1
|
Daly M, McDaid L, Anandadas C, Brocklehurst A, Choudhury A, McWilliam A, Radhakrishna G, Eccles CL. Impact of motion management strategies on abdominal organ at risk delineation for magnetic resonance-guided radiotherapy. Phys Imaging Radiat Oncol 2024; 32:100650. [PMID: 39381613 PMCID: PMC11459006 DOI: 10.1016/j.phro.2024.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background and purpose The impact of respiratory motion management strategies for abdominal radiotherapy, such as abdominal compression (AC) and breath hold (BH), on abdominal organ at risk (OAR) delineation on magnetic resonance imaging (MRI) is unknown. This feasibility study compared the inter- and intra- observer delineation variation on MRI acquired with AC, BH for three critical abdominal OAR. Materials and methods T2-weighted (W) 3D MRI in free-breathing (FB) and with AC, and T1W 3D mDixon exhale BH were acquired. Four observers blinded to motion management strategy used, delineated stomach, liver, and duodenum on all MRI. One case per strategy was repeated over 6 weeks later to quantify intra-observer variation. Simultaneous truth and performance level estimation (STAPLE) contours for each OAR were generated, median and IQR mean distance to agreement (mDTA) and maximum Hausdorff distance (HD) between observer and STAPLE contours were calculated. Observers scored organ visibility on each MRI using a four-point Likert scale. Results A total of 27 scans including repeats were delineated. Pooled mDTA for all OARs was 1.3 mm (0.5 mm) with AC, 1.4 mm (1.0 mm) with BH, and 1.3 mm (0.5 mm) in FB. Intra-observer mDTA was highest for all organs in FB with 10.8 mm for duodenum, 1.8 mm for liver, and 2.7 mm for stomach. The pooled mean perceptual quality score value was highest for AC across organs. Conclusions No motion management strategy demonstrated superior similarity across OAR, emphasizing the need for personalised approaches based on individual clinical and patient factors.
Collapse
Affiliation(s)
- Mairead Daly
- Division of Cancer Sciences, Faculty of Medicine Biology & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Lisa McDaid
- Department of Radiotherapy, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Carmel Anandadas
- Department of Clinical Oncology, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Andrew Brocklehurst
- Department of Clinical Oncology, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, Faculty of Medicine Biology & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Clinical Oncology, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, Faculty of Medicine Biology & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Medical Physics and Engineering, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Ganesh Radhakrishna
- Division of Cancer Sciences, Faculty of Medicine Biology & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Clinical Oncology, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Cynthia L. Eccles
- Division of Cancer Sciences, Faculty of Medicine Biology & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Radiotherapy, The Christie Hospitals NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| |
Collapse
|
2
|
Gardner M, Dillon O, Byrne H, Keall P, O'Brien R. Data-driven rapid 4D cone-beam CT reconstruction for new generation linacs. Phys Med Biol 2024; 69:18NT02. [PMID: 39241801 DOI: 10.1088/1361-6560/ad780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Objective.Newer generation linear accelerators (Linacs) allow 20 s cone-beam CT (CBCT) acquisition which reduces radiation therapy treatment time. However, the current clinical application of these rapid scans is only 3DCBCT. In this paper we propose a novel data-driven rapid 4DCBCT reconstruction method for new generation linacs.Approach.This method relies on estimating the magnitude of the diaphragm motion from an initial 3D reconstruction. This estimated motion is used to linearly approximate a deformation vector field (DVF) for each respiration phase. These DVFs are then used for motion compensated Feldkamp-Davis-Kress (MCFDK) reconstructions. This method, named MCFDK Data Driven (MCFDK-DD), was compared to a MCFDK reconstruction using a prior motion model (MCFDK-Prior), a 3D-FDK reconstruction, and a conventional acquisition (4 mins) conventional reconstruction 4DCBCT (4D-FDK). The data used in this paper were derived from 4DCT volumes from 12 patients from The Cancer Imaging Archives. Image quality was quantified using RMSE of line plots centred on the tumour, tissue interface width (TIW), the mean square error (MSE) and structural similarity index measurement (SSIM).Main Results.The tumour line plots in the Superior-Inferior direction showed reduced RMSE for the MCFDK-DD compared to the 3D-FDK method, indicating the MCFDK-DD method provided a more accurate tumour location. Similarly, the TIW values from the MCFDK-DD reconstructions (median 8.6 mm) were significantly reduced for the MCFDK-DD method compared to the 3D-FDK reconstructions (median 14.8 mm, (p< 0.001). The MCFDK-DD, MCFDK-Prior and 3D-FDK had median MSE values of1.08×10-6mm-1,1.11×10-6mm-1and1.17×10-6mm-1respectively. The corresponding median SSIM values were 0.93, 0.92 and 0.92 respectively indicating the MCFDK-DD had good agreement with the conventional 4D-FDK reconstructions.Significance.These results demonstrate the feasibility of creating accurate data-driven 4DCBCT images for rapid scans on new generation linacs. These findings could lead to increased clinical usage of 4D information on newer generation linacs.
Collapse
Affiliation(s)
- Mark Gardner
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Darlington, New South Wales, Australia
| | - Owen Dillon
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Darlington, New South Wales, Australia
| | - Hilary Byrne
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Darlington, New South Wales, Australia
| | - Paul Keall
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Darlington, New South Wales, Australia
| | - Ricky O'Brien
- Medical Radiations, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
3
|
Bortolot M, Cortiula F, Fasola G, De Ruysscher D, Naidoo J, Hendriks LEL. Treatment of unresectable stage III non-small cell lung cancer for patients who are under-represented in clinical trials. Cancer Treat Rev 2024; 129:102797. [PMID: 38972134 DOI: 10.1016/j.ctrv.2024.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Concurrent chemoradiotherapy (cCRT) followed by one year of consolidation durvalumab is the current standard-of-care for patients with unresectable stage III non-small cell lung cancer (NSCLC), of good functional status. However, cCRT and consolidation durvalumab may be challenging to administer for selected patient populations underrepresented or even excluded in clinical trials: older and/or frail patients; those with cardiovascular or respiratory comorbidities in which treatment-related adverse events may be higher, and patients with pre-existing autoimmune disorders for whom immunotherapy use is controversial. In this narrative review, we discuss the current evidence, challenges, ongoing clinical trials and potential future treatment scenarios in relevant subgroups of patients with locally advanced NSCLC, who are underrepresented in clinical trials.
Collapse
Affiliation(s)
- Martina Bortolot
- University of Udine, Department of Medicine (DAME), Udine, Italy; University Hospital of Udine, Department of Oncology, Udine, Italy
| | - Francesco Cortiula
- University Hospital of Udine, Department of Oncology, Udine, Italy; Department of Radiation Oncology (Maastro), Maastricht University Medical Centre (+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands.
| | - Gianpiero Fasola
- University Hospital of Udine, Department of Oncology, Udine, Italy
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre (+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Jarushka Naidoo
- Beaumont Hospital and RCSI University of Health Sciences, Dublin, Ireland; Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, USA
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, Maastricht University Medical Centre (+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| |
Collapse
|
4
|
Huijskens S, Granton P, Fremeijer K, van Wanrooij C, Offereins-van Harten K, Schouwenaars-van den Beemd S, Hoogeman MS, Sattler MGA, Penninkhof J. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother Oncol 2024; 195:110229. [PMID: 38492672 DOI: 10.1016/j.radonc.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE To evaluate the performance of automated surface-guided gating for left-sided breast cancer with DIBH and VMAT. MATERIALS AND METHODS Patients treated in the first year after introduction of DIBH with VMAT were retrospectively considered for analysis. With automated surface-guided gating the beam automatically switches on/off, if the surface region of interest moved in/out the gating tolerance (±3 mm, ±3°). Patients were coached to hold their breath as long as comfortably possible. Depending on the patient's preference, patients received audio instructions during treatment delivery. Real-time positional variations of the breast/chest wall surface with respect to the reference surface were collected, for all three orthogonal directions. The durations and number of DIBHs needed to complete dose delivery, and DIBH position variations were determined. To evaluate an optimal gating window threshold, smaller tolerances of ±2.5 mm, ±2.0 mm, and ±1.5 mm were simulated. RESULTS 525 fractions from 33 patients showed that median DIBH duration was 51 s (range: 30-121 s), and median 4 DIBHs per fraction were needed to complete VMAT dose delivery. Median intra-DIBH stability and intrafractional DIBH reproducibility approximated 1.0 mm in each direction. No large differences were found between patients who preferred to perform the DIBH procedure with (n = 21) and without audio-coaching (n = 12). Simulations demonstrated that gating window tolerances could be reduced from ±3.0 mm to ±2.0 mm, without affecting beam-on status. CONCLUSION Independent of the use of audio-coaching, this study demonstrates that automated surface-guided gating with DIBH and VMAT proved highly efficient. Patients' DIBH performance far exceeded our expectations compared to earlier experiences and literature. Furthermore, gating window tolerances could be reduced.
Collapse
Affiliation(s)
- Sophie Huijskens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands.
| | - Patrick Granton
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kimm Fremeijer
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Cynthia van Wanrooij
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kirsten Offereins-van Harten
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | | | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Margriet G A Sattler
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Joan Penninkhof
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Wimmert L, Nielsen M, Madesta F, Gauer T, Hofmann C, Werner R. Benchmarking machine learning-based real-time respiratory signal predictors in 4D SBRT. Med Phys 2024; 51:3173-3183. [PMID: 38536107 DOI: 10.1002/mp.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Stereotactic body radiotherapy of thoracic and abdominal tumors has to account for respiratory intrafractional tumor motion. Commonly, an external breathing signal is continuously acquired that serves as a surrogate of the tumor motion and forms the basis of strategies like breathing-guided imaging and gated dose delivery. However, due to inherent system latencies, there exists a temporal lag between the acquired respiratory signal and the system response. Respiratory signal prediction models aim to compensate for the time delays and to improve imaging and dose delivery. PURPOSE The present study explores and compares six state-of-the-art machine and deep learning-based prediction models, focusing on real-time and real-world applicability. All models and data are provided as open source and data to ensure reproducibility of the results and foster reuse. METHODS The study was based on 2502 breathing signals (t t o t a l ≈ 90 $t_{total} \approx 90$ h) acquired during clinical routine, split into independent training (50%), validation (20%), and test sets (30%). Input signal values were sampled from noisy signals, and the target signal values were selected from corresponding denoised signals. A standard linear prediction model (Linear), two state-of-the-art models in general univariate signal prediction (Dlinear, Xgboost), and three deep learning models (Lstm, Trans-Enc, Trans-TSF) were chosen. The prediction performance was evaluated for three different prediction horizons (480, 680, and 920 ms). Moreover, the robustness of the different models when applied to atypical, that is, out-of-distribution (OOD) signals, was analyzed. RESULTS The Lstm model achieved the lowest normalized root mean square error for all prediction horizons. The prediction errors only slightly increased for longer horizons. However, a substantial spread of the error values across the test signals was observed. Compared to typical, that is, in-distribution test signals, the prediction accuracy of all models decreased when applied to OOD signals. The more complex deep learning models Lstm and Trans-Enc showed the least performance loss, while the performance of simpler models like Linear dropped the most. Except for Trans-Enc, inference times for the different models allowed for real-time application. CONCLUSION The application of the Lstm model achieved the lowest prediction errors. Simpler prediction filters suffer from limited signal history access, resulting in a drop in performance for OOD signals.
