1
|
ten Hoor M, van de Berg R, Pérez Fornos A, Stultiens JJA. Electrical stimulation of the vestibular nerve: evaluating effects and potential starting points for optimization in vestibular implants. Curr Opin Otolaryngol Head Neck Surg 2024; 32:313-321. [PMID: 39171746 PMCID: PMC11377057 DOI: 10.1097/moo.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW Oscillopsia and unsteadiness are common and highly debilitating symptoms in individuals with bilateral vestibulopathy. A lack of adequate treatment options encouraged the investigation of vestibular implants, which aim to restore vestibular function with motion-modulated electrical stimulation. This review aims to outline the ocular and postural responses that can be evoked with electrical prosthetic stimulation of the semicircular canals and discuss potential approaches to further optimize evoked responses. Particular focus is given to the stimulation paradigm. RECENT FINDINGS Feasibility studies in animals paved the way for vestibular implantation in human patients with bilateral vestibulopathy. Recent human trials demonstrated prosthetic electrical stimulation to partially restore vestibular reflexes, enhance dynamic visual acuity, and generate controlled postural responses. To further optimize prosthetic performance, studies predominantly targeted eye responses elicited by the vestibulo-ocular reflex, aiming to minimize misalignments and asymmetries while maximizing the response. Changes of stimulation parameters are shown to hold promise to increase prosthetic efficacy, together with surgical refinements and neuroplastic effects. SUMMARY Optimization of the stimulation paradigm, in combination with a more precise electrode placement, holds great potential to enhance the clinical benefit of vestibular implants.
Collapse
Affiliation(s)
- Marieke ten Hoor
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
2
|
Steinhardt CR, Mitchell DE, Cullen KE, Fridman GY. Pulsatile electrical stimulation creates predictable, correctable disruptions in neural firing. Nat Commun 2024; 15:5861. [PMID: 38997274 PMCID: PMC11245474 DOI: 10.1038/s41467-024-49900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients. In this study, we use computational modeling to provide an explanation for how pulsatile stimulation affects axonal channels and therefore leads to variability in restoration of neural responses. The phenomenological explanation is transformed into equations that predict induced firing rate as a function of pulse rate, pulse amplitude, and spontaneous firing rate. We show that these equations predict simulated responses to pulsatile stimulation with a variety of parameters as well as several features of experimentally recorded primate vestibular afferent responses to pulsatile stimulation. We then discuss the implications of these effects for improving clinical stimulation paradigms and electrical stimulation-based experiments.
Collapse
Affiliation(s)
- Cynthia R Steinhardt
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
| | - Diana E Mitchell
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gene Y Fridman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Stultiens JJA, Lewis RF, Phillips JO, Boutabla A, Della Santina CC, Glueckert R, van de Berg R. The Next Challenges of Vestibular Implantation in Humans. J Assoc Res Otolaryngol 2023; 24:401-412. [PMID: 37516679 PMCID: PMC10504197 DOI: 10.1007/s10162-023-00906-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.
Collapse
Affiliation(s)
- Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, The Netherlands.
| | - Richard F Lewis
- Department of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - James O Phillips
- Department of Otolaryngology, University of Washington, Seattle, WA, USA
| | - Anissa Boutabla
- Department of Otorhinolaryngology & Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Charles C Della Santina
- Department of Biomedical Engineering and Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
4
|
Soto E, Pliego A, Vega R. Vestibular prosthesis: from basic research to clinics. Front Integr Neurosci 2023; 17:1161860. [PMID: 37265514 PMCID: PMC10230114 DOI: 10.3389/fnint.2023.1161860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Balance disorders are highly prevalent worldwide, causing substantial disability with high personal and socioeconomic impact. The prognosis in many of these patients is poor, and rehabilitation programs provide little help in many cases. This medical problem can be addressed using microelectronics by combining the highly successful cochlear implant experience to produce a vestibular prosthesis, using the technical advances in micro gyroscopes and micro accelerometers, which are the electronic equivalents of the semicircular canals (SCC) and the otolithic organs. Reaching this technological milestone fostered the possibility of using these electronic devices to substitute the vestibular function, mainly for visual stability and posture, in case of damage to the vestibular endorgans. The development of implantable and non-implantable devices showed diverse outcomes when considering the integrity of the vestibular pathways, the device parameters (current intensity, impedance, and waveform), and the targeted physiological function (balance and gaze). In this review, we will examine the development and testing of various prototypes of the vestibular implant (VI). The insight raised by examining the state-of-the-art vestibular prosthesis will facilitate the development of new device-development strategies and discuss the feasibility of complex combinations of implantable devices for disorders that directly affect balance and motor performance.
Collapse
Affiliation(s)
- Enrique Soto
- Benemérita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla, Mexico
| | - Adriana Pliego
- Benemérita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla, Mexico
- Universidad Autónoma del Estado de México (UAEMéx), Facultad de Medicina, Toluca, Mexico
| | - Rosario Vega
- Benemérita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla, Mexico
| |
Collapse
|
5
|
van Stiphout L, Pleshkov M, Lucieer F, Dobbels B, Mavrodiev V, Guinand N, Pérez Fornos A, Widdershoven J, Strupp M, Van Rompaey V, van de Berg R. Patterns of Vestibular Impairment in Bilateral Vestibulopathy and Its Relation to Etiology. Front Neurol 2022; 13:856472. [PMID: 35386413 PMCID: PMC8979031 DOI: 10.3389/fneur.2022.856472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to investigate (1) the patterns of vestibular impairment in bilateral vestibulopathy (BVP) and subsequently, the implications regarding patient eligibility for vestibular implantation, and (2) whether this pattern and severity of vestibular impairment is etiology dependent. Methods A total of one hundred and seventy-three subjects from three tertiary referral centers in Europe were diagnosed with BVP according to the Bárány Society diagnostic criteria. The subjects underwent vestibular testing such as the caloric test, torsion swing test, video Head Impulse Test (vHIT) in horizontal and vertical planes, and cervical and/or ocular vestibular evoked myogenic potentials (c- and oVEMPs). The etiologies were split into idiopathic, genetic, ototoxicity, infectious, Menière's Disease, (head)trauma, auto-immune, neurodegenerative, congenital, and mixed etiology. Results The caloric test and horizontal vHIT more often indicated horizontal semicircular canal impairment than the torsion swing test. The vHIT results showed significantly higher gains for both anterior canals compared with the horizontal and posterior canals (p < 0.001). The rates of bilaterally absent oVEMP responses were higher compared to the bilaterally absent cVEMP responses (p = 0.010). A total of fifty-four percent of the patients diagnosed with BVP without missing data met all three Bárány Society diagnostic test criteria, whereas 76% of the patients were eligible for implantation according to the vestibular implantation criteria. Regarding etiology, only horizontal vHIT results were significantly lower for trauma, neurodegenerative, and genetic disorders, whereas the horizontal vHIT results were significantly higher for Menière's Disease, infectious and idiopathic BVP. The exploration with hierarchical cluster analysis showed no significant association between etiology and patterns of vestibular impairment. Conclusion This study showed that caloric testing and vHIT seem to be more sensitive for measuring vestibular impairment, whereas the torsion swing test is more suited for measuring residual vestibular function. In addition, no striking patterns of vestibular impairment in relation to etiology were found. Nevertheless, it was demonstrated that although the implantation criteria are stricter compared with the Bárány Society diagnostic criteria, still, 76% of patients with BVP were eligible for implantation based on the vestibular test criteria. It is advised to carefully examine every patient for their overall pattern of vestibular impairment in order to make well-informed and personalized therapeutic decisions.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
- *Correspondence: Lisa van Stiphout
| | - Maksim Pleshkov
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
- Faculty of Physics, Tomsk State University, Tomsk, Russia
- Maksim Pleshkov
| | - Florence Lucieer
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bieke Dobbels
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Vergil Mavrodiev
- Department of Neurology and German Center for Vertigo, Ludwig-Maximilians University, Munich, Germany
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angelica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Josine Widdershoven
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo, Ludwig-Maximilians University, Munich, Germany
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
6
|
van Stiphout L, Hossein I, Kimman M, Whitney SL, Ayiotis A, Strupp M, Guinand N, Pérez Fornos A, Widdershoven J, Ramos-Macías Á, Van Rompaey V, van de Berg R. Development and Content Validity of the Bilateral Vestibulopathy Questionnaire. Front Neurol 2022; 13:852048. [PMID: 35370880 PMCID: PMC8968143 DOI: 10.3389/fneur.2022.852048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background To date, the burden and severity of the full spectrum of bilateral vestibulopathy (BVP) symptoms has not yet been measured in a standardized manner. Since therapeutic interventions aiming to improve BVP symptoms are emerging, the need for a new standardized assessment tool that encompasses the specific aspects of BVP arises. Therefore, the aim of this study was to develop a multi-item Patient Reported Outcome Measure (PROM) that captures the clinically important symptoms of BVP and assesses its impact on daily life. Methods The development of the Bilateral Vestibulopathy Questionnaire (BVQ) consisted of two phases: (I) initial item generation and (II) face and content validity testing. Items were derived from a literature review and individual semi-structured interviews focusing on the full spectrum of reported BVP symptoms (I). Subsequently (IIa), individual patient interviews were conducted using “thinking aloud” and concurrent verbal probing techniques to assess the comprehensibility of the instructions, questions and response options, and the relevance, missing domains, or missing items. Interviews continued until saturation of input was reached. Finally, international experts with experience in the field of the physical, emotional, and cognitive symptoms of BVP participated in an online focus group to assess the relevance and comprehensiveness of the BVQ (IIb). Results The BVQ consisted of two sections. The first section included 50 items scored on a six-point Likert scale arranged into seven constructs (i.e., imbalance, oscillopsia, other physical symptoms, cognitive symptoms, emotional symptoms, limitations and behavioral changes and social life). The second section consisted of four items, scored on a visual analog scale from 0 to 100, to inquire about limitations in daily life, perceived health and expectations regarding future recovery. Interviews with BVP patients [n = 8, 50% female, mean age 56 years (range 24–88 years)] and the expert meeting confirmed face and content validity of the developed BVQ. Conclusion The BVQ, which was developed to assess the spectrum of BVP symptoms and its impact on daily life, proved to have good face and content validity. It can be used to characterize current self-reported symptoms and disability and to evaluate symptom burden before and after therapeutic interventions in future research and clinical practice.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, Netherlands
- *Correspondence: Lisa van Stiphout
| | - Israt Hossein
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, Netherlands
| | - Merel Kimman
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Center, Maastricht, Netherlands
| | - Susan L. Whitney
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrianna Ayiotis
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Strupp
- Department of Neurology, German Center for Vertigo, Ludwig-Maximilians University, Munich, Germany
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Josine Widdershoven
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Ángel Ramos-Macías
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, Netherlands
| |
Collapse
|
7
|
Longin L, Deroy O. Augmenting perception: How artificial intelligence transforms sensory substitution. Conscious Cogn 2022; 99:103280. [PMID: 35114632 DOI: 10.1016/j.concog.2022.103280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
What happens when artificial sensors are coupled with the human senses? Using technology to extend the senses is an old human dream, on which sensory substitution and other augmentation technologies have already delivered. Laser tactile canes, corneal implants and magnetic belts can correct or extend what individuals could otherwise perceive. Here we show why accommodating intelligent sensory augmentation devices not just improves but also changes the way of thinking and classifying former sensory augmentation devices. We review the benefits in terms of signal processing and show why non-linear transformation is more than a mere improvement compared to classical linear transformation.
