapy in MET Exon 14-mutant Non-small Cell Lung Cancer. Clin Cancer Res 2018; 25:1248-1260. [PMID: 30352902 DOI: 10.1158/1078-0432.ccr-18-1640] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE MET exon 14 splice site alterations that cause exon skipping at the mRNA level (METex14) are actionable oncogenic drivers amenable to therapy with MET tyrosine kinase inhibitors (TKI); however, secondary resistance eventually arises in most cases while other tumors display primary resistance. Beyond relatively uncommon on-target MET kinase domain mutations, mechanisms underlying primary and acquired resistance remain unclear. EXPERIMENTAL DESIGN We examined clinical and genomic data from 113 patients with lung cancer with METex14. MET TKI resistance due to KRAS mutation was functionally evaluated using in vivo and in vitro models. RESULTS Five of 113 patients (4.4%) with METex14 had concurrent KRAS G12 mutations, a rate of KRAS cooccurrence significantly higher than in other major driver-defined lung cancer subsets. In one patient, the KRAS mutation was acquired post-crizotinib, while the remaining 4 METex14 patients harbored the KRAS mutation prior to MET TKI therapy. Gene set enrichment analysis of transcriptomic data from lung cancers with METex14 revealed preferential activation of the KRAS pathway. Moreover, expression of oncogenic KRAS enhanced MET expression. Using isogenic and patient-derived models, we show that KRAS mutation results in constitutive activation of RAS/ERK signaling and resistance to MET inhibition. Dual inhibition of MET or EGFR/ERBB2 and MEK reduced growth of cell line and xenograft models. CONCLUSIONS KRAS mutation is a recurrent mechanism of primary and secondary resistance to MET TKIs in METex14 lung cancers. Dual inhibition of MET or EGFR/ERBB2 and MEK may represent a potential therapeutic approach in this molecular cohort.
Collapse
Affiliation(s)
- Ken Suzawa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Offin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Lu
- Integrative Oncology, British Columbia Cancer Center, Vancouver, British Columbia, Canada
| | | | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua K Sabari
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Huichun Tai
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marissa Mattar
- Anti-tumor Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Anti-tumor Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Mark G Kris
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William W Lockwood
- Integrative Oncology, British Columbia Cancer Center, Vancouver, British Columbia, Canada
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
19
|
Mönch D, Bode-Erdmann S, Kalla J, Sträter J, Schwänen C, Falkenstern-Ge R, Klumpp S, Friedel G, Ott G, Kalla C. A subgroup of pleural mesothelioma expresses ALK protein and may be targetable by combined rapamycin and crizotinib therapy. Oncotarget 2018; 9:20781-20794. [PMID: 29755689 PMCID: PMC5945506 DOI: 10.18632/oncotarget.25111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a neoplasm with inferior prognosis and notorious chemotherapeutic resistance. Targeting aberrantly overexpressed kinases to cure MPM is a promising therapeutic strategy. Here, we examined ALK, MET and mTOR as potential therapeutic targets and determined the combinatorial efficacy of ALK and mTOR targeting on tumor cell growth in vivo. First, ALK overexpression, rearrangement and mutation were studied in primary MPM by qRT-PCR, FISH, immunohistochemistry and sequence analysis; mTOR and MET expression by qRT-PCR and immunohistochemistry. Overexpression of full-length ALK transcripts was observed in 25 (19.5%) of 128 primary MPM, of which ten expressed ALK protein. ALK overexpression was not associated with gene rearrangement, amplification or kinase-domain mutation. mTOR protein was detected in 28.7% MPM, co-expressed with ALK or MET in 5% and 15% MPM, respectively. The ALK/MET inhibitor crizotinib enhanced the anti-tumor effect of the mTOR-inhibitor rapamycin in a patient-derived MPM xenograft with co-activated ALK/mTOR: combined therapy achieved tumor shrinkage in 4/5 tumors and growth stagnation in one tumor. Treatment effects on proliferation, apoptosis, autophagy and pathway signaling were assessed using Ki-67 immunohistochemistry, TUNEL assay, LC3B immunofluorescence, and immunoblotting. Co-treatment significantly suppressed cell proliferation and induced autophagy and caspase-independent, necrotic cell death. Rapamycin/crizotinib simultaneously inhibited mTORC1 (evidenced by S6 kinase and RPS6 dephosphorylation) and ALK signaling (ALK, AKT, STAT3 dephosphorylation), and crizotinib suppressed the adverse AKT activation induced by rapamycin. In conclusion, co-treatment with rapamycin and crizotinib is effective in suppressing MPM tumor growth and should be further explored as a therapeutic alternative in mesothelioma.