Collapse
Affiliation(s)
- Lukas Wimmert
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Nielsen
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederic Madesta
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Gauer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rene Werner
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Meng YJ, Mankuzhy NP, Chawla M, Lee RP, Yorke ED, Zhang Z, Gelb E, Lim SB, Cuaron JJ, Wu AJ, Simone CB, Gelblum DY, Lovelock DM, Harris W, Rimner A. A Prospective Study on Deep Inspiration Breath Hold Thoracic Radiation Therapy Guided by Bronchoscopically Implanted Electromagnetic Transponders. Cancers (Basel) 2024; 16:1534. [PMID: 38672616 PMCID: PMC11048337 DOI: 10.3390/cancers16081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.
Collapse
Affiliation(s)
- Yuzhong Jeff Meng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Nikhil P. Mankuzhy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Robert P. Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Ellen D. Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Emily Gelb
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - John J. Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- New York Proton Center, New York, NY 10035, USA; (C.B.S.II)
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- Department of Radiation Oncology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Evanson D, Griffin M, O'Reilly SE, Johnson T, Werner T, Kothekar E, Jahangiri P, Simone CB, Swisher-McClure S, Feigenberg SJ, Revheim ME, Zou J, Alavi A. Comparative assessment of radiation therapy-induced vasculitis using [ 18F]FDG-PET/CT in patients with non-small cell lung cancer treated with proton versus photon radiotherapy. Eur J Nucl Med Mol Imaging 2024; 51:1444-1450. [PMID: 38095673 PMCID: PMC10957676 DOI: 10.1007/s00259-023-06535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/18/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE To assess radiation therapy (RT)-induced vasculitis in patients with non-small cell lung cancer (NSCLC) by examining changes in the uptake of 18F-fluoro-D-deoxyglucose ([18F]FDG) by positron emission tomography/computed tomography (PET/CT) images of the ascending aorta (AA), descending aorta (DA), and aortic arch (AoA) before and after proton and photon RT. METHOD Thirty-five consecutive locally advanced NSCLC patients were definitively treated with proton (n = 27) or photon (n = 8) RT and concurrent chemotherapy. The patients were prospectively enrolled to undergo [18F]FDG-PET/CT imaging before and 3 months after RT. An adaptive contrast-oriented thresholding algorithm was applied to generate mean standardized uptake values (SUVmean) for regions of interest (ROIs) 3 mm outside and 3 mm inside the outer perimeter of the AA, DA, and AoA. These ROIs were employed to exclusively select the aortic wall and remove the influence of blood pool activity. SUVmeans before and after RT were compared using two-tailed paired t-tests. RESULTS RT treatments were associated with increased SUVmeans in the AA, DA, and AoA-1.9%, 0.3%, and 1.3% for proton and 15.8%, 9.5%, and 15.5% for photon, respectively. There was a statistically significant difference in the ∆SUVmean (post-RT SUVmean - pre-RT SUVmean) in patients treated with photon RT when compared to ∆SUVmean in patients treated with proton RT in the AA (p = 0.043) and AoA (p = 0.015). There was an average increase in SUVmean that was related to dose for photon patients (across structures), but that was not seen for proton patients, although the increase was not statistically significant. CONCLUSION Our results suggest that patients treated with photon RT for NSCLC may exhibit significantly more RT-induced inflammation (measured as ∆SUVmean) in the AA and AoA when compared to patients who received proton RT. Knowledge gained from further analyses in larger cohorts could aid in treatment planning and help prevent the significant morbidity and mortality associated with RT-induced vascular complications. TRIAL REGISTRATION NCT02135679.
Collapse
Affiliation(s)
- D Evanson
- Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Griffin
- Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - S E O'Reilly
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - T Johnson
- University of Notre Dame, Notre Dame, IN, USA
| | - T Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - E Kothekar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - P Jahangiri
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - C B Simone
- New York Proton Center, New York, NY, USA
| | - S Swisher-McClure
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - S J Feigenberg
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - M-E Revheim
- The Intervention Center, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - J Zou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - A Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kishi N, Yoneyama M, Inoo H, Inoue M, Iramina H, Nakakura A, Ono T, Hirashima H, Adachi T, Matsushita N, Sasaki M, Fujimoto T, Nakamura M, Matsuo Y, Mizowaki T. Protocol of a phase II study to evaluate the efficacy and safety of deep-inspiration breath-hold daily online adaptive radiotherapy for centrally located lung tumours (PUDDING study). Radiat Oncol 2024; 19:32. [PMID: 38459580 PMCID: PMC10921600 DOI: 10.1186/s13014-024-02427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).
Collapse
Affiliation(s)
- Noriko Kishi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Masahiro Yoneyama
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Inoo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Minoru Inoue
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Nakakura
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takanori Adachi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | | | - Makoto Sasaki
- Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | | | - Mitsuhiro Nakamura
- Department of Information Technology and Medical Engineering, Division of Medical Physics, Graduate School of Medicine, Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Onohigashi, Osakasayama-Shi, Osaka, 589-8511, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
9
|
Kito S, Mukumoto N, Nakamura M, Tanabe H, Karasawa K, Kokubo M, Sakamoto T, Iizuka Y, Yoshimura M, Matsuo Y, Hiraoka M, Mizowaki T. Population-based asymmetric margins for moving targets in real-time tumor tracking. Med Phys 2024; 51:1561-1570. [PMID: 37466995 DOI: 10.1002/mp.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Both geometric and dosimetric components are commonly considered when determining the margin for planning target volume (PTV). As dose distribution is shaped by controlling beam aperture in peripheral dose prescription and dose-escalated simultaneously integrated boost techniques, adjusting the margin by incorporating the variable dosimetric component into the PTV margin is inappropriate; therefore, geometric components should be accurately estimated for margin calculations. PURPOSE We introduced an asymmetric margin-calculation theory using the guide to the expression of uncertainty in measurement (GUM) and intra-fractional motion. The margins in fiducial marker-based real-time tumor tracking (RTTT) for lung, liver, and pancreatic cancers were calculated and were then evaluated using Monte Carlo (MC) simulations. METHODS A total of 74 705, 73 235, and 164 968 sets of intra- and inter-fractional positional data were analyzed for 48 lung, 48 liver, and 25 pancreatic cancer patients, respectively, in RTTT clinical trials. The 2.5th and 97.5th percentiles of the positional error were considered representative values of each fraction of the disease site. The population-based statistics of the probability distributions of these representative positional errors (PD-RPEs) were calculated in six directions. A margin covering 95% of the population was calculated using the proposed formula. The content rate in which the clinical target volume (CTV) was included in the PTV was calculated through MC simulations using the PD-RPEs. RESULTS The margins required for RTTT were at most 6.2, 4.6, and 3.9 mm for lung, liver, and pancreatic cancer, respectively. MC simulations revealed that the median content rates using the proposed margins satisfied 95% for lung and liver cancers and 93% for pancreatic cancer, closer to the expected rates than the margins according to van Herk's formula. CONCLUSIONS Our proposed formula based on the GUM and motion probability distributions (MPD) accurately calculated the practical margin size for fiducial marker-based RTTT. This was verified through MC simulations.
Collapse
Affiliation(s)
- Satoshi Kito
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroaki Tanabe
- Department of Radiological Technology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Katsuyuki Karasawa
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Masaki Kokubo
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Takashi Sakamoto
- Department of Radiation Oncology, Kyoto-Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Yusuke Iizuka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
10
|
Tanaka H, Ono T, Ueda K, Karita M, Manabe Y, Kajima M, Sera T, Fujimoto K, Yuasa Y, Shiinoki T. Deep inspiration breath hold real-time tumor-tracking radiation therapy (DBRT) as a novel stereotactic body radiation therapy approach for lung tumors. Sci Rep 2024; 14:2400. [PMID: 38287139 PMCID: PMC10825222 DOI: 10.1038/s41598-024-53020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Radiotherapy with deep inspiration breath hold (DIBH) reduces doses to the lungs and organs at risk. The stability of breath holding and reproducibility of tumor location are higher during expiration than during inspiration; therefore, we developed an irradiation method combining DIBH and real-time tumor-tracking radiotherapy (RTRT) (DBRT). Nine patients were enrolled in this study. Fiducial markers were placed near tumors using bronchoscopy. Treatment planning computed tomography (CT) was performed thrice during DIBH, assisted by spirometer-based device. Each CT scan was fused using fiducial markers. Gross tumor volume (GTV) was contoured for each dataset and summed to create GTVsum; adding a 5-mm margin around GTVsum generated the planning target volume. The prescribed dose was mainly 42 Gy in four fractions. The treatment plan was created using DIBH CT (DBRT-plan), with a similar treatment plan created for expiratory CT for cases for which DBRT could not be performed (conv-plan). Vx defined as the volume of the lung received x Gy, and the mean lung dose, V20, V10, and V5 were evaluated. DBRT was completed in all patients. Mean dose, V20, and V10 were significantly lower in the DBRT-plan than in the conv-plan (all p = 0.003). Mean rates of decrease for mean dose, V20, and V10 were 14.0%, 27.6%, and 19.1%, respectively. No significant difference was observed in V5. We developed DBRT, a stereotactic body radiation therapy performed with the DIBH technique; it combines a spirometer-based breath-hold support system with an RTRT system. All patients who underwent DBRT completed the procedure without any technical or mechanical complications. This is a promising methodology that may significantly reduce lung doses.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan.
| | - Taiki Ono
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Kazushi Ueda
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masako Karita
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Yuki Manabe
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Miki Kajima
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Tatsuhiro Sera
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Koya Fujimoto
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
11
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
12
|
Hoffmann L, Ehmsen ML, Hansen J, Hansen R, Knap MM, Mortensen HR, Poulsen PR, Ravkilde T, Rose HK, Schmidt HH, Worm ES, Møller DS. Repeated deep-inspiration breath-hold CT scans at planning underestimate the actual motion between breath-holds at treatment for lung cancer and lymphoma patients. Radiother Oncol 2023; 188:109887. [PMID: 37659663 DOI: 10.1016/j.radonc.2023.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
PURPOSE/OBJECTIVE Deep-inspiration breath-hold (DIBH) during radiotherapy may reduce dose to the lungs and heart compared to treatment in free breathing. However, intra-fractional target shifts between several breath-holds may decrease target coverage. We compared target shifts between four DIBHs at the planning-CT session with those measured on CBCT-scans obtained pre- and post-DIBH treatments. MATERIAL/METHODS Twenty-nine lung cancer and nine lymphoma patients were treated in DIBH. An external gating block was used as surrogate for the DIBH-level with a window of 2 mm. Four DIBH CT-scans were acquired: one for planning (CTDIBH3) and three additional (CTDIBH1,2,4) to assess the intra-DIBH target shifts at scanning by registration to CTDIBH3. During treatment, pre-treatment (CBCTpre) and post-treatment (CBCTpost) scans were acquired. For each pair of CBCTpre/post, the target intra-DIBH shift was determined. For lung cancer, tumour (GTV-Tlung) and lymph nodes (GTV-Nlung) were analysed separately. Group mean (GM), systematic and random errors, and GM for the absolute maximum shifts (GMmax) were calculated for the shifts between CTDIBH1,2,3,4 and between CBCTpre/post. RESULTS For GTV-Tlung, GMmax was larger at CBCT than CT in all directions. GMmax in cranio-caudal direction was 3.3 mm (CT)and 6.1 mm (CBCT). The standard deviations of the shifts in the left-right and cranio-caudal directions were larger at CBCT than CT. For GTV-Nlung and CTVlymphoma, no difference was found in GMmax or SD. CONCLUSION Intra-DIBH shifts at planning-CT session are generally smaller than intra-DIBH shifts observed at CBCTpre/post and therefore underestimate the intra-fractional DIBH uncertainty during treatment. Lung tumours show larger intra-fractional variations than lymph nodes and lymphoma targets.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - M L Ehmsen
- Danish Center for Proton Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - J Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - R Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - M M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - H R Mortensen
- Danish Center for Proton Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - P R Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Center for Proton Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - T Ravkilde
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - H K Rose
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - H H Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - E S Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - D S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Håkansson K, Josipovic M, Ottosson W, Behrens CP, Vogelius IR, Persson G. Evaluating the dosimetric effect of intra-fractional variations in deep inspiration breath-hold radiotherapy - a proof-of-concept study. Acta Oncol 2023; 62:1246-1250. [PMID: 37738385 DOI: 10.1080/0284186x.2023.2259084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Affiliation(s)
- K Håkansson
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - M Josipovic
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - W Ottosson
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - C P Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - I R Vogelius
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - G Persson
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| |
Collapse
|
14
|
Aznar MC, Carrasco de Fez P, Corradini S, Mast M, McNair H, Meattini I, Persson G, van Haaren P. ESTRO-ACROP guideline: Recommendations on implementation of breath-hold techniques in radiotherapy. Radiother Oncol 2023; 185:109734. [PMID: 37301263 DOI: 10.1016/j.radonc.2023.109734] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The use of breath-hold techniques in radiotherapy, such as deep-inspiration breath hold, is increasing although guidelines for clinical implementation are lacking. In these recommendations, we aim to provide an overview of available technical solutions and guidance for best practice in the implementation phase. We will discuss specific challenges in different tumour sites including factors such as staff training and patient coaching, accuracy, and reproducibility. In addition, we aim to highlight the need for further research in specific patient groups. This report also reviews considerations for equipment, staff training and patient coaching, as well as image guidance for breath-hold treatments. Dedicated sections for specific indications, namely breast cancer, thoracic and abdominal tumours are also included.