Collapse
Affiliation(s)
- Louis Longin
- Faculty of Philosophy, Philosophy of Science and the Study of Religion, LMU-Munich, Geschwister-Scholl-Platz 1, 80359 Munich, Germany.
| | - Ophelia Deroy
- Faculty of Philosophy, Philosophy of Science and the Study of Religion, LMU-Munich, Geschwister-Scholl-Platz 1, 80359 Munich, Germany; Munich Center for Neurosciences-Brain & Mind, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Institute of Philosophy, School of Advanced Study, University of London, London WC1E 7HU, United Kingdom
| |
Collapse
|
8
|
Stultiens JJA, Guinand N, Van Rompaey V, Pérez Fornos A, Kunst HPM, Kingma H, van de Berg R. The resilience of the inner ear-vestibular and audiometric impact of transmastoid semicircular canal plugging. J Neurol 2021; 269:5229-5238. [PMID: 34374862 PMCID: PMC9467949 DOI: 10.1007/s00415-021-10693-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Background Certain cases of superior semicircular canal dehiscence or benign paroxysmal positional vertigo can be treated by plugging of the affected semicircular canal. However, the extent of the impact on vestibular function and hearing during postoperative follow-up is not known. Objective To evaluate the evolution of vestibular function and hearing after plugging of a semicircular canal. Methods Six patients underwent testing before and 1 week, 2 months, and 6 months after plugging of the superior or posterior semicircular canal. Testing included caloric irrigation test, video Head Impulse Test (vHIT), cervical and ocular Vestibular Evoked Myogenic Potentials (VEMPs) and audiometry. Results Initially, ipsilateral caloric response decreased in all patients and vHIT vestibulo-ocular reflex (VOR) gain of each ipsilateral semicircular canal decreased in 4/6 patients. In 4/6 patients, postoperative caloric response recovered to > 60% of the preoperative value. In 5/6 patients, vHIT VOR gain was restored to > 85% of the preoperative value for both ipsilateral non-plugged semicircular canals. In the plugged semicircular canal, this gain decreased in 4/5 patients and recovered to > 50% of the preoperative value. Four patients preserved cervical and ocular VEMP responses. Bone conduction hearing deteriorated in 3/6 patients, but recovered within 6 months postoperatively, although one patient had a persistent loss of 15 dB at 8 kHz. Conclusion Plugging of a semicircular canal can affect both vestibular function and hearing. After initial deterioration, most patients show recovery during follow-up. However, a vestibular function loss or high-frequency hearing loss can persist. This stresses the importance of adequate counseling of patients considering plugging of a semicircular canal. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10693-5.
Collapse
Affiliation(s)
- Joost J A Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Nils Guinand
- Division of Otorhinolaryngology and Head-and-Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head & Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Angélica Pérez Fornos
- Division of Otorhinolaryngology and Head-and-Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Henricus P M Kunst
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hermanus Kingma
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
9
|
Rodriguez Montesdeoca I, Ramos de Miguel A, González JCF, Barreiro SB, Pérez Fernández N, Vanspauwen R, Ramos-Macias A. Differences in Vestibular-Evoked Myogenic Potential Responses by Using Cochlear Implant and Otolith Organ Direct Stimulation. Front Neurol 2021; 12:663803. [PMID: 34113311 PMCID: PMC8185293 DOI: 10.3389/fneur.2021.663803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Several studies have demonstrated the possibility to obtain vestibular potentials elicited with electrical stimulation from cochlear and vestibular implants. The objective of this study is to analyze the vestibular-evoked myogenic potentials (VEMPs) obtained from patients implanted with cochlear and vestibulo-cochlear implant. Material and Methods: We compared two groups: in the first group, four cochlear implant (CI) recipients with present acoustic cVEMPs before CI surgery were included. In the second group, three patients with bilaterally absent cVEMPs and bilateral vestibular dysfunction were selected. The latter group received a unilateral cochleo-vestibular implant. We analyze the electrically elicited cVEMPs in all patients after stimulation with cochlear and vestibular electrode array stimulation. Results: We present the results obtained post-operatively in both groups. All patients (100%) with direct electrical vestibular stimulation via the vestibular electrode array had present cVEMPs. The P1 and N1 latencies were 11.33-13.6 ms and 18.3-21 ms, respectively. In CI patients, electrical cVEMPs were present only in one of the four subjects (25%) with cochlear implant ("cross") stimulation, and P1 and N1 latencies were 9.67 and 16.33, respectively. In these patients, the responses present shorter latencies than those observed acoustically. Conclusions: Electrically evoked cVEMPs can be present after cochlear and vestibular stimulation and suggest stimulation of vestibular elements, although clinical effect must be further studied.
Collapse
Affiliation(s)
- Isaura Rodriguez Montesdeoca
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Angel Ramos de Miguel
- Hearing and Balance Laboratory, Las Palmas de Gran Canaria University (SIANI), Las Palmas, Spain
| | - Juan Carlos Falcon González
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Silvia Borkoski Barreiro
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | | | - Robby Vanspauwen
- European Institute for Otorhinolaryngology Head and Neck Surgery, Gasthuiszusters Antwerpen Hospitals Antwerp, Wilrijk, Belgium
| | - Angel Ramos-Macias
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain.,Hearing and Balance Laboratory, Las Palmas de Gran Canaria University (SIANI), Las Palmas, Spain
| |
Collapse
|
10
|
Results From a Second-Generation Vestibular Implant in Human Subjects: Diagnosis May Impact Electrical Sensitivity of Vestibular Afferents. Otol Neurotol 2020; 41:68-77. [PMID: 31834185 DOI: 10.1097/mao.0000000000002463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Auditory and vestibular outcomes after placement of a vestibular-cochlear implant in subjects with varying causes of vestibular loss. STUDY DESIGN Prospective case study. SETTING Tertiary referral center. PATIENTS Three human subjects received a vestibular-cochlear implant. Subject 1 had sudden hearing and vestibular loss 10 years before implantation. Subjects 2 and 3 had bilateral Menière's disease with resolution of acute attacks. All subjects had severe-profound deafness in the implanted ear and bilateral vestibular loss. INTERVENTION Vestibular-cochlear implant with electrode positions confirmed by CT. MAIN OUTCOME MEASURES Electrically-evoked vestibular and cochlear compound action potentials (ECAPs), speech perception, and electrically-evoked slow-phase eye velocities. RESULTS Subject 1 had no vestibular ECAP, but normal cochlear ECAPs and cochlear implant function. She had minimal eye-movement with vestibular stimulation. Subject 2 had vestibular ECAPs. This subject had the largest eye velocities from electrical stimulation that we have seen in humans, exceeding 100 degrees per second. Her cochlear implant functions normally. Subject 3 had vestibular and cochlear ECAPs, and robust eye-movements and cochlear implant function. CONCLUSION The etiology of vestibular loss appears to have a profound impact on sensitivity of vestibular afferents in distinction to cochlear afferents. If this dichotomy is common, it may limit the application of vestibular implants to diagnoses with preserved sensitivity of vestibular afferents. We speculate it is due to differences in topographic organization of Scarpa's versus the spiral ganglion. In two subjects, the second-generation device can produce higher velocity eye movements than seen in the four subjects receiving the first-generation device.