Collapse
Affiliation(s)
- Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany.,University of Tübingen, 72074 Tübingen, Germany
| | - Sabine Bode-Erdmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Jörg Kalla
- Institute of Pathology, Schwarzwald-Baar-Klinikum, 78052 Villingen-Schwenningen, Germany
| | - Jörn Sträter
- Institute of Pathology, 73730 Esslingen, Germany
| | - Carsten Schwänen
- Clinic of Internal Medicine, Oncology/Hematology, Gastroenterology and Infectiology, Klinikum Esslingen, 73730 Esslingen, Germany
| | - Roger Falkenstern-Ge
- Center for Pulmonology and Thoracic Surgery, Klinik Schillerhöhe, 70839 Stuttgart-Gerlingen, Germany
| | - Siegfried Klumpp
- Hospital Pharmacy, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Godehard Friedel
- Center for Pulmonology and Thoracic Surgery, Klinik Schillerhöhe, 70839 Stuttgart-Gerlingen, Germany
| | - German Ott
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany.,University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
20
|
Huang W, Whittaker K, Zhang H, Wu J, Zhu SW, Huang RP. Integration of Antibody Array Technology into Drug Discovery and Development. Assay Drug Dev Technol 2018; 16:74-95. [PMID: 29394094 DOI: 10.1089/adt.2017.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Jian Wu
- The Affiliated Third Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Ruo-Pan Huang
- Raybiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia
- South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
21
|
Quispel-Janssen JM, Badhai J, Schunselaar L, Price S, Brammeld J, Iorio F, Kolluri K, Garnett M, Berns A, Baas P, McDermott U, Neefjes J, Alifrangis C. Comprehensive Pharmacogenomic Profiling of Malignant Pleural Mesothelioma Identifies a Subgroup Sensitive to FGFR Inhibition. Clin Cancer Res 2017; 24:84-94. [DOI: 10.1158/1078-0432.ccr-17-1172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/21/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
|
22
|
El Bezawy R, De Cesare M, Pennati M, Deraco M, Gandellini P, Zuco V, Zaffaroni N. Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism. J Hematol Oncol 2017; 10:19. [PMID: 28100259 PMCID: PMC5242015 DOI: 10.1186/s13045-016-0387-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
Background The value of microRNAs (miRNAs) as novel targets for cancer therapy is now widely recognized. However, no information is currently available on the expression/functional role of miRNAs in diffuse malignant peritoneal mesothelioma (DMPM), a rapidly lethal disease, poorly responsive to conventional treatments, for which the development of new therapeutic strategies is urgently needed. Here, we evaluated the expression and biological effects of miR-34a—one of the most widely deregulated miRNAs in cancer and for which a lipid-formulated mimic is already clinically available—in a large cohort of DMPM clinical samples and a unique collection of in house-developed preclinical models, with the aim to assess the potential of a miR-34a-based approach for disease treatment. Methods miR-34a expression was determined by qRT-PCR in 45 DMPM and 7 normal peritoneum specimens as well as in 5 DMPM cell lines. Following transfection with miR-34a mimic, the effects on DMPM cell phenotype, in terms of proliferative potential, apoptotic rate, invasion ability, and cell cycle distribution, were assessed. In addition, three subcutaneous and orthotopic DMPM xenograft models were used to examine the effect of miR-34a on tumorigenicity. The expression of miRNA targets and the activation status of relevant pathways were investigated by western blot. Results miR-34a was found to be down-regulated in DMPM clinical specimens and cell lines compared to normal peritoneal samples. miR-34a reconstitution in DMPM cells significantly inhibited proliferation and tumorigenicity, induced an apoptotic response, and declined invasion ability, mainly through the down-regulation of c-MET and AXL and the interference with the activation of downstream signaling. Interestingly, a persistent activation of ERK1/2 and AKT in miR-34a-reconstituted cells was found to counteract the antiproliferative and proapoptotic effects of miRNA, yet not affecting its anti-invasive activity. Conclusions Our preclinical data showing impressive inhibitory effects induced by miR-34a on DMPM cell proliferation, invasion, and growth in immunodeficient mice strongly suggest the potential clinical utility of a miR-34a-replacement therapy for the treatment of such a still incurable disease. On the other hand, we provide the first evidence of a potential cytoprotective/resistance mechanism that may arise towards miRNA-based therapies through the persistent activation of RTK downstream signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0387-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rihan El Bezawy
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Marcello Deraco
- Colon-Rectal Cancer Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Paolo Gandellini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| |
Collapse
|
23
|
Tan AC, Vyse S, Huang PH. Exploiting receptor tyrosine kinase co-activation for cancer therapy. Drug Discov Today 2017; 22:72-84. [PMID: 27452454 PMCID: PMC5346155 DOI: 10.1016/j.drudis.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
Abstract
Studies over the past decade have shown that many cancers have evolved receptor tyrosine kinase (RTK) co-activation as a mechanism to drive tumour progression and limit the lethal effects of therapy. This review summarises the general principles of RTK co-activation and discusses approaches to exploit this phenomenon in cancer therapy and drug discovery. Computational strategies to predict kinase co-dependencies by integrating drug screening data and kinase inhibitor selectivity profiles will also be described. We offer a perspective on the implications of RTK co-activation on tumour heterogeneity and cancer evolution and conclude by surveying emerging computational and experimental approaches that will provide insights into RTK co-activation biology and deliver new developments in effective cancer therapies.
Collapse
Affiliation(s)
- Aik-Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
24
|
Abstract
Malignant mesothelioma is an asbestos-related cancer that occurs most commonly in the pleural space and is incurable. Increasing evidence suggests that aberrant receptor tyrosine kinase (RTK)-directed signalling plays a key role in the pathogenesis of this cancer. In the majority of mesotheliomas, up-regulated expression or signalling by Met, the receptor for hepatocyte growth factor (HGF) can be demonstrated. Following binding of ligand, Met relays signals that promote cell survival, proliferation, movement, invasiveness, branching morphogenesis and angiogenesis. Here we describe the HGF/Met axis and review the mechanisms that lead to the aberrant activation of this signalling system in mesothelioma. We also describe the cross-talk that occurs between HGF/Met and a number of other receptors, ligands and co-receptor systems. The prevalent occurrence of HGF/Met dysregulation in patients with mesothelioma sets the scene for the investigation of pharmaceutical inhibitors of this axis. In light of the inter-relationship between HGF/Met and other ligand receptor, combinatorial targeting strategies may provide opportunities for therapeutic advancement in this challenging tumour.
Collapse
|
25
|
Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, Mondello P, Han JE, Jarvis CA, Ulmert D, Xiang Q, Chang AY, Garippa RJ, Merghoub T, Wolchok JD, Rosen N, Lowe SW, Scheinberg DA. Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells. Cancer Immunol Res 2016; 4:936-947. [PMID: 27680026 DOI: 10.1158/2326-6066.cir-16-0177] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex I (MHC-1) presents antigenic peptides to tumor-specific CD8+ T cells. The regulation of MHC-I by kinases is largely unstudied, even though many patients with cancer are receiving therapeutic kinase inhibitors. Regulators of cell-surface HLA amounts were discovered using a pooled human kinome shRNA interference-based approach. Hits scoring highly were subsequently validated by additional RNAi and pharmacologic inhibitors. MAP2K1 (MEK), EGFR, and RET were validated as negative regulators of MHC-I expression and antigen presentation machinery in multiple cancer types, acting through an ERK output-dependent mechanism; the pathways responsible for increased MHC-I upon kinase inhibition were mapped. Activated MAPK signaling in mouse tumors in vivo suppressed components of MHC-I and the antigen presentation machinery. Pharmacologic inhibition of MAPK signaling also led to improved peptide/MHC target recognition and killing by T cells and TCR-mimic antibodies. Druggable kinases may thus serve as immediately applicable targets for modulating immunotherapy for many diseases. Cancer Immunol Res; 4(11); 936-47. ©2016 AACR.