Collapse
Affiliation(s)
- Marianne Camille Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
| | - Pablo Carrasco de Fez
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Mirjam Mast
- Department of Radiotherapy, Haaglanden Medical Center, Leidschendam, The Netherlands
| | - Helen McNair
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, UK
| | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Gitte Persson
- Department of Oncology, Herlev-Gentofte Hospital, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark
| | - Paul van Haaren
- Department of Radiotherapy, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Regnery S, de Colle C, Eze C, Corradini S, Thieke C, Sedlaczek O, Schlemmer HP, Dinkel J, Seith F, Kopp-Schneider A, Gillmann C, Renkamp CK, Landry G, Thorwarth D, Zips D, Belka C, Jäkel O, Debus J, Hörner-Rieber J. Pulmonary magnetic resonance-guided online adaptive radiotherapy of locally advanced: the PUMA trial. Radiat Oncol 2023; 18:74. [PMID: 37143154 PMCID: PMC10161406 DOI: 10.1186/s13014-023-02258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Patients with locally-advanced non-small-cell lung cancer (LA-NSCLC) are often ineligible for surgery, so that definitive chemoradiotherapy (CRT) represents the treatment of choice. Nevertheless, long-term tumor control is often not achieved. Intensification of radiotherapy (RT) to improve locoregional tumor control is limited by the detrimental effect of higher radiation exposure of thoracic organs-at-risk (OAR). This narrow therapeutic ratio may be expanded by exploiting the advantages of magnetic resonance (MR) linear accelerators, mainly the online adaptation of the treatment plan to the current anatomy based on daily acquired MR images. However, MR-guidance is both labor-intensive and increases treatment times, which raises the question of its clinical feasibility to treat LA-NSCLC. Therefore, the PUMA trial was designed as a prospective, multicenter phase I trial to demonstrate the clinical feasibility of MR-guided online adaptive RT in LA-NSCLC. METHODS Thirty patients with LA-NSCLC in stage III A-C will be accrued at three German university hospitals to receive MR-guided online adaptive RT at two different MR-linac systems (MRIdian Linac®, View Ray Inc. and Elekta Unity®, Elekta AB) with concurrent chemotherapy. Conventionally fractioned RT with isotoxic dose escalation up to 70 Gy is applied. Online plan adaptation is performed once weekly or in case of major anatomical changes. Patients are followed-up by thoracic CT- and MR-imaging for 24 months after treatment. The primary endpoint is twofold: (1) successfully completed online adapted fractions, (2) on-table time. Main secondary endpoints include adaptation frequency, toxicity, local tumor control, progression-free and overall survival. DISCUSSION PUMA aims to demonstrate the clinical feasibility of MR-guided online adaptive RT of LA-NSCLC. If successful, PUMA will be followed by a clinical phase II trial that further investigates the clinical benefits of this approach. Moreover, PUMA is part of a large multidisciplinary project to develop MR-guidance techniques. TRIAL REGISTRATION ClinicalTrials.gov: NCT05237453 .
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara de Colle
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Thieke
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Sedlaczek
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julien Dinkel
- Department of Radiology, LMU Munich, Munich, Germany
| | - Ferdinand Seith
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | | | - Clarissa Gillmann
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Jäkel
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Abstract
During the past 30 years, several advances have been made allowing for safer and more effective treatment of patients with liver cancer. This report reviews recent advances in radiation therapy for primary liver cancers including hepatocellular carcinoma and intrahepatic cholangiocarcinoma. First, studies focusing on liver stereotactic body radiation therapy (SBRT) are reviewed focusing on lessons learned and knowledge gained from early pioneering trials. Then, new technologies to enhance SBRT treatments are explored including adaptive therapy and MRI-guided and biology-guided radiation therapy. Finally, treatment with Y-90 transarterial radioembolization is reviewed with a focus on novel approaches focused on personalized therapy.
Collapse
|
17
|
Savanović M, Štrbac B, Jaroš D, Loi M, Huguet F, Foulquier JN. Quantification of Lung Tumor Motion and Optimization of Treatment. J Biomed Phys Eng 2023; 13:65-76. [PMID: 36818005 PMCID: PMC9923245 DOI: 10.31661/jbpe.v0i0.2102-1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 02/02/2023]
Abstract
Background Mobility of lung tumors is induced by respiration and causes inadequate dose coverage. Objective This study quantified lung tumor motion, velocity, and stability for small (≤5 cm) and large (>5 cm) tumors to adapt radiation therapy techniques for lung cancer patients. Material and Methods In this retrospective study, 70 patients with lung cancer were included that 50 and 20 patients had a small and large gross tumor volume (GTV). To quantify the tumor motion and velocity in the upper lobe (UL) and lower lobe (LL) for the central region (CR) and a peripheral region (PR), the GTV was contoured in all ten respiratory phases, using 4D-CT. Results The amplitude of tumor motion was greater in the LL, with motion in the superior-inferior (SI) direction compared to the UL, with an elliptical motion for small and large tumors. Tumor motion was greater in the CR, rather than in the PR, by 63% and 49% in the UL compared to 50% and 38% in the LL, for the left and right lung. The maximum tumor velocity for a small GTV was 44.1 mm/s in the LL (CR), decreased to 4 mm/s for both ULs (PR), and a large GTV ranged from 0.4 to 9.4 mm/s. Conclusion The tumor motion and velocity depend on the tumor localization and the greater motion was in the CR for both lobes due to heart contribution. The tumor velocity and stability can help select the best technique for motion management during radiation therapy.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Bojan Štrbac
- MATER Private Hospital, Department of Physics, Eccles Street, Dublin 7, Ireland
| | - Dražan Jaroš
- Center for Radiotherapy, International Medical Centers, Affidea, 78000 Banja Luka, Bosnia, and Herzegovina
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia, and Herzegovina
| | - Mauro Loi
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Florence Huguet
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Jean-Noël Foulquier
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| |
Collapse
|
18
|
Kim KH, Pyo H, Lee H, Oh D, Noh JM, Ahn YC, Kim CG, Yoon HI, Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ku BM, Shin EC, Ahn MJ. Association of T Cell Senescence with Radiation Pneumonitis in Patients with Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:464-475. [PMID: 35896144 DOI: 10.1016/j.ijrobp.2022.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Associations between immunosenescence and radiation pneumonitis (RP) are largely unknown. We aimed to identify a peripheral blood T cell senescence biomarker to predict RP in patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Patients with locally advanced NSCLC who received definitive concurrent chemoradiotherapy (dCRT) were prospectively registered (cohort 1, n=23; cohort 2, n=31). Peripheral blood was collected at baseline, during dCRT, and at 1 month post-dCRT. Patients were dichotomized to grade ≥2 (G2+) RP and grade 0-1 (G0-1) RP. Flow cytometry was performed to assess phenotypes and functional properties of T cell subsets. RP incidence was estimated via competing risk analysis. RESULTS Five and six patients exhibited G2+ RP following dCRT in cohorts 1 and 2, respectively. Patients with G2+ RP exhibited a more aged T cell pool and higher frequencies of senescent CD57+CD28-CD8+ T cells than patients with G0-1 RP at baseline, during dCRT, and at 1 month post-dCRT. These senescent cells exhibited increased granzyme B, IFN-γ, and TNF-α production. Higher baseline frequency of CD57+CD28-CD8+ T cells was an independent predictor of G2+ RP (hazard ratio, 8.42; 95% confidence interval, 2.58-27.45; P<0.001). Recursive partitioning analysis revealed three distinct risk groups stratified by baseline CD57+CD28-CD8+ T cell frequency and lung V20 Gy, with 1-year cumulative G2+ RP incidences of 50.0%, 16.7%, and 0% for high-, intermediate-, and low-risk groups, respectively (P=0.002). CONCLUSIONS Higher baseline frequencies of CD57+CD28-CD8+ T cells correlated with increased G2+ RP risks. Our results suggest the need for further investigation of the role of T cell senescence on radiation-induced organ damage.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Burton A, Beveridge S, Hardcastle N, Lye J, Sanagou M, Franich R. Adoption of respiratory motion management in radiation therapy. Phys Imaging Radiat Oncol 2022; 24:21-29. [PMID: 36148153 PMCID: PMC9485913 DOI: 10.1016/j.phro.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose A survey on the patterns of practice of respiratory motion management (MM) was distributed to 111 radiation therapy facilities to inform the development of an end-to-end dosimetry audit including respiratory motion. Materials and methods The survey (distributed via REDCap) asked facilities to provide information specific to the combinations of MM techniques (breath-hold gating – BHG, internal target volume – ITV, free-breathing gating – FBG, mid-ventilation – MidV, tumour tracking – TT), sites treated (thorax, upper abdomen, lower abdomen), and fractionation regimes (conventional, stereotactic ablative body radiation therapy – SABR) used in their clinic. Results The survey was completed by 78% of facilities, with 98% of respondents indicating that they used at least one form of MM. The ITV approach was common to all MM-users, used for thoracic treatments by 89% of respondents, and upper and lower abdominal treatments by 38%. BHG was the next most prevalent (41% of MM users), with applications in upper abdominal and thoracic treatment sites (28% vs 25% respectively), but minimal use in the lower abdomen (9%). FBG and TT were utilised sparingly (17%, 7% respectively), and MidV was not selected at all. Conclusions Two distinct treatment workflows (including use of motion limitation, imaging used for motion assessment, dose calculation, and image guidance procedures) were identified for the ITV and BHG MM techniques, to form the basis of the initial audit. Thoracic SABR with the ITV approach was common to nearly all respondents, while upper abdominal SABR using BHG stood out as more technically challenging. Other MM techniques were sparsely used, but may be considered for future audit development.