Collapse
|
11
|
Crétallaz C, Boutabla A, Cavuscens S, Ranieri M, Nguyen TAK, Kingma H, Van De Berg R, Guinand N, Pérez Fornos A. Influence of systematic variations of the stimulation profile on responses evoked with a vestibular implant prototype in humans. J Neural Eng 2020; 17:036027. [PMID: 32213673 PMCID: PMC8630998 DOI: 10.1088/1741-2552/ab8342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To explore the impact of different electrical stimulation profiles in human recipients of the Geneva-Maastricht vestibular implant prototypes. APPROACH Four implanted patients were recruited for this study. We investigated the relative efficacy of systematic variations of the electrical stimulus profile (phase duration, pulse rate, baseline level, modulation depth) in evoking vestibulo-ocular (eVOR) and perceptual responses. MAIN RESULTS Shorter phase durations and, to a lesser extent, slower pulse rates allowed maximizing the electrical dynamic range available for eliciting a wider range of intensities of vestibular percepts. When either the phase duration or the pulse rate was held constant, current modulation depth was the factor that had the most significant impact on peak velocity of the eVOR. SIGNIFICANCE Our results identified important parametric variations that influence the measured responses. Furthermore, we observed that not all vestibular pathways seem equally sensitive to the electrical stimulus when the electrodes are placed in the semicircular canals and monopolar stimulation is used. This opens the door to evaluating new stimulation strategies for a vestibular implant, and suggests the possibility of selectively activating one vestibular pathway or the other in order to optimize rehabilitation outcomes.
Collapse
Affiliation(s)
- Céline Crétallaz
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hazen M, Cushing SL. Implications of Concurrent Vestibular Dysfunction in Pediatric Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Mandsberg NK, Christfort JF, Kamguyan K, Boisen A, Srivastava SK. Orally ingestible medical devices for gut engineering. Adv Drug Deliv Rev 2020; 165-166:142-154. [PMID: 32416112 PMCID: PMC7255201 DOI: 10.1016/j.addr.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Orally ingestible medical devices provide significant advancement for diagnosis and treatment of gastrointestinal (GI) tract-related conditions. From micro- to macroscale devices, with designs ranging from very simple to complex, these medical devices can be used for site-directed drug delivery in the GI tract, real-time imaging and sensing of gut biomarkers. Equipped with uni-direction release, or self-propulsion, or origami design, these microdevices are breaking the barriers associated with drug delivery, including biologics, across the GI tract. Further, on-board microelectronics allow imaging and sensing of gut tissue and biomarkers, providing a more comprehensive understanding of underlying pathophysiological conditions. We provide an overview of recent advances in orally ingestible medical devices towards drug delivery, imaging and sensing. Challenges associated with gut microenvironment, together with various activation/actuation modalities of medical devices for micromanipulation of the gut are discussed. We have critically examined the relationship between materials–device design–pharmacological responses with respect to existing regulatory guidelines and provided a clear roadmap for the future.
Collapse
|
14
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
15
|
Drafting a Surgical Procedure Using a Computational Anatomy Driven Approach for Precise, Robust, and Safe Vestibular Neuroprosthesis Placement-When One Size Does Not Fit All. Otol Neurotol 2020; 40:S51-S58. [PMID: 31225823 DOI: 10.1097/mao.0000000000002211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To design and evaluate a new vestibular implant and surgical procedure that should reach correct electrode placement in 95% of patients in silico. DESIGN Computational anatomy driven implant and surgery design study. SETTING Tertiary referral center. PARTICIPANTS The population comprised 81 patients that had undergone a CT scan of the Mastoid region in the Maastricht University Medical Center. The population was subdivided in a vestibular implant eligible group (28) and a control group (53) without known vestibular loss. INTERVENTIONS Canal lengths and relationships between landmarks were calculated for every patient. The relationships in group-anatomy were used to model a fenestration site on all three semicircular canals. Each patient's simulated individual distance from the fenestration site to the ampulla was calculated and compared with the populations average to determine if placement would be successful. MAIN OUTCOME MEASURES Lengths of the semicircular canals, distances from fenestration site to ampulla (intralabyrinthine electrode length), and rate of successful electrode placement (robustness). RESULTS The canal lengths for the lateral, posterior, and superior canal were respectively 12.1 mm ± 1.07, 18.8 mm ± 1.62, and 17.5 mm ± 1.23, the distances from electrode fenestration site to the ampulla were respectively 3.73 mm ± 0.53, 9.02 mm ± 0.90, and 5.31 mm ± 0.73 and electrode insertions were successful for each respective semicircular canal in 92.6%, 66.7%, and 86.4% of insertions in silico. The implant electrode was subsequently revised to include two more electrodes per lead, resulting in a robustness of 100%. CONCLUSIONS The computational anatomy approach can be used to design and test surgical procedures. With small changes in electrode design, the proposed surgical procedure's target robustness was reached.
Collapse
|
16
|
Fluctuations in Vestibular Afferent Excitability in Menière's Disease. Otol Neurotol 2020; 41:810-816. [PMID: 32229758 DOI: 10.1097/mao.0000000000002634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine if Menière's disease is associated with fluctuations in afferent excitability in four human subjects previously implanted with vestibular stimulators. STUDY DESIGN Longitudinal repeated measures. SETTING Tertiary referral center, human vestibular research laboratory. PATIENTS Four human subjects with previously uncontrolled Menière's disease unilaterally implanted in each semicircular canal with a vestibular stimulator. One subject had only two canals implanted. INTERVENTION(S) Repeated measures of electrically-evoked slow phase eye velocity and vestibular electrically-evoked compound action potentials (vECAP) over 2 to 4 years. MAIN OUTCOME MEASURE(S) Slow phase eye velocity and N1-P1 vECAP amplitudes as a function of time. RESULTS There were statistically significant fluctuations in electrically evoked slow phase eye velocity over time in at least one semicircular canal of each subject. vECAP N1-P1 amplitudes measured at similar time intervals and stimulus intensities seem to show somewhat correlated fluctuations. One of the subjects had a single Menière's attack during this time period. The others did not. CONCLUSIONS In these four subjects originally diagnosed with Menière's disease, there was fluctuating electrical excitability of the ampullar nerve of at least one canal in each subject. These fluctuations occurred without active symptoms of Menière's disease.
Collapse
|
17
|
Haxby F, Akrami M, Zamani R. Finding a Balance: A Systematic Review of the Biomechanical Effects of Vestibular Prostheses on Stability in Humans. J Funct Morphol Kinesiol 2020; 5:E23. [PMID: 33467239 PMCID: PMC7739312 DOI: 10.3390/jfmk5020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
The vestibular system is located in the inner ear and is responsible for maintaining balance in humans. Bilateral vestibular dysfunction (BVD) is a disorder that adversely affects vestibular function. This results in symptoms such as postural imbalance and vertigo, increasing the incidence of falls and worsening quality of life. Current therapeutic options are often ineffective, with a focus on symptom management. Artificial stimulation of the vestibular system, via a vestibular prosthesis, is a technique being explored to restore vestibular function. This review systematically searched for literature that reported the effect of artificial vestibular stimulation on human behaviours related to balance, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique. A total of 21 papers matched the inclusion criteria of the literature search conducted using the PubMed and Web of Science databases (February 2019). The populations for these studies included both healthy adults and patients with BVD. In every paper, artificial vestibular stimulation caused an improvement in certain behaviours related to balance, although the extent of the effect varied greatly. Various behaviours were measured such as the vestibulo-ocular reflex, postural sway and certain gait characteristics. Two classes of prosthesis were evaluated and both showed a significant improvement in at least one aspect of balance-related behaviour in every paper included. No adverse effects were reported for prostheses using noisy galvanic vestibular stimulation, however, prosthetic implantation sometimes caused hearing or vestibular loss. Significant heterogeneity in methodology, study population and disease aetiology were observed. The present study confirms the feasibility of vestibular implants in humans for restoring balance in controlled conditions, but more research needs to be conducted to determine their effects on balance in non-clinical settings.
Collapse
Affiliation(s)
- Felix Haxby
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (F.H.); (R.Z.)
| | - Mohammad Akrami
- Department of Engineering, College of Engineering, Mathematics, and Physical Sciences University of Exeter, Exeter EX4 4QF, UK
| | - Reza Zamani
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (F.H.); (R.Z.)
| |
Collapse
|
18
|
Phillips JO, Ling L, Nowack A, Rebollar B, Rubinstein JT. Interactions between Auditory and Vestibular Modalities during Stimulation with a Combined Vestibular and Cochlear Prosthesis. Audiol Neurootol 2020; 25:96-108. [PMID: 31968338 DOI: 10.1159/000503846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A combined vestibular and cochlear prosthesis may restore hearing and balance to patients who have lost both. To do so, the device should activate each sensory system independently. OBJECTIVES In this study, we quantify auditory and vestibular interactions during interleaved stimulation with a combined 16-channel cochlear and 6-channel vestibular prosthesis in human subjects with both hearing and vestibular loss. METHODS Three human subjects were implanted with a combined vestibular and cochlear implant. All subjects had severe-to-profound deafness in the implanted ear. We provided combined stimulation of the cochlear and vestibular arrays and looked for interactions between these separate inputs. Our main outcome measures were electrically evoked slow-phase eye velocities during nystagmus elicited by brief trains of biphasic pulse stimulation of the vestibular end organs with and without concurrent stimulation of the cochlea, and Likert scale assessments of perceived loudness and pitch during stimulation of the cochlea, with and without concurrent stimulation of the vestibular ampullae. RESULTS All subjects had no auditory sensation resulting from semicircular canal stimulation alone, and no sensation of motion or slow-phase eye movement resulting from cochlear stimulation alone. However, interleaved cochlear stimulation did produce changes in the slow-phase eye velocities elicited by electrical stimulation. Similarly, interleaved semicircular canal stimulation did elicit changes in the perceived pitch and loudness resulting from stimulation at multiple sites in the cochlea. CONCLUSIONS There are significant interactions between different sensory modalities during stimulation with a combined vestibular and cochlear prosthesis. Such interactions present potential challenges for stimulation strategies to simultaneously restore auditory and vestibular function with such an implant.