Collapse
Affiliation(s)
- Elliott J Brea
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Claire Y Oh
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Eusebio Manchado
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Sadna Budhu
- Immunology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Ron S Gejman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - George Mo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Patrizia Mondello
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - James E Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Casey A Jarvis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - David Ulmert
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Qing Xiang
- RNAi Core Facility, Memorial Sloan Kettering Cancer Center New York, New York
| | - Aaron Y Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Ralph J Garippa
- RNAi Core Facility, Memorial Sloan Kettering Cancer Center New York, New York
| | - Taha Merghoub
- Immunology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Jedd D Wolchok
- Weill Cornell Medicine, New York, New York.,Immunology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Scott W Lowe
- Weill Cornell Medicine, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center New York, New York.,Howard Hughes Medical Institute, New York, New York
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York. .,Weill Cornell Medicine, New York, New York
| |
Collapse
|
26
|
The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget 2016; 6:23427-44. [PMID: 26156019 PMCID: PMC4695128 DOI: 10.18632/oncotarget.4370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 12/30/2022] Open
Abstract
The failure of apoptosis may contribute to the formation of cancer and to its resistance to therapy. Malignant pleural mesothelioma (MPM) is an aggressive tumor that responds poorly to standard chemo- and radio-therapies. Several studies have demonstrated that a plethora of oncogenes and tumor suppressors contribute to MPM onset/progression. Importantly, most of these genes are involved in the regulation of calcium (Ca2+)-handling. Cellular Ca2+ signaling is an important regulator of many physiological processes, and it has been widely reported to participate in the regulation of apoptotic cell death in cancer cells and tissues. However, in MPM the role of cellular Ca2+ has been poorly investigated. Therefore, we examined whether Ca2+ is involved in MPM. We found that mesothelioma cell lines and short-term cultures obtained from MPM-affected patients exhibited a critical dysregulation in Ca2+ signaling. We determined that this characteristic was associated with resistance to apoptotic stimuli and that correction of intracellular Ca2+ signaling resulted in the rescue of efficient apoptotic responses. In addition, we discovered that mitochondrial Ca2+-uptake plays a pivotal role as an inducer of apoptosis in MPM. Altogether, these findings suggest the identification of new MPM markers, which in turn could be potential targets for new therapeutic approaches.
Collapse
|
27
|
Bonelli MA, Fumarola C, La Monica S, Alfieri R. New therapeutic strategies for malignant pleural mesothelioma. Biochem Pharmacol 2016; 123:8-18. [PMID: 27431778 DOI: 10.1016/j.bcp.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. Therapeutic actions are limited due to the late stage at which most patients are diagnosed and the intrinsic chemo-resistance of the tumor. The recommended systemic therapy for MPM is cisplatin/pemetrexed regimen with a mean overall survival of about 12months and a median progression free survival of less than 6months. Considering that the incidence of this tumor is expected to increase in the next decade and that its prognosis is poor, novel therapeutic approaches are urgently needed. For some tumors, such as lung cancer and breast cancer, druggable oncogenic alterations have been identified and targeted therapy is an important option for these patients. For MPM, clinical guidelines do not recommend biological targeted therapy, mainly because of poor target definition or inappropriate trial design. Further studies are required for a full comprehension of the molecular pathogenesis of MPM and for the development of new target agents. This review updates pre-clinical and clinical data on the efficacy of targeted therapy and immune checkpoint inhibition in the treatment of mesothelioma. Finally, future perspectives in this deadly disease are also discussed.
Collapse
Affiliation(s)
- Mara A Bonelli
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Claudia Fumarola
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Silvia La Monica
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Roberta Alfieri
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| |
Collapse
|
28
|
Salvi S, Varesano S, Boccardo S, Ravetti JL, Canessa PA, Pistillo MP, Ferro P, Fedeli F, Roncella S. EGFR Status in Mesothelioma: Possible Implications for the Efficacy of Anti-EGFR and Anti-MET Therapies. J Thorac Oncol 2016; 11:e78-80. [DOI: 10.1016/j.jtho.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 10/21/2022]
|
29
|
Brevet M. Comparative genetics of diffuse malignant mesothelioma tumors of the peritoneumand pleura, with focus on BAP1 expression. Pleura Peritoneum 2016; 1:91-97. [PMID: 30911612 DOI: 10.1515/pp-2016-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022] Open
Abstract
Malignant mesothelioma (MM) is a malignancy arising from the mesothelial cells lining the thoracic and abdominal serosal cavities. The pleural space is the most commonly affected site, accounting for about 80% of cases, while peritoneum makes up the majority of the remaining 20%. The different types of mesotheliomas are generally considered as distinct diseases with specific risk factors, therapeutic strategies and prognoses. Epidemiological and clinical differences between pleural and peritoneal MM raise questions about the involvement of different molecular mechanisms. Since the BAP1 gene is involved in the BAP1 cancer syndrome and seems to be a prognostic factor in MM, this review presents an overview of BAP1 alterations in mesothelioma comparing pleural and peritoneal localizations.