Collapse
|
20
|
Fjellanger K, Rossi L, Heijmen BJM, Pettersen HES, Sandvik IM, Breedveld S, Sulen TH, Hysing LB. Patient selection, inter-fraction plan robustness and reduction of toxicity risk with deep inspiration breath hold in intensity-modulated radiotherapy of locally advanced non-small cell lung cancer. Front Oncol 2022; 12:966134. [PMID: 36110942 PMCID: PMC9469652 DOI: 10.3389/fonc.2022.966134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background State-of-the-art radiotherapy of locally advanced non-small cell lung cancer (LA-NSCLC) is performed with intensity-modulation during free breathing (FB). Previous studies have found encouraging geometric reproducibility and patient compliance of deep inspiration breath hold (DIBH) radiotherapy for LA-NSCLC patients. However, dosimetric comparisons of DIBH with FB are sparse, and DIBH is not routinely used for this patient group. The objective of this simulation study was therefore to compare DIBH and FB in a prospective cohort of LA-NSCLC patients treated with intensity-modulated radiotherapy (IMRT). Methods For 38 LA-NSCLC patients, 4DCTs and DIBH CTs were acquired for treatment planning and during the first and third week of radiotherapy treatment. Using automated planning, one FB and one DIBH IMRT plan were generated for each patient. FB and DIBH was compared in terms of dosimetric parameters and NTCP. The treatment plans were recalculated on the repeat CTs to evaluate robustness. Correlations between ΔNTCPs and patient characteristics that could potentially predict the benefit of DIBH were explored. Results DIBH reduced the median Dmean to the lungs and heart by 1.4 Gy and 1.1 Gy, respectively. This translated into reductions in NTCP for radiation pneumonitis grade ≥2 from 20.3% to 18.3%, and for 2-year mortality from 51.4% to 50.3%. The organ at risk sparing with DIBH remained significant in week 1 and week 3 of treatment, and the robustness of the target coverage was similar for FB and DIBH. While the risk of radiation pneumonitis was consistently reduced with DIBH regardless of patient characteristics, the ability to reduce the risk of 2-year mortality was evident among patients with upper and left lower lobe tumors but not right lower lobe tumors. Conclusion Compared to FB, DIBH allowed for smaller target volumes and similar target coverage. DIBH reduced the lung and heart dose, as well as the risk of radiation pneumonitis and 2-year mortality, for 92% and 74% of LA-NSCLC patients, respectively. However, the advantages varied considerably between patients, and the ability to reduce the risk of 2-year mortality was dependent on tumor location. Evaluation of repeat CTs showed similar robustness of the dose distributions with each technique.
Collapse
Affiliation(s)
- Kristine Fjellanger
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| | - Linda Rossi
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ben J. M. Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Inger Marie Sandvik
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Turid Husevåg Sulen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv Bolstad Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
- *Correspondence: Liv Bolstad Hysing,
| |
Collapse
|
21
|
Charters JA, Abdulkadir Y, O'Connell D, Yang Y, Lamb JM. Dosimetric evaluation of respiratory gating on a 0.35-T magnetic resonance-guided radiotherapy linac. J Appl Clin Med Phys 2022; 23:e13666. [PMID: 35950272 PMCID: PMC9815517 DOI: 10.1002/acm2.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The commercial 0.35-T magnetic resonance imaging (MRI)-guided radiotherapy vendor ViewRay recently introduced upgraded real-time imaging frame rates based on compressed sensing techniques. Furthermore, additional motion tracking algorithms were made available. Compressed sensing allows for increased image frame rates but may compromise image quality. To assess the impact of this upgrade on respiratory gating accuracy, we evaluated gated dose distributions pre- and post-upgrade using a motion phantom and radiochromic film. METHODS Seven motion waveforms (four artificial, two patient-derived free-breathing, and one breath-holding) were used to drive an MRI-compatible motion phantom. A treatment plan was developed to deliver a 3-cm diameter spherical dose distribution typical of a stereotactic body radiotherapy plan. Gating was performed using 4-frames per second (fps) imaging pre-upgrade on the "default" tracking algorithm and 8-fps post-upgrade using the "small mobile targets" (SMT) and "large deforming targets" (LDT) tracking algorithms. Radiochromic film was placed in a moving insert within the phantom to measure dose. The planned and delivered dose distributions were compared using the gamma index with 3%/3-mm criteria. Dose-area histograms were produced to calculate the dose to 95% (D95) of the sphere planning target volume (PTV) and two simulated gross tumor volumes formed by contracting the PTV by 3 and 5 mm, respectively. RESULTS Gamma pass rates ranged from 18% to 93% over the 21 combinations of breathing trace and gating conditions examined. D95 ranged from 206 to 514 cGy. On average, the LDT algorithm yielded lower gamma and D95 values than the default and SMT algorithms. CONCLUSION Respiratory gating at 8 fps with the new tracking algorithms provides similar gating performance to the original algorithm with 4 fps, although the LDT algorithm had lower accuracy for our non-deformable target. This indicates that the choice of deformable image registration algorithm should be chosen deliberately based on whether the target is rigid or deforming.
Collapse
Affiliation(s)
- John A. Charters
- Department of Radiation OncologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesLos AngelesCaliforniaUSA
| | - Yasin Abdulkadir
- Department of Radiation OncologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesLos AngelesCaliforniaUSA
| | - Dylan O'Connell
- Department of Radiation OncologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesLos AngelesCaliforniaUSA
| | - Yingli Yang
- Department of Radiation OncologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesLos AngelesCaliforniaUSA
| | - James M. Lamb
- Department of Radiation OncologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
22
|
Mørkeset ST, Lervåg C, Lund JÅ, Jensen C. Clinical experience of volumetric-modulated flattening filter free stereotactic body radiation therapy of lesions in the lung with deep inspiration breath-hold. J Appl Clin Med Phys 2022; 23:e13733. [PMID: 35867387 PMCID: PMC9512343 DOI: 10.1002/acm2.13733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022] Open
Abstract
This clinical study aimed to evaluate lung cancer patients' ability to perform deep inspiration breath-hold (DIBH) during CT simulation and throughout the treatment course of stereotactic body radiation therapy (SBRT). In addition, target sizes, organ at risk (OAR) sizes, and doses to the respective volumes in filter-free volumetric-modulated arc therapy plans performed under free-breathing (FB) and DIBH conditions were evaluated. Twenty-one patients with peripheral lesions were included, of which 13 were eligible for SBRT. All patients underwent training for breath-hold during CT, and if they complied with the requirements, two CT scans were obtained: CT scan in DIBH and a four-dimensional CT scan in FB. The treatment plans in FB and DIBH were generated, and the dose parameters and volume sizes were compared. The endpoints for evaluation were patient compliance, target dose coverage, and doses to the OARs. This clinical study showed high patient DIBH compliance during both CT simulation and treatment for patients with lung cancer. A significant reduction in target volumes was achieved with SBRT in DIBH, in addition to significantly decreased doses to the heart, chest wall, and lungs. DIBH in SBRT of lung lesions is feasible, and a routine to manage intra-fractional deviation should be established upon implementation.
Collapse
Affiliation(s)
- Siri T Mørkeset
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Christoffer Lervåg
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Jo-Åsmund Lund
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway.,Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| | - Christer Jensen
- Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway.,Department of Medicine and Healthcare, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| |
Collapse
|
23
|
Meyers SM, Kisling K, Atwood TF, Ray X. A standardized workflow for respiratory-gated motion management decision-making. J Appl Clin Med Phys 2022; 23:e13705. [PMID: 35737295 PMCID: PMC9359043 DOI: 10.1002/acm2.13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Motion management of tumors within the lung and abdomen is challenging because it requires balancing tissue sparing with accuracy of hitting the target, while considering treatment delivery efficiency. Physicists can play an important role in analyzing four‐dimensional computed tomography (4DCT) data to recommend the optimal respiratory gating parameters for a patient. The goal of this work was to develop a standardized procedure for making recommendations regarding gating parameters and planning margins for lung and gastrointestinal stereotactic body radiotherapy (SBRT) treatments. In doing so, we hoped to simplify decision‐making and analysis, and provide a tool for troubleshooting complex cases. Methods Factors that impact gating decisions and planning target volume (PTV) margins were identified. The gating options included gating on exhale with approximately a 50% duty cycle (Gate3070), exhale gating with a reduced duty cycle (Gate4060), and treating for most of respiration, excluding only extreme inhales and exhales (Gate100). A standard operating procedure was developed, as well as a physics consult document to communicate motion management recommendations to other members of the treatment team. This procedure was implemented clinically for 1 year and results are reported below. Results Identified factors that impact motion management included the magnitude of motion observed on 4DCT, the regularity of breathing and quality of 4DCT data, and ability to observe the target on fluoroscopy. These were collated into two decision tables—one specific to lung tumors and another for gastrointestinal tumors—such that a physicist could answer a series of questions to determine the optimal gating and PTV margin. The procedure was used clinically for 252 sites from 213 patients treated with respiratory‐gated SBRT and standardized practice across our 12‐member physics team. Conclusion Implementation of a standardized procedure for respiratory gating had a positive impact in our clinic, improving efficiency and ease of 4DCT analysis and standardizing gating decision‐making amongst physicists.
Collapse
Affiliation(s)
- Sandra M Meyers
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California, USA
| | - Kelly Kisling
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California, USA
| | - Todd F Atwood
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California, USA
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California, USA
| |
Collapse
|
24
|
Radiation Therapy in Thoracic Tumors: Recent Trends and Current Issues. Cancers (Basel) 2022; 14:cancers14112706. [PMID: 35681686 PMCID: PMC9179547 DOI: 10.3390/cancers14112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
|
25
|
Chiappetta M, Salvatore L, Congedo MT, Bensi M, De Luca V, Petracca Ciavarella L, Camarda F, Evangelista J, Valentini V, Tortora G, Margaritora S, Lococo F. Management of single pulmonary metastases from colorectal cancer: State of the art. World J Gastrointest Oncol 2022; 14:820-832. [PMID: 35582100 PMCID: PMC9048528 DOI: 10.4251/wjgo.v14.i4.820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of death from cancer. Lung seeding occurs in approximately 10% of patients surgically treated for primary CRC with radical intent: the lung is the most common site of metastases after the liver. While surgical treatment of liver metastases is widely accepted to affect long-term outcomes, more controversial and not standardized is the therapy for CRC patients developing lung metastases. Experience suggests the potential curative role of pulmonary metastasectomy, especially in oligometastatic disease. However, the optimal strategy of care and the definition of prognostic factors after treatment still need to be defined. This review focused on the uncommon scenario of single pulmonary metastases from CRC. We explored pertinent literature and provide an overview of the epidemiology, clinical characteristics and imaging of single pulmonary metastases from CRC. Additionally, we identified the best available evidence for overall management. In particular, we analyzed the role and results of locoregional approaches (surgery, radiotherapy or ablative procedures) and their integration with systemic therapy.
Collapse
Affiliation(s)
- Marco Chiappetta
- Department of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Lisa Salvatore
- Oncologia Medica Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Teresa Congedo
- Department of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Bensi
- Oncologia Medica Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Viola De Luca
- Department of Radiation Therapy, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Leonardo Petracca Ciavarella
- Department of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Floriana Camarda
- Oncologia Medica Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Jessica Evangelista
- Department of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Vincenzo Valentini
- Department of Radiation Therapy, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giampaolo Tortora
- Oncologia Medica Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Stefano Margaritora
- Department of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Filippo Lococo
- Department of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
26
|
Fallatah A, Bolic M, MacPherson M, La Russa DJ. Monitoring Respiratory Motion during VMAT Treatment Delivery Using Ultra-Wideband Radar. SENSORS (BASEL, SWITZERLAND) 2022; 22:2287. [PMID: 35336458 PMCID: PMC8954556 DOI: 10.3390/s22062287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022]
Abstract
The goal of this paper is to evaluate the potential of a low-cost, ultra-wideband radar system for detecting and monitoring respiratory motion during radiation therapy treatment delivery. Radar signals from breathing motion patterns simulated using a respiratory motion phantom were captured during volumetric modulated arc therapy (VMAT) delivery. Gantry motion causes strong interference affecting the quality of the extracted respiration motion signal. We developed an artificial neural network (ANN) model for recovering the breathing motion patterns. Next, automated classification into four classes of breathing amplitudes is performed, including no breathing, breath hold, free breathing and deep inspiration. Breathing motion patterns extracted from the radar signal are in excellent agreement with the reference data recorded by the respiratory motion phantom. The classification accuracy of simulated deep inspiration breath hold breathing was 94% under the worst case interference from gantry motion and linac operation. Ultra-wideband radar systems can achieve accurate breathing rate estimation in real-time during dynamic radiation delivery. This technology serves as a viable alternative to motion detection and respiratory gating systems based on surface detection, and is well-suited to dynamic radiation treatment techniques. Novelties of this work include detection of the breathing signal using radar during strong interference from simultaneous gantry motion, and using ANN to perform adaptive signal processing to recover breathing signal from large interference signals in real time.