Collapse
Affiliation(s)
- James O Phillips
- Department of Otolaryngology, University of Washington, Seattle, Washington, USA, .,Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington, USA,
| | - Leo Ling
- Department of Otolaryngology, University of Washington, Seattle, Washington, USA
| | - Amy Nowack
- Department of Otolaryngology, University of Washington, Seattle, Washington, USA
| | - Brenda Rebollar
- Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jay T Rubinstein
- Department of Otolaryngology, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Manrique-Huarte R, Zulueta-Santos C, Garaycochea O, Alvarez Linera-Alperi M, Manrique M. Correlation between High-Resolution Computed Tomography Scan Findings and Histological Findings in Human Vestibular End Organs and Surgical Implications. Audiol Neurootol 2020; 25:42-49. [PMID: 31910409 DOI: 10.1159/000504594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histological study of vestibular end organs has been challenging due to the difficulty in preserving their structures for histological analysis and due to their complex geometry. Recently, radiology advances have allowed to deepen the study of the membranous labyrinth. SUMMARY A review and analysis of surgical implications related to the anatomy of the vestibular end organ is performed. Radiological advances are key in the advancement of the knowledge of the anatomy and pathology of the vestibule. Thus, application of such knowledge in the development or improvement of surgical procedures may facilitate the development of novel techniques. Key Messages: During the last few decades, the knowledge of the anatomy of the auditory system through histology and radiology had improved. Technological advances in this field may lead to a better diagnosis and therapeutic approach of most common and important diseases affecting the inner ear.
Collapse
Affiliation(s)
| | | | - Octavio Garaycochea
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| |
Collapse
|
20
|
van de Berg R, Ramos A, van Rompaey V, Bisdorff A, Perez-Fornos A, Rubinstein JT, Phillips JO, Strupp M, Della Santina CC, Guinand N. The vestibular implant: Opinion statement on implantation criteria for research. J Vestib Res 2020; 30:213-223. [PMID: 32651339 PMCID: PMC9249290 DOI: 10.3233/ves-200701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
This opinion statement proposes a set of candidacy criteria for vestibular implantation of adult patients with bilateral vestibulopathy (BVP) in a research setting. The criteria include disabling chronic symptoms like postural imbalance, unsteadiness of gait and/or head movement-induced oscillopsia, combined with objective signs of reduced or absent vestibular function in both ears. These signs include abnormal test results recorded during head impulses (video head impulse test or scleral coil technique), bithermal caloric testing and rotatory chair testing (sinusoidal stimulation of 0.1 Hz). Vestibular implant (VI) implantation criteria are not the same as diagnostic criteria for bilateral vestibulopathy. The major difference between VI-implantation criteria and the approved diagnostic criteria for BVP are that all included vestibular tests of semicircular canal function (head impulse test, caloric test, and rotatory chair test) need to show significant impairments of vestibular function in the implantation criteria. For this, a two-step paradigm was developed. First, at least one of the vestibular tests needs to fulfill stringent criteria, close to those for BVP. If this is applicable, then the other vestibular tests have to fulfill a second set of criteria which are less stringent than the original criteria for BVP. If the VI-implantation is intended to excite the utricle and/or saccule (otolith stimulation), responses to cervical and ocular vestibular evoked myogenic potentials must be absent in addition to the above mentioned abnormalities of semicircular canal function. Finally, requirements for safe and potentially effective stimulation should be met, including implanting patients with BVP of peripheral origin only, and assessing possible medical and psychiatric contraindications.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otorhinolaryngology and Head & Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State University, Tomsk, Russian Federation
| | - Angel Ramos
- Department of Otolaryngology Head Neck Surgery. Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria. Department of Otolaryngology. Las Palmas University. (ULPGC). Psychoacoustic & Equilibrium Laboratory. Las Palmas University (ULPGC)
| | - Vincent van Rompaey
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Alexandre Bisdorff
- Clinique du Vertige, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Angelica Perez-Fornos
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jay T. Rubinstein
- Otolaryngology-HNS, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - James O. Phillips
- Otolaryngology-HNS, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Charles C. Della Santina
- Departments of Otolaryngology – Head & Neck Surgery and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nils Guinand
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Gibson AW, Moon IJ, Golub JS, Rubinstein JT. A comparison of endolymphatic shunt surgery and intratympanic gentamicin for meniere's disease. Laryngoscope 2019; 130:2455-2460. [PMID: 31808957 DOI: 10.1002/lary.28445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To report audiovestibular outcomes following endolymphatic shunt surgery (ELS) and intratympanic gentamicin injections (ITG) in patients with Meniere's disease (MD). STUDY DESIGN Retrospective matched cohort study METHODS: Patients with MD refractory to medical management between 2004 and 2017 were reviewed: 44 patients underwent ELS and had outcomes available, while 27 patients underwent ITG and had outcomes available. Mean follow-up durations for the ELS and ITG groups were 39.1 and 43.3 months, respectively. Twenty-six patients from the ELS group and 24 patients from the ITG group were then included in a pretreatment hearing- and age-matched analysis. Main outcome measures were successful control of vertigo, pure-tone average (PTA; 0.5, 1, 2 and 4 kHz), word recognition score (WRS), and treatment complications. RESULTS A matched analysis showed vertigo control rates of 73.1% in the ELS group and 66.8% in the ITG group, which were not significantly different (P = .760). The change in PTA following treatment was statistically similar between the ELS group (6.2 dB) and ITG group (4.6 dB) (P = .521), while the change in WRS for the ELS group (+3.9 %) was significantly more favorable than the ITG group (-13.6 %) (P = .046). Chronic post-treatment unsteadiness was reported in 25.0% of the ITG group and was not encountered in the ELS group (P = .009). CONCLUSION ELS provided successful vertigo control at least as well as ITG with a lower incidence of audiovestibular complications. LEVEL OF EVIDENCE 4 Laryngoscope, 130:2455-2460, 2020.
Collapse
Affiliation(s)
- Alec W Gibson
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, USA
| | - Il Joon Moon
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Justin S Golub
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Jay T Rubinstein
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
22
|
Ramos Macias A, Ramos de Miguel A, Rodriguez Montesdeoca I, Borkoski Barreiro S, Falcón González JC. Chronic Electrical Stimulation of the Otolith Organ: Preliminary Results in Humans with Bilateral Vestibulopathy and Sensorineural Hearing Loss. Audiol Neurootol 2019; 25:79-90. [PMID: 31801137 DOI: 10.1159/000503600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Bilateral vestibulopathy is an important cause of imbalance that is misdiagnosed. The clinical management of patients with bilateral vestibular loss remains difficult as there is no clear evidence for an effective treatment. In this paper, we try to analyze the effect of chronic electrical stimulation and adaptation to electrical stimulation of the vestibular system in humans when stimulating the otolith organ with a constant pulse train to mitigate imbalance due to bilateral vestibular dysfunction (BVD). METHODS We included 2 patients in our study with BVD according to Criteria Consensus of the Classification Committee of the Bárány Society. Both cases were implanted by using a full-band straight electrode to stimulate the otoliths organs and simultaneously for the cochlear stimulation we use a perimodiolar electrode. RESULTS In both cases Vestibular and clinical test (video head impulse test, videonistagmography cervical vestibular evoked myogenic potentials, cVEMP and oVEMP), subjective visual vertical test, computerized dynamic posturography, dynamic gait index, Time UP and Go test and dizziness handicap index) were performed. Posture and gait metrics reveal important improvement if compare with preoperartive situation. Oscillopsia, unsteadiness, independence and quality of life improved to almost normal situation. DISCUSSION/CONCLUSION Prosthetic implantation of the otolith organ in humans is technically feasible. Electrical stimulation might have potential effects on balance and this is stable after 1 year follow-up. This research provides new possibilities for the development of vestibular implants to improve gravito-inertial acceleration sensation, in this case by the otoliths stimulation.
Collapse
Affiliation(s)
- Angel Ramos Macias
- Department of Otolaryngology, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain,
| | - Angel Ramos de Miguel
- Hearing and Balance Laboratory, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Isaura Rodriguez Montesdeoca
- Department of Otolaryngology, and Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Silvia Borkoski Barreiro
- Department of Otolaryngology, and Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Juan Carlos Falcón González
- Department of Otolaryngology, and Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
23
|
Hageman KN, Chow MR, Roberts D, Boutros PJ, Tooker A, Lee K, Felix S, Pannu SS, Haque R, Della Santina CC. Binocular 3D otolith-ocular reflexes: responses of chinchillas to prosthetic electrical stimulation targeting the utricle and saccule. J Neurophysiol 2019; 123:259-276. [PMID: 31747349 DOI: 10.1152/jn.00883.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals' ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation.NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.