Collapse
|
30
|
c-Met expression and MET amplification in malignant pleural mesothelioma. Ann Diagn Pathol 2016; 23:1-7. [PMID: 27402216 DOI: 10.1016/j.anndiagpath.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 01/04/2023]
Abstract
c-Met is a receptor tyrosine kinase shown to be overexpressed in malignant pleural mesothelioma (MPM). Whereas MET mutations have been identified in 3%-16% of MPMs, MET amplification has recently been reported in a single epithelioid MPM. We studied c-Met expression and MET amplification in a large MPM cohort and correlated results with morphologic and clinical features. We report the first case of MET amplification in sarcomatoid MPM. MPMs from surgical pathology files (1989-2014) were reviewed. c-Met immunohistochemistry was performed. Staining intensity and distribution were multiplied (H-score). Staining localization (cytoplasmic and/or membranous) was noted. Fluorescence in situ hybridization was performed using probes for MET and centromere 7. One hundred forty-nine patients (median age, 68.0years; interquartile range, 61-75) had epithelioid (n=97), biphasic (n=18), or sarcomatoid (n=34) MPM. Median follow-up was 10.1months (range, 0.1-222.5). One hundred thirty patients died of disease; 2 were alive with disease. c-Met was expressed in 147 MPMs. c-Met staining intensity, distribution, and H-score differed among the histologic subtypes (P=.015; P=.0001, and P=.0005, respectively), but none were predictive of survival. Epithelioid subtype had greater c-Met expression. MET amplification was identified in 1 sarcomatoid MPM and MET duplication in 1 epithelioid MPM; both had poor outcomes. Chromosome 7 aneusomy was observed in 54 of 144 (37.5%) MPMs and associated with decreased overall survival in sarcomatoid MPMs (hazard ratio=2.81; 95% confidence interval, 1.21-6.51; P=.01). In conclusion, c-Met is expressed in MPM, with significant differences in expression among histologic subtypes. MET amplification is a rare event in MPM, making it an unlikely common pathogenesis for c-Met expression.
Collapse
|
31
|
Borczuk AC, Pei J, Taub RN, Levy B, Nahum O, Chen J, Chen K, Testa JR. Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther 2016; 17:328-35. [PMID: 26853494 DOI: 10.1080/15384047.2016.1145850] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive tumor arising from mesothelial linings of the serosal cavities. Pleural space is the most common site, accounting for about 80% of cases, while peritoneum makes up the majority of the remaining 20%. While histologically similar, tumors from these sites are epidemiologically and clinically distinct and their attribution to asbestos exposure differs. We compared DNA array-based findings from 48 epithelioid peritoneal MMs and 41 epithelioid pleural MMs to identify similarities and differences in copy number alterations (CNAs). Losses in 3p (BAP1 gene), 9p (CDKN2A) and 22q (NF2) were seen in tumors from both tumor sites, although CDKN2A and NF2 losses were seen at a higher rate in pleural disease (p<0.01). Overall, regions of copy number gain were more common in peritoneal MM, whereas losses were more common in pleural MM, with regions of loss containing known tumor suppressor genes and regions of gain encompassing genes encoding receptor tyrosine kinase pathway members. Cases with known asbestos causation (n = 32 ) were compared with those linked to radiation exposure (n = 9 ). Deletions in 6q, 14q, 17p and 22q, and gain of 17q were seen in asbestos-associated but not radiation-related cases. As reported in post-radiation sarcoma, gains outnumbered losses in radiation-associated MM. The patterns of genomic imbalances suggest overlapping and distinct molecular pathways in MM of the pleura and peritoneum, and that differences in causation (i.e., asbestos vs. radiation) may account for some of these site-dependent differences.
Collapse
Affiliation(s)
- Alain C Borczuk
- a Department of Pathology and Medicine , Weill Cornell Medicine , New York , USA
| | - Jianming Pei
- b Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center , Philadelphia , USA
| | - Robert N Taub
- c Department of Medicine , Division of Hematology and Oncology
| | - Brynn Levy
- d Department of Pathology and Cell Biology , Columbia University Medical Center , New York , USA
| | - Odelia Nahum
- d Department of Pathology and Cell Biology , Columbia University Medical Center , New York , USA
| | - Jinli Chen
- d Department of Pathology and Cell Biology , Columbia University Medical Center , New York , USA
| | - Katherine Chen
- a Department of Pathology and Medicine , Weill Cornell Medicine , New York , USA
| | - Joseph R Testa
- b Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center , Philadelphia , USA
| |
Collapse
|
32
|
Bononi A, Napolitano A, Pass HI, Yang H, Carbone M. Latest developments in our understanding of the pathogenesis of mesothelioma and the design of targeted therapies. Expert Rev Respir Med 2015; 9:633-54. [PMID: 26308799 DOI: 10.1586/17476348.2015.1081066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Malignant mesothelioma is an aggressive cancer whose pathogenesis is causally linked to occupational exposure to asbestos. Familial clusters of mesotheliomas have been observed in settings of genetic predisposition. Mesothelioma incidence is anticipated to increase worldwide in the next two decades. Novel treatments are needed, as current treatment modalities may improve the quality of life, but have shown modest effects in improving overall survival. Increasing knowledge on the molecular characteristics of mesothelioma has led to the development of novel potential therapeutic strategies, including: molecular targeted approaches, that is the inhibition of vascular endothelial growth factor with bevacizumab; immunotherapy with chimeric monoclonal antibody, immunotoxin, antibody drug conjugate, vaccine and viruses; inhibition of asbestos-induced inflammation, that is aspirin inhibition of HMGB1 activity may decrease or delay mesothelioma onset and/or growth. We elaborate on the rationale behind new therapeutic strategies, and summarize available preclinical and clinical results, as well as efforts still ongoing.