Collapse
Affiliation(s)
- Anwar Fallatah
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Miodrag Bolic
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Miller MacPherson
- Department of Radiology, Division of Medical Physics, Faculty of Medicine, University of Ottawa, 501 Smyth Road, Box 232, Ottawa, ON K1H 8L6, Canada;
- The Ottawa Hospital Research Institute, 501 Smyth Road, Box 511, Ottawa, ON K1H 8L6, Canada
- Radiation Medicine Program, The Ottawa Hospital, 501 Smyth Road, Box 927, Ottawa, ON K1H 8L6, Canada;
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Daniel J. La Russa
- Radiation Medicine Program, The Ottawa Hospital, 501 Smyth Road, Box 927, Ottawa, ON K1H 8L6, Canada;
| |
Collapse
|
27
|
Survival benefits for non-small cell lung cancer patients treated with adaptive radiotherapy. Radiother Oncol 2022; 168:234-240. [PMID: 35121030 DOI: 10.1016/j.radonc.2022.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Tumor match and adaptive radiotherapy based on on-treatment imaging increases the precision of RT. This allows a reduction of treatment volume and, consequently, of the dose to organs at risk. We investigate the clinical benefits of tumor match and adaptive radiotherapy for a cohort of non-small cell lung cancer patients (NSCLC). METHODS In 2013, tumor match and adaptive radiotherapy based on daily cone-beam CT scans was introduced to ensure adaption of the radiotherapy treatment plan for all patients with significant anatomical changes during radiotherapy. Before 2013, the daily cone-beam CT scans were matched on the vertebra and anatomical changes were not evaluated systematically. To estimate the effect of tumor match and adaptive radiotherapy, 439 consecutive NSCLC patients treated with definitive chemo-radiotherapy (50-66 Gy/25-33 fractions, 2010-2018) were investigated retrospectively. They were split in two groups, pre-ART (before tumor match and adaptive radiotherapy, 184 patients), and ART (after tumor match and adaptive radiotherapy, 255 patients) and compared with respect to clinical, treatment-specific and dosimetric variables (χ2 tests, Mann Whitney U tests), progression, survival and radiation pneumonits (CTCAEv3). Progression-free and overall survival as well as radiation pneumonitis were compared with log-rank tests. Hazard ratios were estimated from Cox proportional hazard regression. RESULTS No significant differences in stage (p=0.36), histology (p=0.35), PS (p=0.12) and GTV volumes (p=0.24) were observed. Concomitant chemotherapy was administered more frequently in the ART group (78%) compared to preART (64%), p<0.001. Median[range] PTV volumes decreased from 456 [71;1262] cm3 (preART) to 270 [31;1166] cm3 (ART), p<0.001, thereby significantly reducing mean doses to lungs (median, preART 16.4 [1.9;24.7] Gy, ART 12.1 [1.7;19.4] Gy, p<0.001) and heart (median, preART 8.0 [0.1;32.1] Gy, ART 4.4 [0.1;33.9] Gy, p<0.001). The incidence of RP at nine months decreased significantly with ART (50% to 20% for symptomatic RP (≥G2), 21% to 7% for severe RP (≥G3), 6% to 0.4% for lethal RP (G5), all p<0.001). The two-year progression free survival increased from 22% (preART) to 30% (ART), while the overall survival increased from 43% (preART) to 56% (ART). The median overall survival time increased from 20 (preART) to 28 months (ART). CONCLUSION Tumor match and adaptive radiotherapy significantly decreased radiation pneumonitis, while maintaining loco-regional control. Further, we observed a significantly improved progression-free and overall survival.
Collapse
|
28
|
Trémolières P, Gonzalez-Moya A, Paumier A, Mege M, Blanchecotte J, Theotime C, Autret D, Dufreneix S. Lung stereotactic body radiation therapy: personalized PTV margins according to tumor location and number of four-dimensional CT scans. Radiat Oncol 2022; 17:5. [PMID: 35012579 PMCID: PMC8751327 DOI: 10.1186/s13014-021-01973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives To characterise the motion of pulmonary tumours during stereotactic body radiation therapy (SBRT) and to evaluate different margins when creating the planning target volume (PTV) on a single 4D CT scan (4DCT). Methods We conducted a retrospective single-site analysis on 30 patients undergoing lung SBRT. Two 4DCTs (4DCT1 and 4DCT2) were performed on all patients. First, motion was recorded for each 4DCT in anterior–posterior (AP), superior-inferior (SI) and rightleft (RL) directions. Then, we used 3 different margins (3,4 and 5 mm) to create the PTV, from the internal target volume (ITV) of 4DCT1 only (PTV D1 + 3, PTV D1 + 4, PTV D1 + 5). We compared, using the Dice coefficient, the volumes of these 3 PTVs, to the PTV actually used for the treatment (PTVttt). Finally, new treatment plans were calculated using only these 3 PTVs. We studied the ratio of the D2%, D50% and D98% between each new plan and the plan actually used for the treatment (D2% PTVttt, D50% PTVttt, D50% ITVttt D98% PTVttt). Results 30 lesions were studied. The greatest motion was observed in the SI axis (8.8 ± 6.6 [0.4–25.8] mm). The Dice index was higher when comparing PTVttt to PTV D1 + 4 mm (0.89 ± 0.04 [0.82–0.98]). Large differences were observed when comparing plans relative to PTVttt and PTV D1 + 3 for D98% PTVttt (0.85 ± 0.24 [0.19–1.00]). and also for D98% ITVttt (0.93 ± 0.12 [0.4–1.0]).D98% PTVttt (0.85 ± 0.24 [0.19–1.00], p value = 0.003) was statistically different when comparing plans relative to PTVttt and PTV D1 + 3. No stastistically differences were observed when comparing plans relative to PTVttt and PTV D1 + 4. A difference greater than 10% relative to D98% PTVttt was found for only in one UL lesion, located under the carina. Conclusion A single 4DCT appears feasible for upper lobe lesions located above the carina, using a 4-mm margin to generate the PTV. Advance in knowledge Propostion of a personalized SBRT treatment (number of 4DCT, margins) according to tumor location (above or under the carina).
Collapse
Affiliation(s)
- Pierre Trémolières
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France.
| | - Ana Gonzalez-Moya
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Amaury Paumier
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Martine Mege
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Julien Blanchecotte
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Christelle Theotime
- Department of Medical Physics, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Damien Autret
- Department of Medical Physics, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Stéphane Dufreneix
- Department of Medical Physics, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| |
Collapse
|
29
|
Abstract
The purpose of this article is to describe the external irradiation process and updated recommendations of the French society for radiation oncology for patient follow-up.
Collapse
Affiliation(s)
- I Barillot
- Hôpital Bretonneau, CHU de Tours, 2, boulevard Tonnellé, 37000 Tours, France; Université François-Rabelais, 10, boulevard Tonnellé, 37000 Tours, France.
| | - D Azria
- Fédération universitaire d'oncologie radiothérapie Forom, Institut régional du cancer Montpellier (ICM), université de Montpellier, rue Croix-Verte, 34298 Montpellier cedex 05, France; Institut de recherche en cancérologie de Montpellier (IRCM), Inserm U1194, INCa, DGOS_12553, université de Montpellier, avenue des Apothicaires, 34298 Montpellier cedex 05, France
| | - A Lisbona
- Centre René-Gauducheau, Institut de cancérologie de l'ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - M-A Mahé
- Centre François-Baclesse, 3, avenue du Général-Harris, 14000 Caen, France
| |
Collapse
|
30
|
Finazzi T, Schneiders FL, Senan S. Developments in radiation techniques for thoracic malignancies. Eur Respir Rev 2021; 30:200224. [PMID: 33952599 PMCID: PMC9488563 DOI: 10.1183/16000617.0224-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a cornerstone of modern lung cancer treatment alongside surgery, chemotherapy, immunotherapy and targeted therapies. Advances in radiotherapy techniques have enhanced the accuracy of radiation delivery, which has contributed to the evolution of radiation therapy into a guideline-recommended treatment in both early-stage and locally advanced nonsmall cell lung cancer. Furthermore, although radiotherapy has long been used for palliation of disease in advanced lung cancer, it is increasingly having a role as a locally ablative treatment in patients with oligometastatic disease.This review provides an overview of recent developments in radiation techniques, particularly for non-radiation oncologists who are involved in the care of lung cancer patients. Technical advances are discussed, and findings of recent clinical trials are highlighted, all of which have led to a changing perception of the role of radiation therapy in multidisciplinary care.
Collapse
Affiliation(s)
- Tobias Finazzi
- Clinic of Radiotherapy and Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | - Famke L Schneiders
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Suresh Senan
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Impact of Chronic Obstruction Pulmonary Disease on Survival in Patients with Advanced Stage Lung Squamous Cell Carcinoma Undergoing Concurrent Chemoradiotherapy. Cancers (Basel) 2021; 13:cancers13133231. [PMID: 34203540 PMCID: PMC8268442 DOI: 10.3390/cancers13133231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary No data are available regarding the effect of chronic obstruction pulmonary disease (COPD) and COPD with acute exacerbation (COPDAE) on survival in patients with lung squamous cell carcinoma (SCC) receiving definitive concurrent chemoradiotherapy (CCRT). This study is the first to examine the survival impact of COPD in patients with lung SCC receiving definitive CCRT. COPD and its severity are significant independent risk factors for all-cause mortality in patients with stage IIIA–IIIB lung SCC receiving definitive CCRT. Hospitalization for COPDAE within 1 year before CCRT is the significant independent risk factor for lung cancer death in the patients with stage IIIA–IIIB lung SCC receiving definitive CCRT. Abstract Background: To date, no data are available regarding the effect of chronic obstruction pulmonary disease (COPD) and COPD with acute exacerbation (COPDAE) on survival in patients with lung squamous cell carcinoma (SCC) receiving definitive concurrent chemoradiotherapy (CCRT). Patients and methods: We enrolled 3986 patients with clinical stage IIIA–IIIB, unresectable lung SCC, who had received standard definitive CCRT, and categorized them into two groups based on their COPD status to compare overall survival outcomes. We also examined the effects of COPD severity (0, 1, or ≥2 hospitalizations for COPDA within 1 year before CCRT). Results: In the inverse probability of treatment weighting (IPTW)-adjusted model, the adjusted hazard ratio (aHR) (95% confidence interval (CI)) of all-cause death for COPD was 1.04 (1.01, 1.16), compared no COPD in patients with stage IIIA–IIIB lung SCC receiving definitive CCRT. In the IPTW-adjusted model, the aHRs (95% CIs) of 1 and ≥ 2 hospitalizations for COPDAE within 1 year before CCRT were 1.32 (1.19, 1.46) and 1.81 (1.49, 2.19) respectively, compared with no hospitalization for COPDAE. Conclusion: COPD and its severity are significant independent risk factors for all-cause death in patients with stage IIIA–IIIB lung SCC receiving definitive CCRT. Hospitalization for COPDAE within 1 year before CCRT is the significant independent risk factor for lung cancer death in the patients with stage IIIA–IIIB lung SCC receiving definitive CCRT.