Collapse
Affiliation(s)
- Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Margaret R Chow
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angela Tooker
- Lawrence Livermore National Laboratory, Livermore, California
| | - Kye Lee
- Lawrence Livermore National Laboratory, Livermore, California
| | - Sarah Felix
- Lawrence Livermore National Laboratory, Livermore, California
| | | | - Razi Haque
- Lawrence Livermore National Laboratory, Livermore, California
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Boutros PJ, Schoo DP, Rahman M, Valentin NS, Chow MR, Ayiotis AI, Morris BJ, Hofner A, Rascon AM, Marx A, Deas R, Fridman GY, Davidovics NS, Ward BK, Treviño C, Bowditch SP, Roberts DC, Lane KE, Gimmon Y, Schubert MC, Carey JP, Jaeger A, Della Santina CC. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight 2019; 4:128397. [PMID: 31723056 DOI: 10.1172/jci.insight.128397] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDBilateral loss of vestibular (inner ear inertial) sensation causes chronically blurred vision during head movement, postural instability, and increased fall risk. Individuals who fail to compensate despite rehabilitation therapy have no adequate treatment options. Analogous to hearing restoration via cochlear implants, prosthetic electrical stimulation of vestibular nerve branches to encode head motion has garnered interest as a potential treatment, but prior studies in humans have not included continuous long-term stimulation or 3D binocular vestibulo-ocular reflex (VOR) oculography, without which one cannot determine whether an implant selectively stimulates the implanted ear's 3 semicircular canals.METHODSWe report binocular 3D VOR responses of 4 human subjects with ototoxic bilateral vestibular loss unilaterally implanted with a Labyrinth Devices Multichannel Vestibular Implant System vestibular implant, which provides continuous, long-term, motion-modulated prosthetic stimulation via electrodes in 3 semicircular canals.RESULTSInitiation of prosthetic stimulation evoked nystagmus that decayed within 30 minutes. Stimulation targeting 1 canal produced 3D VOR responses approximately aligned with that canal's anatomic axis. Targeting multiple canals yielded responses aligned with a vector sum of individual responses. Over 350-812 days of continuous 24 h/d use, modulated electrical stimulation produced stable VOR responses that grew with stimulus intensity and aligned approximately with any specified 3D head rotation axis.CONCLUSIONThese results demonstrate that a vestibular implant can selectively, continuously, and chronically provide artificial sensory input to all 3 implanted semicircular canals in individuals disabled by bilateral vestibular loss, driving reflexive VOR eye movements that approximately align in 3D with the head motion axis encoded by the implant.TRIAL REGISTRATIONClinicalTrials.gov: NCT02725463.FUNDINGNIH/National Institute on Deafness and Other Communication Disorders: R01DC013536 and 2T32DC000023; Labyrinth Devices, LLC; and Med-El GmbH.
Collapse
Affiliation(s)
| | - Desi P Schoo
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mehdi Rahman
- Labyrinth Devices, LLC, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | - Gene Y Fridman
- Department of Biomedical Engineering and.,Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Bryan K Ward
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Carolina Treviño
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephen P Bowditch
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Dale C Roberts
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly E Lane
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoav Gimmon
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael C Schubert
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John P Carey
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Charles C Della Santina
- Department of Biomedical Engineering and.,Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Labyrinth Devices, LLC, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Wolter NE, Gordon KA, Campos JL, Vilchez Madrigal LD, Pothier DD, Hughes CO, Papsin BC, Cushing SL. BalanCI: Head-Referenced Cochlear Implant Stimulation Improves Balance in Children with Bilateral Cochleovestibular Loss. Audiol Neurootol 2019; 25:60-71. [PMID: 31678979 DOI: 10.1159/000503135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION To determine the impact of a head-referenced cochlear implant (CI) stimulation system, BalanCI, on balance and postural control in children with bilateral cochleovestibular loss (BCVL) who use bilateral CI. METHODS Prospective, blinded case-control study. Balance and postural control testing occurred in two settings: (1) quiet clinical setting and (2) immersive realistic virtual environment (Challenging Environment Assessment Laboratory [CEAL], Toronto Rehabilitation Institute). Postural control was assessed in 16 and balance in 10 children with BCVL who use bilateral CI, along with 10 typically developing children. Children with neuromotor, cognitive, or visual deficits that would prevent them from performing the tests were excluded. Children wore the BalanCI, which is a head-mounted device that couples with their CIs through the audio port and provides head-referenced spatial information delivered via the intracochlear electrode array. Postural control was measured by center of pressure (COP) and time to fall using the WiiTM (Nintendo, WA, USA) Balance Board for feet and the BalanCI for head, during the administration of the Modified Clinical Test of Sensory Interaction in Balance (CTSIB-M). The COP of the head and feet were assessed for change by deviation, measured as root mean square around the COP (COP-RMS), rate of deviation (COP-RMS/duration), and rate of path length change from center (COP-velocity). Balance was assessed by the Bruininks-Oseretsky Test of Motor Proficiency 2, balance subtest (BOT-2), specifically, BOT-2 score as well as time to fall/fault. RESULTS In the virtual environment, children demonstrated more stable balance when using BalanCI as measured by an improvement in BOT-2 scores. In a quiet clinical setting, the use of BalanCI led to improved postural control as demonstrated by significant reductions in COP-RMS and COP-velocity. With the use of BalanCI, the number of falls/faults was significantly reduced and time to fall increased. CONCLUSIONS BalanCI is a simple and effective means of improving postural control and balance in children with BCVL who use bilateral CI. BalanCI could potentially improve the safety of these children, reduce the effort they expend maintaining balance and allow them to take part in more complex balance tasks where sensory information may be limited and/or noisy.
Collapse
Affiliation(s)
- Nikolaus E Wolter
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karen A Gordon
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Communication Disorders, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Campos
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | | - David D Pothier
- Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada.,Centre for Advanced Hearing and Balance Testing, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Cían O Hughes
- UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, London, United Kingdom
| | - Blake C Papsin
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sharon L Cushing
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada, .,Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada, .,Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada, .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
26
|
Vestibular implant: does it really work? A systematic review. Braz J Otorhinolaryngol 2019; 85:788-798. [PMID: 31606334 PMCID: PMC9443005 DOI: 10.1016/j.bjorl.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction People with vestibular loss present a deficit in the vestibular system, which is primarily responsible for promoting postural control, gaze stabilization, and spatial orientation while the head moves. There is no effective treatment for a bilateral loss of vestibular function. Recently, a vestibular implant was developed for people with bilateral loss of vestibular function to improve this function and, consequently, the quality of life of these patients. Objective To identify in the scientific literature evidence that vestibular implants in people with vestibular deficit improves vestibular function. Methods One hundred and forty six articles were found from five databases and 323 articles from the gray literature mentioning the relationship between vestibular implant and vestibular function in humans. The PICOS strategy (Population, Intervention, Comparison and Outcome) was used to define the eligibility criteria. The studies that met the inclusion criteria for this second step were included in a qualitative synthesis, and each type of study was analyzed according to the bias risk assessment of the Joanna Briggs Institute through the critical assessment checklist Joanna Briggs institute for quasi-experimental studies and the Joanna Briggs institute critical assessment checklist for case reports. Results Of the 21 articles included in reading the full text, 10 studies were selected for the qualitative analysis in the present systematic review. All ten articles analyzed through the critical assessment checklist Joanna Briggs institute showed a low risk of bias. The total number of samples in the evaluated articles was 18 patients with vestibular implants. Conclusions Taken together, these findings support the feasibility of vestibular implant for restoration of the vestibulo-ocular reflex in a broad frequency range and illustrate new challenges for the development of this technology.
Collapse
|
27
|
Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, Ramos de Miguel A, Borkoski Barreiro S, Barbara M, Manrique M, Zarowski A. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol Neurootol 2019; 25:6-24. [PMID: 31533097 DOI: 10.1159/000502407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Collapse
Affiliation(s)
- Morgana Sluydts
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium,
| | - Ian Curthoys
- Vestibular Research Laboratory, University of Sydney, Sydney, New South Wales, Australia
| | - Robby Vanspauwen
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| | - Blake Croll Papsin
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Lynn Cushing
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel Ramos
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Angel Ramos de Miguel
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Silvia Borkoski Barreiro
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Andrzej Zarowski
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| |
Collapse
|
28
|
Virtual Rhesus Labyrinth Model Predicts Responses to Electrical Stimulation Delivered by a Vestibular Prosthesis. J Assoc Res Otolaryngol 2019; 20:313-339. [PMID: 31165284 DOI: 10.1007/s10162-019-00725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022] Open
Abstract
To better understand the spread of prosthetic current in the inner ear and to facilitate design of electrode arrays and stimulation protocols for a vestibular implant system intended to restore sensation after loss of vestibular hair cell function, we created a model of the primate labyrinth. Because the geometry of the implanted ear is complex, accurately modeling effects of prosthetic stimuli on vestibular afferent activity required a detailed representation of labyrinthine anatomy. Model geometry was therefore generated from three-dimensional (3D) reconstructions of a normal rhesus temporal bone imaged using micro-MRI and micro-CT. For systematically varied combinations of active and return electrode location, the extracellular potential field during a biphasic current pulse was computed using finite element methods. Potential field values served as inputs to stochastic, nonlinear dynamic models for each of 2415 vestibular afferent axons, each with unique origin on the neuroepithelium and spiking dynamics based on a modified Smith and Goldberg model. We tested the model by comparing predicted and actual 3D vestibulo-ocular reflex (VOR) responses for eye rotation elicited by prosthetic stimuli. The model was individualized for each implanted animal by placing model electrodes in the standard labyrinth geometry based on CT localization of actual implanted electrodes. Eye rotation 3D axes were predicted from relative proportions of model axons excited within each of the three ampullary nerves, and predictions were compared to archival eye movement response data measured in three alert rhesus monkeys using 3D scleral coil oculography. Multiple empirically observed features emerged as properties of the model, including effects of changing active and return electrode position. The model predicts improved prosthesis performance when the reference electrode is in the labyrinth's common crus (CC) rather than outside the temporal bone, especially if the reference electrode is inserted nearly to the junction of the CC with the vestibule. Extension of the model to human anatomy should facilitate optimal design of electrode arrays for clinical application.