Collapse
Affiliation(s)
- Angela Bononi
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Andrea Napolitano
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.,b 2 Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Harvey I Pass
- c 3 Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Haining Yang
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michele Carbone
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
33
|
Padda S, Neal JW, Wakelee HA. MET inhibitors in combination with other therapies in non-small cell lung cancer. Transl Lung Cancer Res 2015; 1:238-53. [PMID: 25806189 DOI: 10.3978/j.issn.2218-6751.2012.10.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
MET and its ligand hepatocyte growth factor/scatter factor (HGF) influence cell motility and lead to tumor growth, invasion, and angiogenesis. Alterations in MET have been observed in non-small cell lung cancer (NSCLC) tumors, with increased expression associated with more aggressive cancer, as well as acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI). MET inhibitors act via two basic mechanisms. Small molecule inhibitors antagonize ATP in the intracellular tyrosine kinase domain of MET, with studies on the following agents reviewed here: tivantinib (ARQ-197), cabozantinib (XL-184), crizotinib (PF-02341066), amuvatinib (MP470), MGCD265, foretinib (EXEL-2880), MK2461, SGX523, PHA665752, JNJ-38877605, SU11274, and K252A. The monoclonal monovalent antibody fragment onartuzumab (MetMAb) is also discussed here, which binds to and prevents the extracellular activation of the receptor by ligand. MET inhibition may both overcome the negative prognostic effect of MET tumor expression as well as antagonize MET-dependent acquired resistance to EGFR inhibitors. Here we discuss MET inhibitors in combination with other therapies in lung cancer.
Collapse
Affiliation(s)
- Sukhmani Padda
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| | - Joel W Neal
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| | - Heather A Wakelee
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| |
Collapse
|
34
|
Sheffield BS, Tinker AV, Shen Y, Hwang H, Li-Chang HH, Pleasance E, Ch'ng C, Lum A, Lorette J, McConnell YJ, Sun S, Jones SJM, Gown AM, Huntsman DG, Schaeffer DF, Churg A, Yip S, Laskin J, Marra MA. Personalized oncogenomics: clinical experience with malignant peritoneal mesothelioma using whole genome sequencing. PLoS One 2015; 10:e0119689. [PMID: 25798586 PMCID: PMC4370594 DOI: 10.1371/journal.pone.0119689] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022] Open
Abstract
Peritoneal mesothelioma is a rare and sometimes lethal malignancy that presents a clinical challenge for both diagnosis and management. Recent studies have led to a better understanding of the molecular biology of peritoneal mesothelioma. Translation of the emerging data into better treatments and outcome is needed. From two patients with peritoneal mesothelioma, we derived whole genome sequences, RNA expression profiles, and targeted deep sequencing data. Molecular data were made available for translation into a clinical treatment plan. Treatment responses and outcomes were later examined in the context of molecular findings. Molecular studies presented here provide the first reported whole genome sequences of peritoneal mesothelioma. Mutations in known mesothelioma-related genes NF2, CDKN2A, LATS2, amongst others, were identified. Activation of MET-related signaling pathways was demonstrated in both cases. A hypermutated phenotype was observed in one case (434 vs. 18 single nucleotide variants) and was associated with a favourable outcome despite sarcomatoid histology and multifocal disease. This study represents the first report of whole genome analyses of peritoneal mesothelioma, a key step in the understanding and treatment of this disease.
Collapse
Affiliation(s)
- Brandon S Sheffield
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Anna V Tinker
- British Columbia Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Harry Hwang
- PhenoPath Laboratories, Seattle, Washington, United States of America
| | - Hector H Li-Chang
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Carolyn Ch'ng
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Amy Lum
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Julie Lorette
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Yarrow J McConnell
- University of British Columbia, Department of Surgery, Surgical Oncology, Vancouver, Canada
| | - Sophie Sun
- British Columbia Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Allen M Gown
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada; PhenoPath Laboratories, Seattle, Washington, United States of America
| | - David G Huntsman
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - David F Schaeffer
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Andrew Churg
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Stephen Yip
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Janessa Laskin
- British Columbia Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| |
Collapse
|
35
|
Assis LVMD, Isoldi MC. Overview of the biochemical and genetic processes in malignant mesothelioma. J Bras Pneumol 2015; 40:429-42. [PMID: 25210967 PMCID: PMC4201175 DOI: 10.1590/s1806-37132014000400012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive form of cancer, has a long latency period, and is resistant to chemotherapy. It is extremely fatal, with a mean survival of less than one year. The development of MM is strongly correlated with exposure to asbestos and with other factors, such as erionite and simian virus 40 [corrected]. Although various countries have banned the use of asbestos, MM has proven to be difficult to control and there appears to be a trend toward an increase in its incidence in the years to come. In Brazil, MM has not been widely studied from a genetic or biochemical standpoint. In addition, there have been few epidemiological studies of the disease, and the profile of its incidence has yet to be well established in the Brazilian population. The objective of this study was to review the literature regarding the processes of malignant transformation, as well as the respective mechanisms of tumorigenesis, in MM.
Collapse
|
36
|
Gaudino G, Yang H, Carbone M. HGF/Met Signaling Is a Key Player in Malignant Mesothelioma Carcinogenesis. Biomedicines 2014; 2:327-344. [PMID: 28548074 PMCID: PMC5344271 DOI: 10.3390/biomedicines2040327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive cancer related to asbestos or erionite exposure and resistant to current therapies. Hepatocyte Growth Factor (HGF) and its tyrosine kinase receptor Met regulate cell growth, survival, motility/migration, and invasion. HGF and Met are expressed in MM cells, suggesting that the HGF/Met signaling plays a role in development and progression of this tumor, by autocrine and/or paracrine mechanisms. Upregulation and ligand-independent activation of Met, which is under suppressive control of miR-34 family members, correlate with enhanced invasion, migration and metastatic potential in several cancers, including MM. Moreover, Simian Virus 40 (SV40) Tag expression also induces a HGF autocrine circuit in an Rb-dependent manner in human mesothelial cells (HM) and possibly other cell types, enhancing cell adhesion, invasion and angiogenesis. The resulting activation of Met causes HM transformation and cell cycle progression, and contributes to virus particle assembling and infection of adjacent cells. The constitutive activation of Met, frequently occurring in MM, has been successfully targeted in preclinical models of MM. In conclusion, Met expression, activation state, subcellular localization and also HGF co-receptors expression, such as CD44, have clinical relevance for novel targeted therapies in a cancer for which no effective treatment is currently available.