Collapse
|
32
|
Peeters STH, Vaassen F, Hazelaar C, Vaniqui A, Rousch E, Tissen D, Van Enckevort E, De Wolf M, Öllers MC, van Elmpt W, Verhoeven K, Van Loon JGM, Vosse BA, De Ruysscher DKM, Vilches-Freixas G. Visually guided inspiration breath-hold facilitated with nasal high flow therapy in locally advanced lung cancer. Acta Oncol 2021; 60:567-574. [PMID: 33295823 DOI: 10.1080/0284186x.2020.1856408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE Reducing breathing motion in radiotherapy (RT) is an attractive strategy to reduce margins and better spare normal tissues. The objective of this prospective study (NCT03729661) was to investigate the feasibility of irradiation of non-small cell lung cancer (NSCLC) with visually guided moderate deep inspiration breath-hold (IBH) using nasal high-flow therapy (NHFT). MATERIAL AND METHODS Locally advanced NSCLC patients undergoing photon RT were given NHFT with heated humidified air (flow: 40 L/min with 80% oxygen) through a nasal cannula. IBH was monitored by optical surface tracking (OST) with visual feedback. At a training session, patients had to hold their breath as long as possible, without and with NHFT. For the daily cone beam CT (CBCT) and RT treatment in IBH, patients were instructed to keep their BH as long as it felt comfortable. OST was used to analyze stability and reproducibility of the BH, and CBCT to analyze daily tumor position. Subjective tolerance was measured with a questionnaire at 3 time points. RESULTS Of 10 included patients, 9 were treated with RT. Seven (78%) completed the treatment with NHFT as planned. At the training session, the mean BH length without NHFT was 39 s (range 15-86 s), and with NHFT 78 s (range 29-223 s) (p = .005). NHFT prolonged the BH duration by a mean factor of 2.1 (range 1.1-3.9s). The mean overall stability and reproducibility were within 1 mm. Subjective tolerance was very good with the majority of patients having no or minor discomfort caused by the devices. The mean inter-fraction tumor position variability was 1.8 mm (-1.1-8.1 mm;SD 2.4 mm). CONCLUSION NHFT for RT treatment of NSCLC in BH is feasible, well tolerated and significantly increases the breath-hold duration. Visually guided BH with OST is stable and reproducible. We therefore consider this an attractive patient-friendly approach to treat lung cancer patients with RT in BH.
Collapse
Affiliation(s)
- Stephanie T. H. Peeters
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Ana Vaniqui
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Eva Rousch
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Debby Tissen
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Esther Van Enckevort
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Michiel De Wolf
- Department of Anesthesiology and Pain Therapy, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michel C. Öllers
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Karolien Verhoeven
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Judith G. M. Van Loon
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Bettine A. Vosse
- Department of Pulmonology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk K. M. De Ruysscher
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| |
Collapse
|
33
|
Emert F, Missimer J, Eichenberger PA, Walser M, Gmür C, Lomax AJ, Weber DC, Spengler CM. Enhanced Deep-Inspiration Breath Hold Superior to High-Frequency Percussive Ventilation for Respiratory Motion Mitigation: A Physiology-Driven, MRI-Guided Assessment Toward Optimized Lung Cancer Treatment With Proton Therapy. Front Oncol 2021; 11:621350. [PMID: 33996545 PMCID: PMC8116693 DOI: 10.3389/fonc.2021.621350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Background: To safely treat lung tumors using particle radiation therapy (PRT), motion-mitigation strategies are of critical importance to ensure precise irradiation. Therefore, we compared applicability, effectiveness, reproducibility, and subjects' acceptance of enhanced deep-inspiration breath hold (eDIBH) with high-frequency percussive ventilation (HFPV) by MRI assessment within 1 month. Methods: Twenty-one healthy subjects (12 males/9 females; age: 49.5 ± 5.8 years; BMI: 24.7 ± 3.3 kg/m−2) performed two 1.5 T MRI scans in four visits at weekly intervals under eDIBH and HFPV conditions, accompanied by daily, home-based breath-hold training and spirometric assessments over a 3-week period. eDIBH consisted of 8-min 100% O2 breathing (3 min resting ventilation, 5 min controlled hyperventilation) prior to breath hold. HFPV was set at 200–250 pulses min−1 and 0.8–1.2 bar. Subjects' acceptance and preference were evaluated by questionnaire. To quantify inter- and intrafractional changes, a lung distance metric representing lung topography was computed for 10 reference points: a motion-invariant spinal cord and nine lung structure contours (LSCs: apex, carina, diaphragm, and six vessels as tumor surrogates distributed equally across the lung). To parameterize individual LSC localizability, measures of their spatial variabilities were introduced and lung volumes calculated by automated MRI analysis. Results: eDIBH increased breath-hold duration by > 100% up to 173 ± 73 s at visit 1, and to 217 ± 67 s after 3 weeks of home-based training at visit 4 (p < 0.001). Measures of vital capacity and lung volume remained constant over the 3-week period. Two vessels in the lower lung segment and the diaphragm yielded a two- to threefold improved positional stability with eDIBH, whereby absolute distance variability was significantly smaller for five LSCs; ≥70% of subjects showed significantly better intrafractional lung motion mitigation under reproducible conditions with eDIBH compared with HFPV with smaller ranges most apparent in the anterior-posterior and cranial-caudal directions. Approximately 80% of subjects preferred eDIBH over HFPV, with “less discomfort” named as most frequent reason. Conclusions: Both, eDIBH, and HFPV were well-tolerated. eDIBH duration was long enough to allow for potential PRT. Variability in lung volume was smaller and position of lung structures more precise with eDIBH. Subjects preferred eDIBH over HFPV. Thus, eDIBH is a very promising tool for lung tumor therapy with PRT, and further investigation of its applicability in patients is warranted.
Collapse
Affiliation(s)
- Frank Emert
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - John Missimer
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Philipp A Eichenberger
- Exercise Physiology Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Celina Gmür
- Exercise Physiology Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Botticella A, Levy A, Auzac G, Chabert I, Berthold C, Le Pechoux C. Tumour motion management in lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2011-2017. [PMID: 34012810 PMCID: PMC8107759 DOI: 10.21037/tlcr-20-856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory motion is one of the geometrical uncertainties that may affect the accuracy of thoracic radiotherapy in the treatment of lung cancer. Accounting for tumour motion may allow reducing treatment volumes, irradiated healthy tissue and possibly toxicity, and finally enabling dose escalation. Historically, large population-based margins were used to encompass tumour motion. A paradigmatic change happened in the last decades led to the development of modern imaging techniques during the simulation and the delivery, such as the 4-dimensional (4D) computed tomography (CT) or the 4D-cone beam CT scan, has contributed to a better understanding of lung tumour motion and to the widespread use of individualised margins (with either an internal tumour volume approach or a mid-position/ventilation approach). Moreover, recent technological advances in the delivery of radiotherapy treatments (with a variety of commercial solution allowing tumour tracking, gating or treatments in deep-inspiration breath-hold) conjugate the necessity of minimising treatment volumes while maximizing the patient comfort with less invasive techniques. In this narrative review, we provided an introduction on the intra-fraction tumour motion (in both lung tumours and mediastinal lymph-nodes), and summarized the principal motion management strategies (in both the imaging and the treatment delivery) in thoracic radiotherapy for lung cancer, with an eye on the clinical outcomes.
Collapse
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France
| | - Guillaume Auzac
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Isabelle Chabert
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Céline Berthold
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Cécile Le Pechoux
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
35
|
Decazes P, Hinault P, Veresezan O, Thureau S, Gouel P, Vera P. Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Front Oncol 2021; 10:614008. [PMID: 33614497 PMCID: PMC7890017 DOI: 10.3389/fonc.2020.614008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) has revolutionized external radiotherapy by making it possible to visualize and segment the tumors and the organs at risk in a three-dimensional way. However, if CT is a now a standard, it presents some limitations, notably concerning tumor characterization and delineation. Its association with functional and anatomical images, that are positron emission tomography (PET) and magnetic resonance imaging (MRI), surpasses its limits. This association can be in the form of a trimodality PET/CT/MRI. The objective of this mini-review is to describe the process of performing this PET/CT/MRI trimodality for radiotherapy and its potential clinical applications. Trimodality can be performed in two ways, either a PET/MRI fused to a planning CT (possibly with a pseudo-CT generated from the MRI for the planning), or a PET/CT fused to an MRI and then registered to a planning CT (possibly the CT of PET/CT if calibrated for radiotherapy). These examinations should be performed in the treatment position, and in the second case, a patient transfer system can be used between the PET/CT and MRI to limit movement. If trimodality requires adapted equipment, notably compatible MRI equipment with high-performance dedicated coils, it allows the advantages of the three techniques to be combined with a synergistic effect while limiting their disadvantages when carried out separately. Trimodality is already possible in clinical routine and can have a high clinical impact and good inter-observer agreement, notably for head and neck cancers, brain tumor, prostate cancer, cervical cancer.
Collapse
Affiliation(s)
- Pierre Decazes
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Ovidiu Veresezan
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Sébastien Thureau
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| |
Collapse
|
36
|
Banfill K, Giuliani M, Aznar M, Franks K, McWilliam A, Schmitt M, Sun F, Vozenin MC, Faivre Finn C. Cardiac Toxicity of Thoracic Radiotherapy: Existing Evidence and Future Directions. J Thorac Oncol 2021; 16:216-227. [PMID: 33278607 PMCID: PMC7870458 DOI: 10.1016/j.jtho.2020.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The impact of radiotherapy on the heart has become an area of interest in recent years. Many different cardiac dose-volume constraints have been associated with cardiac toxicity and survival; however, no consistent constraint has been found. Many patients undergoing treatment for lung cancer have risk factors for cardiovascular disease or known cardiac comorbidities; however, there is little evidence on the effects of radiotherapy on the heart in these patients. We aim to provide a summary of the existing literature on cardiac toxicity of lung cancer radiotherapy, propose strategies to avoid and manage cardiac toxicity, and suggest avenues for future research.
Collapse
Affiliation(s)
- Kathryn Banfill
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Meredith Giuliani
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Kevin Franks
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Matthias Schmitt
- Cardiovascular Division, Manchester University Foundation Trust, North West Heart Centre, Wythenshawe Campus, Manchester, United Kingdom
| | - Fei Sun
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Marie Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Faivre Finn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
37
|
[Lung cancer and pulmonary metastasis treated by stereotactic radiosurgery: Evaluation of the relevance of realisation of 3 4D CT by the RPM technique]. Cancer Radiother 2020; 25:26-31. [PMID: 33376046 DOI: 10.1016/j.canrad.2020.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Stereotactic lung radiosurgery has been carried out in the team at the Georges-François-Leclerc centre (CGFL) in Dijon since 2008 on a Truebeam® accelerator (Varian®) with the RPM technique. MATERIALS AND METHODS Fifty patients with primary T1-T2 stage lung cancer (n=30) or lung metastasis (n=20) were included in the study. Since 2014, 3 successive 4D scanners on D1, D2 and D3, have been produced in order to ensure the reproducibility of ITV (Internet Target Volume). The 3 ITVs are contoured (ITV 1, 2 and 3) from the MIP (Maximum Intensity Projection) of each of the 3 scanners. A global ITV is created from the ITV volumes of the 3 scanners (MIP 2 and 3 merged with MIP 1). A CBCT (Cone Beam Computerised Tomography) is performed at the start of each irradiation session to position the patient. The study consisted in analysing the relevance of the realisation of 3 different scanners before dosimetry to define the ITV and in comparing the volumes contoured on the different CBCT to the ITV to make sure that the tumour volume is well included in the ITV during the sessions. RESULTS There is a strong correlation between the different ITVs 1, 2, 3 and global, as well as between the volumes obtained on the different CBCTs. The correlation coefficient between the different ITVs and the volumes contoured on CBCT was high for upper lobar lesions. In terms of tolerance, the FEV1 (Maximum volume expired during the first second) did not seem to be a significant factor influencing the correlation between the ITV and the volumes bypassed on CBCT. CONCLUSION Performing a single 4D planification CT is sufficient to consider stereotactic lung irradiation, regardless of the location of the lung lesions. The correlation coefficient between ITV and CBCT was high for upper lobar lesions.