Collapse
|
29
|
Boutros PJ, Valentin NS, Hageman KN, Dai C, Roberts D, Della Santina CC. Nonhuman primate vestibuloocular reflex responses to prosthetic vestibular stimulation are robust to pulse timing errors caused by temporal discretization. J Neurophysiol 2019; 121:2256-2266. [PMID: 30995152 DOI: 10.1152/jn.00887.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrical stimulation of vestibular afferent neurons to partially restore semicircular canal sensation of head rotation and the stabilizing reflexes that sensation supports has potential to effectively treat individuals disabled by bilateral vestibular hypofunction. Ideally, a vestibular implant system using this approach would be integrated with a cochlear implant, which would provide clinicians with a means to simultaneously treat loss of both vestibular and auditory sensation. Despite obvious similarities, merging these technologies poses several challenges, including stimulus pulse timing errors that arise when a system must implement a pulse frequency modulation-encoding scheme (as is used in vestibular implants to mimic normal vestibular nerve encoding of head movement) within fixed-rate continuous interleaved sampling (CIS) strategies used in cochlear implants. Pulse timing errors caused by temporal discretization inherent to CIS create stair step discontinuities of the vestibular implant's smooth mapping of head velocity to stimulus pulse frequency. In this study, we assayed electrically evoked vestibuloocular reflex responses in two rhesus macaques using both a smooth pulse frequency modulation map and a discretized map corrupted by temporal errors typical of those arising in a combined cochlear-vestibular implant. Responses were measured using three-dimensional scleral coil oculography for prosthetic electrical stimuli representing sinusoidal head velocity waveforms that varied over 50-400°/s and 0.1-5 Hz. Pulse timing errors produced negligible effects on responses across all canals in both animals, indicating that temporal discretization inherent to implementing a pulse frequency modulation-coding scheme within a cochlear implant's CIS fixed pulse timing framework need not sacrifice performance of the combined system's vestibular implant portion. NEW & NOTEWORTHY Merging a vestibular implant system with existing cochlear implant technology can provide clinicians with a means to restore both vestibular and auditory sensation. Pulse timing errors inherent to integration of pulse frequency modulation vestibular stimulation with fixed-rate, continuous interleaved sampling cochlear implant stimulation would discretize the smooth head velocity encoding of a combined device. In this study, we show these pulse timing errors produce negligible effects on electrically evoked vestibulo-ocular reflex responses in two rhesus macaques.
Collapse
Affiliation(s)
- Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Nicolas S Valentin
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Chenkai Dai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
30
|
Sienko KH, Seidler RD, Carender WJ, Goodworth AD, Whitney SL, Peterka RJ. Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control. Front Neurol 2018; 9:944. [PMID: 30483209 PMCID: PMC6240674 DOI: 10.3389/fneur.2018.00944] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have demonstrated the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies for reducing postural sway during static tasks and improving balance during dynamic tasks. The mechanism by which sensory augmentation information is processed and used by the CNS is not well understood. The dominant hypothesis, which has not been supported by rigorous experimental evidence, posits that observed reductions in postural sway are due to sensory reweighting: feedback of body motion provides the CNS with a correlate to the inputs from its intact sensory channels (e.g., vision, proprioception), so individuals receiving sensory augmentation learn to increasingly depend on these intact systems. Other possible mechanisms for observed postural sway reductions include: cognition (processing of sensory augmentation information is solely cognitive with no selective adjustment of sensory weights by the CNS), “sixth” sense (CNS interprets sensory augmentation information as a new and distinct sensory channel), context-specific adaptation (new sensorimotor program is developed through repeated interaction with the device and accessible only when the device is used), and combined volitional and non-volitional responses. This critical review summarizes the reported sensory augmentation findings spanning postural control models, clinical rehabilitation, laboratory-based real-time usage, and neuroimaging to critically evaluate each of the aforementioned mechanistic theories. Cognition and sensory re-weighting are identified as two mechanisms supported by the existing literature.
Collapse
Affiliation(s)
- Kathleen H Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wendy J Carender
- Michigan Balance Vestibular Testing and Rehabilitation, Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI, United States
| | - Adam D Goodworth
- Department of Rehabilitation Sciences, University of Hartford, Hartford, CT, United States
| | - Susan L Whitney
- Departments of Physical Therapy and Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J Peterka
- Department of Neurology, Oregon Health & Science University and National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
31
|
Phillips JO, Ling L, Nowack AL, Phillips CM, Nie K, Rubinstein JT. The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey. Front Neurosci 2018; 12:88. [PMID: 29867306 PMCID: PMC5962652 DOI: 10.3389/fnins.2018.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022] Open
Abstract
Electrical vestibular neurostimulation may be a viable tool for modulating vestibular afferent input to restore vestibular function following injury or disease. To do this, such stimulators must provide afferent input that can be readily interpreted by the central nervous system to accurately represent head motion to drive reflexive behavior. Since vestibular afferents have different galvanic sensitivity, and different natural sensitivities to head rotational velocity and acceleration, and electrical stimulation produces aphysiological synchronous activation of multiple afferents, it is difficult to assign a priori an appropriate transformation between head velocity and acceleration and the properties of the electrical stimulus used to drive vestibular reflex function, i.e., biphasic pulse rate or pulse current amplitude. In order to empirically explore the nature of the transformation between vestibular prosthetic stimulation and vestibular reflex behavior, in Rhesus macaque monkeys we parametrically varied the pulse rate and current amplitude of constant rate and current amplitude pulse trains, and the modulation frequency of sinusoidally modulated pulse trains that were pulse frequency modulated (FM) or current amplitude modulated (AM). In addition, we examined the effects of differential eye position and head position on the observed eye movement responses. We conclude that there is a strong and idiosyncratic, from canal to canal, effect of modulation frequency on the observed eye velocities that are elicited by stimulation. In addition, there is a strong effect of initial eye position and initial head position on the observed responses. These are superimposed on the relationships between pulse frequency or current amplitude and eye velocity that have been shown previously.
Collapse
Affiliation(s)
- James O Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Leo Ling
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Amy L Nowack
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Christopher M Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Epidemiology, University of Washington, Seattle, WA, United States
| | - Kaibao Nie
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| | - Jay T Rubinstein
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
32
|
Allum JHJ, Honegger F. Vibro-tactile and auditory balance biofeedback changes muscle activity patterns: Possible implications for vestibular implants. J Vestib Res 2018; 27:77-87. [PMID: 28387687 DOI: 10.3233/ves-170601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The two different types of balance prostheses being developed, implants and vibro-tactile/auditory feedback prostheses, rely on different measures to prove efficacy (those based on vestibular ocular reflexes versus balance control, respectively). Here we provide evidence that examining muscle activity might provide a useful alternative for both. METHODS The muscle activity of 6 bilateral vestibular loss (BVL) and 7 age-matched healthy controls (HC) was examined while standing eyes closed on a foam support surface. Pelvis and upper trunk angular movements were recorded in the roll and pitch planes. Surface EMG was recorded from the lower leg, trunk and upper arm muscles. BVL subjects were first assessed without feedback of pelvis sway, then received training with combined vibro-tactile and auditory feedback, before being re-assessed with feedback. RESULTS Feedback reduced the amplitudes of pelvis and shoulder sway to values of HC without feedback. Both the level of background EMG activity and the EMG area amplitudes changed when feedback was provided in a manner consistent with the reduced amplitude modulation of muscle synergies of HC. CONCLUSIONS The results of this study indicate that changed muscle synergy amplitudes underlie improvements in sway achieved by BVL subjects. The concept of this investigation may provide a means to prove efficacy for different types of balance prostheses, including implants.
Collapse
|
33
|
Volkenstein S, Dazert S. Recent surgical options for vestibular vertigo. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2017; 16:Doc01. [PMID: 29279721 PMCID: PMC5738932 DOI: 10.3205/cto000140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertigo is not a well-defined disease but a symptom that can occur in heterogeneous entities diagnosed and treated mainly by otolaryngologists, neurologists, internal medicine, and primary care physicians. Most vertigo syndromes have a good prognosis and management is predominantly conservative, whereas the need for surgical therapy is rare, but for a subset of patients often the only remaining option. In this paper, we describe and discuss different surgical therapy options for hydropic inner ear diseases, Menière's disease, dehiscence syndromes, perilymph fistulas, and benign paroxysmal positional vertigo. At the end, we shortly introduce the most recent developments in regard to vestibular implants. Surgical therapy is still indicated for vestibular disease in selected patients nowadays when conservative options did not reduce symptoms and patients are still suffering. Success depends on the correct diagnosis and choosing among different procedures the ones going along with an adequate patient selection. With regard to the invasiveness and the possible risks due to surgery, in depth individual counseling is absolutely necessary. Ablative and destructive surgical procedures usually achieve a successful vertigo control, but are associated with a high risk for hearing loss. Therefore, residual hearing has to be included in the decision making process for surgical therapy.
Collapse
Affiliation(s)
- Stefan Volkenstein
- Department of Otolaryngology, Head & Neck Surgery, Ruhr-University of Bochum at the St. Elisabeth Hospital of Bochum, Germany
| | - Stefan Dazert
- Department of Otolaryngology, Head & Neck Surgery, Ruhr-University of Bochum at the St. Elisabeth Hospital of Bochum, Germany
| |
Collapse
|
34
|
van de Berg R, Guinand N, Ranieri M, Cavuscens S, Khoa Nguyen TA, Guyot JP, Lucieer F, Starkov D, Kingma H, van Hoof M, Perez-Fornos A. The Vestibular Implant Input Interacts with Residual Natural Function. Front Neurol 2017; 8:644. [PMID: 29312107 PMCID: PMC5735071 DOI: 10.3389/fneur.2017.00644] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Patients with bilateral vestibulopathy (BV) can still have residual “natural” function. This might interact with “artificial” vestibular implant input (VI-input). When fluctuating, it could lead to vertigo attacks. Main objective was to investigate how “artificial” VI-input is integrated with residual “natural” input by the central vestibular system. This, to explore (1) whether misalignment in the response of “artificial” VI-input is sufficiently counteracted by well-aligned residual “natural” input and (2) whether “artificial” VI-input is able to influence and counteract the response to residual “natural” input, to show feasibility of a “vestibular pacemaker.” Materials and methods Five vestibular electrodes in four BV patients implanted with a VI were available. This involved electrodes with a predominantly horizontal response and electrodes with a predominantly vertical response. Responses to predominantly horizontal residual “natural” input and predominantly horizontal and vertical “artificial” VI-input were separately measured first. Then, inputs were combined in conditions where both would hypothetically collaborate or counteract. In each condition, subjects were subjected to 60 cycles of sinusoidal stimulation presented at 1 Hz. Gain, asymmetry, phase and angle of eye responses were calculated. Signal averaging was performed. Results Combining residual “natural” input and “artificial” VI-input resulted in an interaction in which characteristics of the resulting eye movement responses could significantly differ from those observed when responses were measured for each input separately (p < 0.0013). In the total eye response, inputs with a stronger vector magnitude seemed to have stronger weights than inputs with a lower vector magnitude, in a non-linear combination. Misalignment in the response of “artificial” VI-input was not sufficiently counteracted by well-aligned residual “natural” input. “Artificial” VI-input was able to significantly influence and counteract the response to residual “natural” input. Conclusion In the acute phase of VI-activation, residual “natural” input and “artificial” VI-input interact to generate eye movement responses in a non-linear fashion. This implies that different stimulation paradigms and more complex signal processing strategies will be required unless the brain is able to optimally combine both sources of information after adaptation during chronic use. Next to this, these findings could pave the way for using the VI as “vestibular pacemaker.”