Collapse
Affiliation(s)
- Giovanni Gaudino
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Haining Yang
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Michele Carbone
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
37
|
Marek LA, Hinz TK, von Mässenhausen A, Olszewski KA, Kleczko EK, Boehm D, Weiser-Evans MC, Nemenoff RA, Hoffmann H, Warth A, Gozgit JM, Perner S, Heasley LE. Nonamplified FGFR1 is a growth driver in malignant pleural mesothelioma. Mol Cancer Res 2014; 12:1460-9. [PMID: 24966347 DOI: 10.1158/1541-7786.mcr-14-0038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions as a nonmutated growth pathway. In a panel of pleural mesothelioma cell lines, FGFR1 and FGF2 were coexpressed in three of seven cell lines and were significantly associated with sensitivity to the FGFR-active tyrosine kinase inhibitor (TKI), ponatinib, both in vitro and in vivo using orthotopically propagated xenografts. Furthermore, RNAi-mediated silencing confirmed the requirement for FGFR1 in specific mesothelioma cells and sensitivity to the FGF ligand trap, FP-1039, validated the requirement for autocrine FGFs. None of the FGFR1-dependent mesothelioma cells exhibited increased FGFR1 gene copy number, based on a FISH assay, indicating that increased FGFR1 transcript and protein expression were not mediated by gene amplification. Elevated FGFR1 mRNA was detected in a subset of primary MPM clinical specimens and like MPM cells; none harbored increased FGFR1 gene copy number. These results indicate that autocrine signaling through FGFR1 represents a targetable therapeutic pathway in MPM and that biomarkers distinct from increased FGFR1 gene copy number such as FGFR1 mRNA would be required to identify patients with MPM bearing tumors driven by FGFR1 activity. IMPLICATIONS FGFR1 is a viable therapeutic target in a subset of MPMs, but FGFR TKI-responsive tumors will need to be selected by a biomarker distinct from increased FGFR1 gene copy number, possibly FGFR1 mRNA or protein levels.
Collapse
Affiliation(s)
- Lindsay A Marek
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anne von Mässenhausen
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Kyle A Olszewski
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily K Kleczko
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diana Boehm
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Mary C Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hans Hoffmann
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Arne Warth
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sven Perner
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
38
|
Zhou S, Liu L, Li H, Eilers G, Kuang Y, Shi S, Yan Z, Li X, Corson JM, Meng F, Zhou H, Sheng Q, Fletcher JA, Ou WB. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br J Cancer 2014; 110:2479-88. [PMID: 24762959 PMCID: PMC4021537 DOI: 10.1038/bjc.2014.220] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesothelioma is a notoriously chemotherapy-resistant neoplasm, as is evident in the dismal overall survival for patients with those of asbestos-associated disease. We previously demonstrated co-activation of multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET, and AXL in mesothelioma cell lines, suggesting that these kinases could serve as novel therapeutic targets. Although clinical trials have not shown activity for EGFR inhibitors in mesothelioma, concurrent inhibition of various activated RTKs has pro-apoptotic and anti-proliferative effects in mesothelioma cell lines. Thus, we hypothesised that a coordinated network of multi-RTK activation contributes to mesothelioma tumorigenesis. METHODS Activation of PI3K/AKT/mTOR, Raf/MAPK, and co-activation of RTKs were evaluated in mesotheliomas. Effects of RTK and downstream inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, apoptosis, activation of signalling intermediates, expression of cell-cycle checkpoints, and cell-cycle alterations. RESULTS We demonstrate activation of the PI3K/AKT/p70S6K and RAF/MEK/MAPK pathways in mesothelioma, but not in non-neoplastic mesothelial cells. The AKT activation, but not MAPK activation, was dependent on coordinated activation of RTKs EGFR, MET, and AXL. In addition, PI3K/AKT/mTOR pathway inhibition recapitulated the anti-proliferative effects of concurrent inhibition of EGFR, MET, and AXL. Dual targeting of PI3K/mTOR by BEZ235 or a combination of RAD001 and AKT knockdown had a greater effect on mesothelioma proliferation and viability than inhibition of individual activated RTKs or downstream signalling intermediates. Inhibition of PI3K/AKT was also associated with MDM2-p53 cell-cycle regulation. CONCLUSIONS These findings show that PI3K/AKT/mTOR is a crucial survival pathway downstream of multiple activated RTKs in mesothelioma, underscoring that PI3K/mTOR is a compelling target for therapeutic intervention.
Collapse
Affiliation(s)
- S Zhou
- 1] Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China [2] Department of Bioengineering, College of Biology and Chemical Engineering, Jiaxing University, Jiaxing, China
| | - L Liu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - H Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - G Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Y Kuang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - S Shi
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Z Yan
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - X Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - J M Corson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - F Meng
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - H Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Q Sheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - J A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - W-B Ou
- 1] Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China [2] Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA [3] Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
39
|
The role of key genes and pathways involved in the tumorigenesis of Malignant Mesothelioma. Biochim Biophys Acta Rev Cancer 2014; 1845:232-47. [PMID: 24491449 DOI: 10.1016/j.bbcan.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 12/14/2022]
Abstract
Malignant Mesothelioma (MM) is a very aggressive cancer with low survival rates and often diagnosed at an advanced stage. Several players have been implicated in the development of this cancer, such as asbestos, erionite and the simian virus 40 (SV40). Here, we have reviewed the involvement of erionite, SV40, as well as, the role of several genes (p16(INK4a), p14(ARF), NF2, LATS2, SAV, CTNNB1 and among others), the pathways (RAS, PI3K, Wnt, BCL and Hippo), and their respective roles in the development of MM.