Collapse
|
38
|
Mège A, Biau J, Meyer E, Allouache N, Guigo M, Servagi Vernat S. Les essais cliniques en radiothérapie qui ont changé les pratiques 2010–2020. Cancer Radiother 2020; 24:612-622. [DOI: 10.1016/j.canrad.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
|
39
|
Correlation of displacement vector fields calculated by different deformable image registration algorithms with motion parameters in helical, axial and cone beam CT imaging. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAim:The purpose of this study is to investigate quantitatively the correlation of displacement vector fields (DVFs) from different deformable image registration (DIR) algorithms to register images from helical computed tomography (HCT), axial computed tomography (ACT) and cone beam computed tomography (CBCT) with motion parameters.Materials and methods:CT images obtained from scanning of the mobile phantom were registered with the stationary CT images using four DIR algorithms from the DIRART software: Demons, Fast-Demons, Horn–Schunck and Lucas–Kanade. HCT, ACT and CBCT imaging techniques were used to image a mobile phantom, which included three targets with different sizes (small, medium and large) that were manufactured from a water-equivalent material and embedded in low-density foam to simulate lung lesions. The phantom was moved with controlled cyclic motion patterns where a range of motion amplitudes (0–20 mm) and frequencies (0·125–0·5 Hz) were used.Results:The DVF obtained from different algorithms correlated well with motion amplitudes applied on the mobile phantom for CBCT and HCT, where the maximal DVF increased linearly with the motion amplitudes of the mobile phantom. In ACT, the DVF correlated less with motion amplitudes where motion-induced strong image artefacts and the DIR algorithms were not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from Fast-Demons deviated strongly from other algorithms at large motion amplitudes.Conclusions:The local DVFs provide direct quantitative values for the actual internal tumour shifts that can be used to determine margins for the internal target volume that consider tumour motion during treatment planning. Furthermore, the DVF distributions can be used to extract motion parameters such as motion amplitude that can be extracted from the maximal or minimal DVF calculated by the different DIR algorithms and used in the management of the patient motion.
Collapse
|
40
|
Sadeghi P, Moran K, Robar JL. Capacitive monitoring system for real-time respiratory motion monitoring during radiation therapy. J Appl Clin Med Phys 2020; 21:16-24. [PMID: 32643322 PMCID: PMC7497937 DOI: 10.1002/acm2.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022] Open
Abstract
Summary This work introduces a novel capacitive‐sensing technology capable of detecting respiratory motion with high temporal frequency (200 Hz). The system does not require contact with the patient and has the capacity to sense motion through clothing or plastic immobilization devices. Abstract Purpose This work presents and evaluates a novel capacitive monitoring system (CMS) technology for continuous detection of respiratory motion during radiation therapy. This modular system provides real‐time motion monitoring without any contact with the patient, ionizing radiation, or surrogates such as reflective markers on the skin. Materials and methods The novel prototype features an array of capacitive detectors that are sensitive to the position of the body and capable of high temporal frequency readout. Performance of this system was investigated in comparison to the RPM infrared (IR) monitoring system (Varian Medical Systems). The prototype included three (5 cm × 10 cm) capacitive copper sensors in one plane, located at a distance of 8–10 cm from the volunteer. Capacitive measurements were acquired for central and lateral‐to‐central locations during chest free‐breathing and abdominal breathing. The RPM IR data were acquired with the reflector block at corresponding positions simultaneously. The system was also tested during deep inspiration and expiration breath‐hold maneuvers. Results Capacitive monitoring system data demonstrate close agreement with the RPM status quo at all locations examined. Cross‐correlation analysis on RPM and CMS data showed an average absolute lag of 0.07 s (range: 0.03–0.23 s) for DIBH and DEBH data and 0.15 s (range: 0–0.43 s) for free‐breathing. Amplitude difference between the normalized CMS and RPM signal during chest and abdominal breathing was within 0.15 for 94.3% of the data points after synchronization. CMS performance was not affected when the subject was clothed. Conclusion This novel technology permits sensing of both free‐breathing and breath‐hold respiratory motion. It provides data comparable to the RPM system but without the need for an IR tracking camera in the treatment room or use of reflective markers on the patient.
Collapse
Affiliation(s)
- Parisa Sadeghi
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathryn Moran
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Radiation Therapy Services, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - James L Robar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
41
|
Vinod SK, Hau E. Radiotherapy treatment for lung cancer: Current status and future directions. Respirology 2020; 25 Suppl 2:61-71. [PMID: 32516852 DOI: 10.1111/resp.13870] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022]
Abstract
Radiotherapy is an important modality used for the treatment of lung cancer. Seventy-seven percent of all patients with lung cancer have an evidence-based indication for radiotherapy, although it is often underutilized. Radiotherapy can be used as curative or palliative treatment across all stages of disease. Technological advances have allowed better radiotherapy targeting of tumours and reduced incidental irradiation of surrounding normal tissues. This has expanded the indications for radiotherapy in lung cancer and improved outcomes both in terms of increasing survival and reducing toxicity. This review examines the current role of radiotherapy in lung cancer, discusses the evidence behind this and identifies future directions in the radiotherapy treatment of lung cancer.
Collapse
Affiliation(s)
- Shalini K Vinod
- Cancer Therapy Centre, Liverpool Hospital, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of NSW, Sydney, NSW, Australia
| | - Eric Hau
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia.,Blacktown Haematology and Oncology Cancer Care Centre, Blacktown Hospital, Blacktown, NSW, Australia.,Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Tong Y, Gong G, Su M, Yin Y. Comparison of the dose on specific 3DCT images and the accumulated dose for cardiac structures in esophageal tumors radiotherapy: whether specific 3DCT images can be used for dose assessment? Radiat Oncol 2019; 14:242. [PMID: 31881901 PMCID: PMC6935068 DOI: 10.1186/s13014-019-1450-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Cardiac activity could impact the accuracy of dose assessment for the heart, pericardium and left ventricular myocardium (LVM). The purpose of this study was to explore whether it is possible to perform dose assessment by contouring the cardiac structures on specific three-dimensional computed tomography (3DCT) images to reduce the impact of cardiac activity. METHODS Electrocardiograph-gated 4DCT (ECG-gated 4DCT) images of 22 patients in breath-hold were collected. MIM Maestro 6.8.2 (MIM) was used to reconstruct specific 3DCT images to obtain the Maximal intensity projection (MIP) image, Average intensity projection (AIP) image and Minimum intensity projection (Min-IP) image. The heart, pericardium and LVM were contoured in 20 phases of 4DCT images (0, 5%... 95%) and the MIP, AIP and Min-IP images. Then, a radiotherapy plan was designed at the 0% phase of the 4DCT images, and the dose was transplanted to all phases of 4DCT to acquire the dose on all phases, the accumulated dose of all phases was calculated using MIM. The dose on MIP, AIP and Min-IP images were also obtained by deformable registration of the dose. The mean dose (Dmean), V5, V10, V20, V30 and V40 for the heart, pericardium and LVM in MIP, AIP and Min-IP images were compared with the corresponding parameters after dose accumulation. RESULTS The mean values of the difference between the Dmean in the MIP image and the Dmean after accumulation for the heart, pericardium and LVM were all less than 1.50 Gy, and the dose difference for the pericardium and LVM was not statistically significant (p > 0.05). For dose-volume parameters, there was no statistically significant difference between V5, V10, and V20 of the heart and pericardium in MIP, AIP, and Min-IP images and those after accumulation (p > 0.05). For the LVM, only in the MIP image, the differences of V5, V10, V20, V30 and V40 were not significant compared to those after dose accumulation (p > 0.05). CONCLUSIONS There was a smallest difference for the dosimetry parameters of cardiac structures on MIP image compared to corresponding parameters after dose accumulation. Therefore, it is recommended to use the MIP image for the delineation and dose assessment of cardiac structures in clinical practice.
Collapse
Affiliation(s)
- Ying Tong
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanzhong Gong
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ming Su
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Yong Yin
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
43
|
Josipovic M, Aznar MC, Thomsen JB, Scherman J, Damkjaer SMS, Nygård L, Specht L, Pøhl M, Persson GF. Deep inspiration breath hold in locally advanced lung cancer radiotherapy: validation of intrafractional geometric uncertainties in the INHALE trial. Br J Radiol 2019; 92:20190569. [PMID: 31544478 PMCID: PMC6913352 DOI: 10.1259/bjr.20190569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Patients with locally advanced non-small cell lung cancer (NSCLC) were included in a prospective trial for radiotherapy in deep inspiration breath hold (DIBH). We evaluated DIBH compliance and target position reproducibility. METHODS Voluntary, visually guided DIBHs were performed with optical tracking. Patients underwent three consecutive DIBH CT scans for radiotherapy planning. We evaluated the intrafractional uncertainties in the position of the peripheral tumour, lymph nodes and differential motion between them, enabling PTV margins calculation. Patients who underwent all DIBH imaging and had tumour position reproducibility <8 mm were up-front DIBH compliant. Patients who performed DIBHs throughout the treatment course were overall DIBH compliant. Clinical parameters and DIBH-related uncertainties were validated against our earlier pilot study. RESULTS 69 of 88 included patients received definitive radiotherapy. 60/69 patients (87%) were up-front DIBH compliant. DIBH plan was not superior in seven patients and three lost DIBH ability during the treatment, leaving 50/69 patients (72%) overall DIBH compliant.The systematic and random errors between consecutive DIBHs were small but differed from the pilot study findings. This led to slightly different PTV margins between the two studies. CONCLUSIONS DIBH compliance and reproducibility was high. Still, this validation study highlighted the necessity of designing PTV margins in larger, representative patient cohorts. ADVANCES IN KNOWLEDGE We demonstrated high DIBH compliance in locally advanced NSCLC patients. DIBH does not eliminate but mitigates the target position uncertainty, which needs to be accounted for in treatment margins. Margin design should be based on data from larger representative patient groups.
Collapse
Affiliation(s)
| | | | - Jakob B Thomsen
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Sidsel MS Damkjaer
- Department of Hematology and Oncology Radiation Physics, Skåne University Hospital, 21185 Lund, Sweden
| | - Lotte Nygård
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Mette Pøhl
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | |
Collapse
|
44
|
Giraud P, Kreps S, Tournat H, Bibault JE, Fabiano E, Feutren T, Dautruche A, Durdux C. [Stereotactic pulmonary radiotherapy: Which machine?]. Cancer Radiother 2019; 23:658-661. [PMID: 31471252 DOI: 10.1016/j.canrad.2019.07.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
Stereotactic radiotherapy represents a fundamental change in the practice of radiotherapy of lung cancers. Despite the great heterogeneity of sites, techniques, and doses, most studies found a high local control rate, around 70 to 90% at 2 years, and reduced toxicity, around 5% of grade 3 at 2 years. Stereotactic radiotherapy can be realized either by a dedicated accelerator (CyberKnife®) or by a conventional accelerator associated with specific systems. The two modalities deliver a very precise irradiation whose very good results published to date are similar. Some technical characteristics specific to each type of linear accelerator could guide the choice according to the target volume treated.