Collapse
Affiliation(s)
- Raymond van de Berg
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Maurizio Ranieri
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Samuel Cavuscens
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - T A Khoa Nguyen
- Translational Neural Engineering Lab, Center for Neuroprosthetics, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Lucieer
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Herman Kingma
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Marc van Hoof
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
35
|
Karmali F, Bermúdez Rey MC, Clark TK, Wang W, Merfeld DM. Multivariate Analyses of Balance Test Performance, Vestibular Thresholds, and Age. Front Neurol 2017; 8:578. [PMID: 29167656 PMCID: PMC5682300 DOI: 10.3389/fneur.2017.00578] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022] Open
Abstract
We previously published vestibular perceptual thresholds and performance in the Modified Romberg Test of Standing Balance in 105 healthy humans ranging from ages 18 to 80 (1). Self-motion thresholds in the dark included roll tilt about an earth-horizontal axis at 0.2 and 1 Hz, yaw rotation about an earth-vertical axis at 1 Hz, y-translation (interaural/lateral) at 1 Hz, and z-translation (vertical) at 1 Hz. In this study, we focus on multiple variable analyses not reported in the earlier study. Specifically, we investigate correlations (1) among the five thresholds measured and (2) between thresholds, age, and the chance of failing condition 4 of the balance test, which increases vestibular reliance by having subjects stand on foam with eyes closed. We found moderate correlations (0.30–0.51) between vestibular thresholds for different motions, both before and after using our published aging regression to remove age effects. We found that lower or higher thresholds across all threshold measures are an individual trait that account for about 60% of the variation in the population. This can be further distributed into two components with about 20% of the variation explained by aging and 40% of variation explained by a single principal component that includes similar contributions from all threshold measures. When only roll tilt 0.2 Hz thresholds and age were analyzed together, we found that the chance of failing condition 4 depends significantly on both (p = 0.006 and p = 0.013, respectively). An analysis incorporating more variables found that the chance of failing condition 4 depended significantly only on roll tilt 0.2 Hz thresholds (p = 0.046) and not age (p = 0.10), sex nor any of the other four threshold measures, suggesting that some of the age effect might be captured by the fact that vestibular thresholds increase with age. For example, at 60 years of age, the chance of failing is roughly 5% for the lowest roll tilt thresholds in our population, but this increases to 80% for the highest roll tilt thresholds. These findings demonstrate the importance of roll tilt vestibular cues for balance, even in individuals reporting no vestibular symptoms and with no evidence of vestibular dysfunction.
Collapse
Affiliation(s)
- Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - María Carolina Bermúdez Rey
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Torin K Clark
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States.,Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, United States
| | - Wei Wang
- Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States.,Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
36
|
Burzynski J, Sulway S, Rutka JA. Vestibular Rehabilitation: Review of Indications, Treatments, Advances, and Limitations. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017. [DOI: 10.1007/s40136-017-0157-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
van de Berg R, Lucieer F, Guinand N, van Tongeren J, George E, Guyot JP, Kingma H, van Hoof M, Temel Y, van Overbeeke J, Perez-Fornos A, Stokroos R. The Vestibular Implant: Hearing Preservation during Intralabyrinthine Electrode Insertion-A Case Report. Front Neurol 2017; 8:137. [PMID: 28443060 PMCID: PMC5385458 DOI: 10.3389/fneur.2017.00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
Objective The vestibular implant seems feasible as a clinically useful device in the near future. However, hearing preservation during intralabyrinthine implantation remains a challenge. It should be preserved to be able to treat patients with bilateral vestibulopathy and (partially) intact hearing. This case study investigated the feasibility of hearing preservation during the acute phase after electrode insertion in the semicircular canals. Methods A 40-year-old woman with normal hearing underwent a translabyrinthine approach for a vestibular schwannoma Koos Grade IV. Hearing was monitored using auditory brainstem response audiometry (ABR). ABR signals were recorded synchronously to video recordings of the surgery. Following the principles of soft surgery, a conventional dummy electrode was inserted in the lateral semicircular canal for several minutes and subsequently removed. The same procedure was then applied for the posterior canal. Finally, the labyrinthectomy was completed, and the schwannoma was removed. Results Surgery was performed without complications. No leakage of endolymph and no significant reduction of ABR response were observed during insertion and after removal of the electrodes from the semicircular canals, indicting no damage to the peripheral auditory function. The ABR response significantly changed when the semicircular canals were completely opened during the labyrinthectomy. This was indicated by a change in the morphology and latency of peak V of the ABR signal. Conclusion Electrode insertion in the semicircular canals is possible without acutely damaging the peripheral auditory function measured with ABR, as shown in this proof-of-principle clinical investigation.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Florence Lucieer
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Joost van Tongeren
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Erwin George
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Marc van Hoof
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jacobus van Overbeeke
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Stokroos
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
38
|
Perez Fornos A, Cavuscens S, Ranieri M, van de Berg R, Stokroos R, Kingma H, Guyot JP, Guinand N. The vestibular implant: A probe in orbit around the human balance system. J Vestib Res 2017; 27:51-61. [DOI: 10.3233/ves-170604] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Angelica Perez Fornos
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Cavuscens
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maurizio Ranieri
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, The Netherlands
- Faculty of Physics, Tomsk State University, Russian Federation
| | - Robert Stokroos
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, The Netherlands
- Faculty of Physics, Tomsk State University, Russian Federation
| | - Jean-Philippe Guyot
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nils Guinand
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Naples JG, Eisen MD. The History and Evolution of Surgery on the Vestibular Labyrinth. Otolaryngol Head Neck Surg 2016; 155:816-819. [PMID: 27554515 DOI: 10.1177/0194599816665807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022]
Abstract
The history of surgery on the vestibular labyrinth is rich but sparsely documented in the literature. The story begins over a century ago with the labyrinthectomy in an era that consisted exclusively of ablative surgery for infection or vertigo. Improved understanding of vestibular physiology and pathology produced an era of selective ablation and hearing preservation that includes semicircular canal occlusion for benign paroxysmal positional vertigo. An era of restoration began with a discovery of superior semicircular canal dehiscence and its repair. The final era of vestibular replacement is upon us as the possibility of successful prosthetic vestibular implantation becomes reality.
Collapse
Affiliation(s)
- James G Naples
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Marc D Eisen
- University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
40
|
Wireless inertial measurement of head kinematics in freely-moving rats. Sci Rep 2016; 6:35689. [PMID: 27767085 PMCID: PMC5073323 DOI: 10.1038/srep35689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
While miniature inertial sensors offer a promising means for precisely detecting, quantifying and classifying animal behaviors, versatile inertial sensing devices adapted for small, freely-moving laboratory animals are still lacking. We developed a standalone and cost-effective platform for performing high-rate wireless inertial measurements of head movements in rats. Our system is designed to enable real-time bidirectional communication between the headborne inertial sensing device and third party systems, which can be used for precise data timestamping and low-latency motion-triggered applications. We illustrate the usefulness of our system in diverse experimental situations. We show that our system can be used for precisely quantifying motor responses evoked by external stimuli, for characterizing head kinematics during normal behavior and for monitoring head posture under normal and pathological conditions obtained using unilateral vestibular lesions. We also introduce and validate a novel method for automatically quantifying behavioral freezing during Pavlovian fear conditioning experiments, which offers superior performance in terms of precision, temporal resolution and efficiency. Thus, this system precisely acquires movement information in freely-moving animals, and can enable objective and quantitative behavioral scoring methods in a wide variety of experimental situations.
Collapse
|
41
|
Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns. Exp Brain Res 2016; 234:3245-3257. [PMID: 27405997 DOI: 10.1007/s00221-016-4722-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
In our study, we examined postural stability during head turns for two rhesus monkeys: one animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals' posture, motions of the head and trunk, as well as torque about the body's center of mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison with the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction.