Collapse
|
40
|
Tsc1-Tp53 loss induces mesothelioma in mice, and evidence for this mechanism in human mesothelioma. Oncogene 2013; 33:3151-60. [PMID: 23851502 PMCID: PMC3931745 DOI: 10.1038/onc.2013.280] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 12/25/2022]
Abstract
Mesothelioma is diagnosed in approximately 2,500 patients in the United States every year, most often arising in the pleural space, but also occurring as primary peritoneal mesothelioma. The vast majority of patients with mesothelioma die from their disease within 3 years. We developed a new mouse model of mesothelioma by bladder or intra-peritoneal injection of adenovirus Cre into mice with conditional alleles of each of Tp53 and Tsc1. Such mice began to develop malignant ascites about 6 months after injection, which was due to peritoneal mesothelioma, based on tumor morphology and immunohistochemical staining. Mesothelioma cell lines were established which showed loss of both Tsc1 and Tp53, with mTORC1 activation. Treatment of mice with malignant ascites due to mesothelioma with rapamycin led to a marked reduction in ascites, extended survival, and a 95–99% reduction in mesothelioma tumor volume, in comparison to vehicle-treated mice. To see if TSC1/TSC2 loss was a common genetic event in human mesothelioma, we examined 9 human mesothelioma cell lines, and found that 4 of 9 showed persistent activation of mTORC1 though none had loss of TSC1 or TSC2. A tissue microarray analysis of 198 human mesothelioma specimens showed that 33% of cases had reduced TSC2 expression and 60% showed activation of mTOR, indicating that mTOR activation is common in human mesothelioma and suggesting that it is a potential therapeutic target.
Collapse
|
41
|
|
42
|
Varkaris A, Gaur S, Parikh NU, Song JH, Dayyani F, Jin JK, Logothetis CJ, Gallick GE. Ligand-independent activation of MET through IGF-1/IGF-1R signaling. Int J Cancer 2013; 133:1536-46. [PMID: 23526299 DOI: 10.1002/ijc.28169] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
Abstract
The receptor tyrosine kinase, MET, has been implicated in tumorigenesis and metastasis of many solid tumors, by multiple mechanisms, including cross talk with epidermal growth factor receptor. In this study, we examined the role of insulin-like growth factor receptor-1 (IGF-1R) signaling in MET activation, focusing on prostate cancer cells. Stimulation of the prostate cancer cell line PC3 with IGF-1 induces a delayed phosphorylation of MET at multiple sites (indicative of full activation), reaching a maximum 18 hr after IGF-1 addition. MET activation does not require the sole MET ligand hepatocyte growth factor (HGF), but does require transcription to occur. Furthermore, direct injection of IGF-1 is sufficient to induce MET activation in vivo, in a PC3 xenograft model. Pharmacologic or genetic inhibition of the tyrosine kinase, Src, abolishes MET phosphorylation, and expression of activated Src is sufficient to induce Met phosphorylation in the absence of IGF-1 stimulation. Activated MET is essential for IGF-1-mediated increased migration of PC3 cells, demonstrating an important biologic effect of IGF-1-mediated MET activation. Finally, we demonstrate that IGF-1-induced delayed MET activation occurs in multiple cell lines which express both the receptors, suggesting that IGF-1R-mediated MET activation may contribute to tumorigenic properties of multiple cancer types when both growth factor receptors are expressed. The results further suggest that MET may be activated by multiple receptor tyrosine kinase receptors, and dual targeting of these receptors may be important therapeutically.
Collapse
Affiliation(s)
- Andreas Varkaris
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Muller PAJ, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PVE, Nixon C, Karim SA, Caswell PT, Noll JE, Coffill CR, Lane DP, Sansom OJ, Neilsen PM, Norman JC, Vousden KH. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 2013; 32:1252-65. [PMID: 22580601 PMCID: PMC3592945 DOI: 10.1038/onc.2012.148] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Tumour-derived mutant p53 proteins promote invasion, in part, by enhancing Rab coupling protein (RCP)-dependent receptor recycling. Here we identified MET as an RCP-binding protein and showed that mutant p53 promoted MET recycling. Mutant p53-expressing cells were more sensitive to hepatocyte growth factor, the ligand for MET, leading to enhanced MET signalling, invasion and cell scattering that was dependent on both MET and RCP. In cells expressing the p53 family member TAp63, inhibition of TAp63 also lead to cell scattering and MET-dependent invasion. However, in cells that express very low levels of TAp63, the ability of mutant p53 to promote MET-dependent cell scattering was independent of TAp63. Taken together, our data show that mutant p53 can enhance MET signalling to promote cell scattering and invasion through both TAp63-dependent and -independent mechanisms. MET has a predominant role in metastatic progression and the identification of mechanisms through which mutations in p53 can drive MET signalling may help to identify and direct therapy.