Collapse
Affiliation(s)
- P Giraud
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France.
| | - S Kreps
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| | - H Tournat
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| | - J-E Bibault
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| | - E Fabiano
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| | - T Feutren
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| | - A Dautruche
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| | - C Durdux
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France
| |
Collapse
|
45
|
Selection of patient for gated treatment based on the information from 4DCT imaging in stereotactic body radiotherapy of non-small cell lung cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396918000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeStereotactic body radiotherapy (SBRT) is widely used for the treatment of stage-I non-small cell lung cancer (NSCLC). Patient-specific motion correlated with 4DCT could be essential for hypofractionated SBRT. All patients undergoing SBRT do not require motion management during the dose delivery. The objective of this study was to evaluate which patient may benefit from Gated SBRT.Materials and methodsTreatment planning of 20 patients of stage-I NSCLC was analysed. Conventional and 4DCT scans were taken. Internal target volume as well as planning target volume (ITV and PTV) were determined in the CT data sets. PTVall phases created using 4DCT data sets and PTV15mm created using conventional CT data were compared. Also, ITVall phases were compared with ITV created from maximum intensity projections (ITVMIP). Suitability of patients for motion management-based treatment delivery was also evaluated.ResultsThe average ITVMIP to ITVall phases ratio is 1·06 indicating good agreement between them. Based on the ratio of intensity projections, 9 out of 17 patients were found suitable for our existing gated treatment.Conclusion4D CT is the main requirement in SBRT to identify the patients who can benefit from motion management during the dose delivery.
Collapse
|
46
|
Lee S, Zheng Y, Podder T, Biswas T, Verma V, Goss M, Colonias A, Fuhrer R, Zhai Y, Parda D, Sohn J. Tumor localization accuracy for high-precision radiotherapy during active breath-hold. Radiother Oncol 2019; 137:145-152. [PMID: 31103912 DOI: 10.1016/j.radonc.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Conventionally fractionated and stereotactic body radiation therapy (SBRT) for thoracoabdominal tumors may utilize breath-hold techniques. However, there are concerns that differential amounts of inspired airflow may result in unplanned tumor dislocation and underdosing. Thus, we investigated tumor localization accuracy associated with lung volume variations during breath-hold treatment via an automated-gating interface. METHODS Twelve patients received breath-hold treatment with the active breathing coordinator (ABC) through an automated-gating interface. All breath-hold volumes were recorded at CT simulation, setup imaging, and during treatment, and analyzed as a function of airflow rate into the ABC. The variation of breath-hold volumes was calculated for each fraction over entire course. Intrafraction target motion related to the breathing variation was investigated based on daily imaging acquired before the breath-hold treatment. Correlation between target location and breath-hold variation was statistically analyzed. RESULTS The air volume held by the ABC increased as the airflow rate increased on inhalation and decreased on exhalation. The mean range of airflow rate was 0.77 L/s and 0.29 L/s in the conventionally fractionated and SBRT patients, respectively. The maximum air volume difference with respect to the reference volume at the CT simulation was 1.0 L for conventional fractionation and 0.16 L for SBRT. The target dislocation caused by 0.25 L of air volume difference was 6 mm for SBRT. Three patients showed significant correlation between the target location and breath-hold variations. CONCLUSIONS This investigation shows that because variations in the breath-hold volume may cause target dislocation, patient-specific breath-hold setting is required to improve tumor localization accuracy.
Collapse
Affiliation(s)
- Soyoung Lee
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States.
| | - Yiran Zheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States; Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, United States
| | - Tarun Podder
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States; Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, United States
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States; Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, United States
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Matthew Goss
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Athanasios Colonias
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Russell Fuhrer
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Yongjun Zhai
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States
| | - David Parda
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Jason Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| |
Collapse
|
47
|
Complications cardiaques de la radiothérapie mammaire. Bull Cancer 2019; 106:379-388. [DOI: 10.1016/j.bulcan.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 11/21/2022]
|
48
|
Soni PD, Palta M. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: Current State and Future Opportunities. Dig Dis Sci 2019; 64:1008-1015. [PMID: 30868409 DOI: 10.1007/s10620-019-05539-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma is a rising cause of morbidity and mortality in the USA and around the world. Surgical resection and liver transplantation are the preferred management strategies; however, less than 30% of patients are eligible for surgery. Stereotactic body radiation therapy is a promising local treatment option for non-surgical candidates. Local control rates between 95 and 100% have been reported at 1-2 years post-treatment, and classical radiation-induced liver disease described with conventional radiation is an unlikely complication from stereotactic radiotherapy. Enrollment in randomized trials will be essential in establishing the role of stereotactic radiation in treatment paradigms for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Payal D Soni
- Radiation Oncology Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
49
|
West NS, Parkes MJ, Snowden C, Prentis J, McKenna J, Iqbal MS, Cashmore J, Walker C. Mitigating Respiratory Motion in Radiation Therapy: Rapid, Shallow, Non-invasive Mechanical Ventilation for Internal Thoracic Targets. Int J Radiat Oncol Biol Phys 2018; 103:1004-1010. [PMID: 30496883 DOI: 10.1016/j.ijrobp.2018.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Reducing respiratory motion during the delivery of radiation therapy reduces the volume of healthy tissues irradiated and may decrease radiation-induced toxicity. The purpose of this study was to assess the potential for rapid shallow non-invasive mechanical ventilation to reduce internal anatomy motion for radiation therapy purposes. METHODS AND MATERIALS Ten healthy volunteers (mean age, 38 years; range, 22-54 years; 6 female and 4 male) were scanned using magnetic resonance imaging during normal breathing and at 2 ventilator-induced frequencies: 20 and 25 breaths per minute for 3 minutes. Sagittal and coronal cinematic data sets, centered over the right diaphragm, were used to measure internal motions across the lung-diaphragm interface. Repeated scans assessed reproducibility. Physiologic parameters and participant experiences were recorded to quantify tolerability and comfort. RESULTS Physiologic observations and experience questionnaires demonstrated that rapid shallow non-invasive ventilation technique was tolerable and comfortable. Motion analysis of the lung-diaphragm interface demonstrated respiratory amplitudes and variations reduced in all subjects using rapid shallow non-invasive ventilation compared with spontaneous breathing: mean amplitude reductions of 56% and 62% for 20 and 25 breaths per minute, respectively. The largest mean amplitude reductions were found in the posterior of the right lung; 40.0 mm during normal breathing to 15.5 mm (P < .005) and 15.2 mm (P < .005) when ventilated with 20 and 25 breaths per minute, respectively. Motion variations also reduced with ventilation; standard deviations in the posterior lung reduced from 14.8 mm during normal respiration to 4.6 mm and 3.5 mm at 20 and 25 breaths per minute, respectively. CONCLUSIONS To our knowledge, this study is the first to measure internal anatomic motion using rapid shallow mechanical ventilation to regularize and minimize respiratory motion over a period long enough to image and to deliver radiation therapy. Rapid frequency and shallow, non-invasive ventilation both generate large reductions in internal thoracic and abdominal motions, the clinical application of which could be profound-enabling dose escalation (increasing treatment efficacy) or high-dose ablative radiation therapy.
Collapse
Affiliation(s)
- Nicholas S West
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Michael J Parkes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Snowden
- Departments of Perioperative and Critical Care Medicine, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - James Prentis
- Departments of Perioperative and Critical Care Medicine, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jill McKenna
- Department of Therapeutic Radiography, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Muhammad Shahid Iqbal
- Department of Clinical Oncology, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jason Cashmore
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher Walker
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
50
|
Bibault JE, Denis F, Roué A, Gibon D, Fumagalli I, Hennequin C, Barillot I, Quéro L, Paumier A, Mahé MA, Servagi Vernat S, Créhange G, Lapeyre M, Blanchard P, Pointreau Y, Lafond C, Huguet F, Mornex F, Latorzeff I, de Crevoisier R, Martin V, Kreps S, Durdux C, Antoni D, Noël G, Giraud P. [Siriade 2.0: An e-learning platform for radiation oncology contouring]. Cancer Radiother 2018; 22:773-777. [PMID: 30360973 DOI: 10.1016/j.canrad.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE In 2008, the French national society of radiation oncology (SFRO) and the association for radiation oncology continued education (AFCOR) created Siriade, an e-learning website dedicated to contouring. MATERIAL AND METHODS Between 2015 and 2017, this platform was updated using the latest digital online tools available. Two main sections were needed: a theoretical part and another section of online workshops. RESULTS Teaching courses are available as online commented videos, available on demand. The practical section of the website is an online contouring workshop that automatically generates a report quantifying the quality of the user's delineation compared with the experts'. CONCLUSION Siriade 2.0 is an innovating digital tool for radiation oncology initial and continuous education.
Collapse
Affiliation(s)
- J-E Bibault
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France
| | - F Denis
- Service de radiothérapie, centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| | - A Roué
- Institut national des sciences et techniques nucléaires, centre CEA de Saclay, D36, 91191 Gif-sur-Yvette, France
| | - D Gibon
- Aquilab, parc Eurasanté, biocentre Fleming, 250, rue Salvador-Allende, 59120 Loos, France
| | - I Fumagalli
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - C Hennequin
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - I Barillot
- Service d'oncologie radiothérapie, centre universitaire de cancérologie Henry-S.-Kaplan, 2, boulevard Tonnellé, 37044 Tours, France; Université François-Rabelais, 2, boulevard Tonnellé, 37044 Tours, France
| | - L Quéro
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - A Paumier
- Service d'oncologie radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Professeur-Jacques-Monod, 44805 Saint-Herblain, France
| | - M-A Mahé
- Service d'oncologie radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Professeur-Jacques-Monod, 44805 Saint-Herblain, France
| | - S Servagi Vernat
- Service d'oncologie radiothérapie, institut Jean-Godinot, 1, rue Koenig, 51100 Reims, France
| | - G Créhange
- Service d'oncologie radiothérapie, centre Georges-François-Leclerc, 1, rue du Professeur-Marion, 21000 Dijon, France
| | - M Lapeyre
- Service d'oncologie radiothérapie, centre Jean-Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| | - P Blanchard
- Service d'oncologie radiothérapie Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - Y Pointreau
- Service de radiothérapie, centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| | - C Lafond
- Service de radiothérapie, centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| | - F Huguet
- Service d'oncologie radiothérapie, hôpital Tenon, Hôpitaux universitaires de l'Est parisien, 4, rue de la Chine, 75020 Paris, France; Université Pierre-et-Marie-Curie, 4, rue de la Chine, 75020 Paris, France
| | - F Mornex
- Service d'oncologie radiothérapie, CHU Lyon Sud, 65, chemin du Grand-Revoyet, 69495 Pierre-Bénite, France
| | - I Latorzeff
- Service d'oncologie radiothérapie, clinique Pasteur, 1, rue de la Petite-Vitesse, 31300 Toulouse, France
| | - R de Crevoisier
- Service d'oncologie radiothérapie, centre Eugène-Marquis, avenue de la Bataille-Flandre-Dunkerque, 35700 Rennes, France
| | - V Martin
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - S Kreps
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France
| | - C Durdux
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France
| | - D Antoni
- Département universitaire de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg, France
| | - G Noël
- Département universitaire de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg, France
| | - P Giraud
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|