Collapse
|
42
|
Guinand N, van de Berg R, Ranieri M, Cavuscens S, DiGiovanna J, Nguyen TAK, Micera S, Stokroos R, Kingma H, Guyot JP, Perez Fornos A. Vestibular implants: Hope for improving the quality of life of patients with bilateral vestibular loss. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7192-5. [PMID: 26737951 DOI: 10.1109/embc.2015.7320051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The vestibular system plays an essential role in crucial tasks such as postural control, gaze stabilization, and spatial orientation. Currently, there is no effective treatment for a bilateral loss of the vestibular function (BVL). The quality of life of affected patients is significantly impaired. During the last decade, our group has explored the potential of using electrical stimulation to artificially restore the vestibular function. Our vestibular implant prototype consists of a custom modified cochlear implant featuring one to three vestibular electrodes implanted in the proximity of the ampullary branches of the vestibular nerve; in addition to the main cochlear array. Special surgical techniques for safe implantation of these devices have been developed. In addition, we have developed stimulation strategies to generate bidirectional eye movements as well as the necessary interfaces to capture the signal from a motion sensor (e.g., gyroscope) and use it to modulate the stimulation signals delivered to the vestibular nerves. To date, 24 vestibular electrodes have been implanted in 11 BVL patients. Using a virtual motion profile to modulate the "baseline" electrical stimulation, vestibular responses could be evoked with 21 electrodes. Eye movements with mean peak eye velocities of 32°/s and predominantly in the plane of the stimulated canal were successfully generated. These are within the range of normal compensatory eye movements during walking and were large enough to have a significant effect on the patients' visual acuity. These results indicate that electrical stimulation of the vestibular nerve has a significant functional impact; eye movements generated this way could be sufficient to restore gaze stabilization during essential everyday tasks such as walking. The innovative concept of the vestibular implant has the potential to restore the vestibular function and have a central role in improving the quality of life of BVL patients in the near future.
Collapse
|
43
|
Nguyen TAK, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, van de Berg R, Carpaneto J, Kingma H, Guyot JP, Micera S, Fornos AP. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng 2016; 13:046023. [DOI: 10.1088/1741-2560/13/4/046023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Loss of Afferent Vestibular Input Produces Central Adaptation and Increased Gain of Vestibular Prosthetic Stimulation. J Assoc Res Otolaryngol 2015; 17:19-35. [PMID: 26438271 DOI: 10.1007/s10162-015-0544-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
Implanted vestibular neurostimulators are effective in driving slow phase eye movements in monkeys and humans. Furthermore, increases in slow phase velocity and electrically evoked compound action potential (vECAP) amplitudes occur with increasing current amplitude of electrical stimulation. In intact monkeys, protracted intermittent stimulation continues to produce robust behavioral responses and preserved vECAPs. In lesioned monkeys, shorter duration studies show preserved but with somewhat lower or higher velocity behavioral responses. It has been proposed that such changes are due to central adaptive changes in the electrically elicited vestibulo-ocular reflex (VOR). It is equally possible that these differences are due to changes in the vestibular periphery in response to activation of the vestibular efferent system. In order to investigate the site of adaptive change in response to electrical stimulation, we performed transtympanic gentamicin perfusions to induce rapid changes in vestibular input in monkeys with long-standing stably functioning vestibular neurostimulators, disambiguating the effects of implantation from the effects of ototoxic lesion. Gentamicin injection was effective in producing a large reduction in natural VOR only when it was performed in the non-implanted ear, suggesting that the implanted ear contributed little to the natural rotational response before injection. Injection of the implanted ear produced a reduction in the vECAP responses in that ear, suggesting that the intact hair cells in the non-functional ipsilateral ear were successfully lesioned by gentamicin, reducing the efficacy of stimulation in that ear. Despite this, injection of both ears produced central plastic changes that resulted in a dramatically increased slow phase velocity nystagmus elicited by electrical stimulation. These results suggest that loss of vestibular afferent activity, and a concurrent loss of electrically elicited vestibular input, produces an increase in the efficacy of a vestibular neurostimulator by eliciting centrally adapted behavioral responses without concurrent adaptive increase of galvanic afferent activation in the periphery.
Collapse
|
45
|
van de Berg R, van Tilburg M, Kingma H. Bilateral Vestibular Hypofunction: Challenges in Establishing the Diagnosis in Adults. ORL J Otorhinolaryngol Relat Spec 2015; 77:197-218. [DOI: 10.1159/000433549] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Guinand N, van de Berg R, Cavuscens S, Stokroos RJ, Ranieri M, Pelizzone M, Kingma H, Guyot JP, Perez-Fornos A. Vestibular Implants: 8 Years of Experience with Electrical Stimulation of the Vestibular Nerve in 11 Patients with Bilateral Vestibular Loss. ORL J Otorhinolaryngol Relat Spec 2015; 77:227-240. [PMID: 26367113 DOI: 10.1159/000433554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The concept of the vestibular implant is primarily to artificially restore the vestibular function in patients with a bilateral vestibular loss (BVL) by providing the central nervous system with motion information using electrical stimulation of the vestibular nerve. Our group initiated human trials about 10 years ago. METHODS Between 2007 and 2013, 11 patients with a BVL received a vestibular implant prototype providing electrodes to stimulate the ampullary branches of the vestibular nerve. Eye movements were recorded and analyzed to assess the effects of the electrical stimulation. Perception induced by electrical stimulation was documented. RESULTS Smooth, controlled eye movements were obtained in all patients showing that electrical stimulation successfully activated the vestibulo-ocular pathway. However, both the electrical dynamic range and the amplitude of the eye movements were variable from patient to patient. The axis of the response was consistent with the stimulated nerve branch in 17 out of the 24 tested electrodes. Furthermore, in at least 1 case, the elicited eye movements showed characteristics similar to those of compensatory eye movements observed during natural activities such as walking. Finally, diverse percepts were reported upon electrical stimulation (i.e., rotatory sensations, sound, tickling or pressure) with intensity increasing as the stimulation current increased. CONCLUSIONS These results demonstrate that electrical stimulation is a safe and effective means to activate the vestibular system, even in a heterogeneous patient population with very different etiologies and disease durations. Successful tuning of this information could turn this vestibular implant prototype into a successful artificial balance organ.
Collapse
|
47
|
Marianelli P, Capogrosso M, Bassi Luciani L, Panarese A, Micera S. A Computational Framework for Electrical Stimulation of Vestibular Nerve. IEEE Trans Neural Syst Rehabil Eng 2015; 23:897-909. [DOI: 10.1109/tnsre.2015.2407861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Vestibular and Balance Impairment Contributes to Cochlear Implant Failure in Children. Otol Neurotol 2015; 36:1029-34. [DOI: 10.1097/mao.0000000000000751] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Sun DQ, Lehar M, Dai C, Swarthout L, Lauer AM, Carey JP, Mitchell DE, Cullen KE, Santina CCD. Histopathologic Changes of the Inner ear in Rhesus Monkeys After Intratympanic Gentamicin Injection and Vestibular Prosthesis Electrode Array Implantation. J Assoc Res Otolaryngol 2015; 16:373-87. [PMID: 25790951 PMCID: PMC4417088 DOI: 10.1007/s10162-015-0515-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/02/2015] [Indexed: 11/29/2022] Open
Abstract
Bilateral vestibular deficiency (BVD) due to gentamicin ototoxicity can significantly impact quality of life and result in large socioeconomic burdens. Restoring sensation of head rotation using an implantable multichannel vestibular prosthesis (MVP) is a promising treatment approach that has been tested in animals and humans. However, uncertainty remains regarding the histopathologic effects of gentamicin ototoxicity alone or in combination with electrode implantation. Understanding these histological changes is important because selective MVP-driven stimulation of semicircular canals (SCCs) depends on persistence of primary afferent innervation in each SCC crista despite both the primary cause of BVD (e.g., ototoxic injury) and surgical trauma associated with MVP implantation. Retraction of primary afferents out of the cristae and back toward Scarpa's ganglion would render spatially selective stimulation difficult to achieve and could limit utility of an MVP that relies on electrodes implanted in the lumen of each ampulla. We investigated histopathologic changes of the inner ear associated with intratympanic gentamicin (ITG) injection and/or MVP electrode array implantation in 11 temporal bones from six rhesus macaque monkeys. Hematoxylin and eosin-stained 10-μm temporal bone sections were examined under light microscopy for four treatment groups: normal (three ears), ITG-only (two ears), MVP-only (two ears), and ITG + MVP (four ears). We estimated vestibular hair cell (HC) surface densities for each sensory neuroepithelium and compared findings across end organs and treatment groups. In ITG-only, MVP-only, and ITG + MVP ears, we observed decreased but persistent ampullary nerve fibers of SCC cristae despite ITG treatment and/or MVP electrode implantation. ITG-only and ITG + MVP ears exhibited neuroepithelial thinning and loss of type I HCs in the cristae but little effect on the maculae. MVP-only and ITG + MVP ears exhibited no signs of trauma to the cochlea or otolith end organs except in a single case of saccular injury due to over-insertion of the posterior SCC electrode. While implanted electrodes reached to within 50-760 μm of the target cristae and were usually ensheathed in a thin fibrotic capsule, dense fibrotic reaction and osteoneogenesis were each observed in only one of six electrode tracts examined. Consistent with physiologic studies that have demonstrated directionally appropriate vestibulo-ocular reflex responses to MVP electrical stimulation years after implantation in these animals, histologic findings in the present study indicate that although intralabyrinthine MVP implantation causes some inner ear trauma, it can be accomplished without destroying the distal afferent fibers an MVP is designed to excite.
Collapse
Affiliation(s)
- Daniel Q. Sun
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Outpatient Center, 6th floor, 601 North Caroline Street, Baltimore, MD 21287 USA
| | - Mohamed Lehar
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Chenkai Dai
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lani Swarthout
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amanda M. Lauer
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - John P. Carey
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | | | - Charles C. Della Santina
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
50
|
Phillips C, Ling L, Oxford T, Nowack A, Nie K, Rubinstein JT, Phillips JO. Longitudinal performance of an implantable vestibular prosthesis. Hear Res 2015; 322:200-11. [PMID: 25245586 PMCID: PMC4369472 DOI: 10.1016/j.heares.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Abstract
Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
| | - Leo Ling
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Trey Oxford
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Amy Nowack
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Kaibao Nie
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jay T Rubinstein
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Bioengineering, University of Washington, Seattle, WA, USA
| | - James O Phillips
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|