Collapse
Affiliation(s)
- P A J Muller
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - A G Trinidad
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - P Timpson
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - J P Morton
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - S Zanivan
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | - C Nixon
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - S A Karim
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - P T Caswell
- Welcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - J E Noll
- Cancer Therapeutics Laboratories, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - C R Coffill
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - D P Lane
- p53 Laboratory (A-STAR), Singapore, Singapore
| | - O J Sansom
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - P M Neilsen
- Cancer Therapeutics Laboratories, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - J C Norman
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - K H Vousden
- The Beatson Institute for Cancer Research, Glasgow, UK
| |
Collapse
|
44
|
McMillan R, Zauderer M, Bott M, Ladanyi M. Important recent insights into the genetics and biology of malignant pleural mesothelioma. Ann Cardiothorac Surg 2012; 1:462-5. [PMID: 23977537 PMCID: PMC3741788 DOI: 10.3978/j.issn.2225-319x.2012.10.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/26/2012] [Indexed: 11/14/2022]
Affiliation(s)
- Robert McMillan
- Department of Pathology and Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marjorie Zauderer
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Matthew Bott
- Department of Pathology and Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
45
|
Fischer B, Frei C, Moura U, Stahel R, Felley-Bosco E. Inhibition of phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy. Lung Cancer 2012; 78:23-9. [PMID: 22857894 DOI: 10.1016/j.lungcan.2012.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/21/2012] [Accepted: 07/08/2012] [Indexed: 12/12/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a relatively chemoresistant malignancy. Diverse biological targets are under investigation to develop new therapeutic options. One of these targets, namely the phosphoinositide-3-kinase (PI3K) pathway, has been shown to be a regulator of the side population (SP) phenotype in different cancers. The SP phenotype is due to drug efflux abilities providing drug-resistant properties. The presence of a SP fraction in MPM was recently observed in our laboratory. The aim of this study was to investigate the role of the PI3K pathway in the regulation of the SP phenotype in MPM. Treatment of overnight serum-starved cells with IGF increased phosphorylation of downstream target AKT, S6 and 4EBP1 and SP fraction in ZL55, ZL34 and SDM103T2 MPM cell lines. The PI3K/mTOR inhibitor NVP-BEZ235 and PI3K inhibitor wortmannin reduced the phosphorylation of downstream target AKT, S6 and 4EBP1 and decreased the SP fraction. Chemotherapy resistance mediated by drug efflux was tested by treating the cells with mitoxantrone. NVP-BEZ235 increased mitoxantrone cytotoxicity and this effect was mimicked by fumitremorgin C, a specific ABCG2 inhibitor, although not to the same extent, indicating that ABCG2-mediated drug efflux participates to chemoresistance. The involvement of ABCG2 in drug efflux was confirmed by determination of ABCG2-mediated decrease of intracellular mitoxantrone accumulation and silencing experiments. NVP-BEZ235-mediated decrease in drug efflux was associated with a significant decrease of ABCG2 present at the cell surface in ZL55 and SDM103T2 cells. In conclusion, the PI3K pathway is playing an important role in regulating the SP phenotype in MPM cells and inhibition of this activity may contribute to a more efficient cancer treatment.
Collapse
Affiliation(s)
- Bruno Fischer
- Molecular Oncology, Clinic for Oncology, University Hospital Zurich, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Ladanyi M, Zauderer MG, Krug LM, Ito T, McMillan R, Bott M, Giancotti F. New strategies in pleural mesothelioma: BAP1 and NF2 as novel targets for therapeutic development and risk assessment. Clin Cancer Res 2012; 18:4485-90. [PMID: 22825583 DOI: 10.1158/1078-0432.ccr-11-2375] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal cancer with limited therapeutic options. Recent work has focused on the frequent somatic inactivation of two tumor suppressor genes in MPM-NF2 (Neurofibromatosis type 2) and the recently identified BAP1 (BRCA associated protein 1). In addition, germline mutations in BAP1 have been identified that define a new familial cancer syndrome, which includes MPM, ocular melanoma, and other cancers. These recent advances may allow screening of high-risk individuals and the development of new therapies that target key pathways in MPM.
Collapse
Affiliation(s)
- Marc Ladanyi
- Departments of Pathology and Human Oncology & Pathogenesis Program, Surgery, and Cell Biology Program, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ho AL, Vasudeva SD, Laé M, Saito T, Barbashina V, Antonescu CR, Ladanyi M, Schwartz GK. PDGF receptor alpha is an alternative mediator of rapamycin-induced Akt activation: implications for combination targeted therapy of synovial sarcoma. Cancer Res 2012; 72:4515-25. [PMID: 22787122 DOI: 10.1158/0008-5472.can-12-1319] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Akt activation by the IGF-1 receptor (IGF-1R) has been posited to be a mechanism of intrinsic resistance to mTORC1 inhibitors (rapalogues) for sarcomas. Here we show that rapamycin-induced phosphorylation of Akt can occur in an IGF-1R-independent manner. Analysis of synovial sarcoma cell lines showed that either IGF-1R or the PDGF receptor alpha (PDGFRA) can mediate intrinsic resistance to rapamycin. Repressing expression of PDGFRA or inhibiting its kinase activity in synovial sarcoma cells blocked rapamycin-induced phosphorylation of Akt and decreased tumor cell viability. Expression profiling of clinical tumor samples revealed that PDGFRA was the most highly expressed kinase gene among several sarcoma disease subtypes, suggesting that PDGFRA may be uniquely significant for synovial sarcomas. Tumor biopsy analyses from a synovial sarcoma patient treated with the mTORC1 inhibitor everolimus and PDGFRA inhibitor imatinib mesylate confirmed that this drug combination can impact both mTORC1 and Akt signals in vivo. Together, our findings define mechanistic variations in the intrinsic resistance of synovial sarcomas to rapamycin and suggest therapeutic strategies to address them.
Collapse
Affiliation(s)
- Alan L Ho
- Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 300 East 66th Street, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang PH. Phosphoproteomic studies of receptor tyrosine kinases: future perspectives. MOLECULAR BIOSYSTEMS 2012; 8:1100-7. [PMID: 22134727 PMCID: PMC3746181 DOI: 10.1039/c1mb05327b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the last decade, large-scale mass spectrometry-based phosphoproteomic studies of receptor tyrosine kinases (RTKs) have generated a compendium of signalling networks that are activated downstream of these receptors. In this article, a brief summary of previous phosphoproteomic studies on epidermal growth factor receptor (EGFR) signalling will be presented together with a perspective on the importance for the field to keep pace with new advances in RTK biology. Using examples drawn primarily from studies on the EGFR, c-Met and Flt3 receptors, areas in RTK biology which will greatly benefit from the power of phosphoproteomics will be discussed, including (a) validating oncogenic RTK mutants identified in cancer genome sequencing efforts, (b) spatial RTK signalling networks and (c) understanding crosstalk and co-activation between members of the RTK superfamily.
Collapse
Affiliation(s)
- Paul H Huang
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom.
| |
Collapse
|
49
|
Quispel-Janssen JMMF, Baas P. Emerging therapies for malignant pleural mesothelioma. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13665-012-0010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
|