1
|
Wei C, Gao Z, Knabel M, Ulbricht M, Senekowitsch S, Erfurt P, Maggi N, Zwick B, Eickner T, Matin-Mann F, Seidlitz A, Lenarz T, Scheper V. Development of a drug delivering round window niche implant for cochlear pharmacotherapy. Drug Deliv 2024; 31:2392755. [PMID: 39166341 PMCID: PMC11340218 DOI: 10.1080/10717544.2024.2392755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI). METHODS Since guinea pigs do not have a RWN such as it is present in humans and to reduce the variables in in vivo studies, a one-size-fits-all GP-RNI model was designed using 12 data sets of Dunkin-Hartley guinea pigs. The model was 3D-printed using silicone. The accuracy and precision of printing, distribution of the sample ingredient dexamethasone (DEX), biocompatibility, bio-efficacy, implantability and drug release were tested in vitro. The GP-RNI efficacy was validated in cochlear implant-traumatized guinea pigs in vivo. RESULTS The 3D-printed GP-RNI was precise, accurate and fitted in all tested guinea pig RWNs. DEX was homogeneously included in the silicone. The GP-RNI containing 1% DEX was biocompatible, bio-effective and showed a two-phase and sustained DEX release in vitro, while it reduced fibrous tissue growth around the cochlear implant in vivo. CONCLUSIONS We developed a GP-RNI that can be used for precise inner ear drug delivery in guinea pigs, providing a reliable platform for testing the RNI's safety and efficacy, with potential implications for future clinical translation.
Collapse
Affiliation(s)
- Chunjiang Wei
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG, “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Lower Saxony, Germany
| | - Ziwen Gao
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG, “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Lower Saxony, Germany
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Martina Knabel
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Martin Ulbricht
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Stefan Senekowitsch
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Peter Erfurt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | | | - Bastian Zwick
- Carl Zeiss Industrielle Messtechnik GmbH, ZEISS Group, Essingen, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Farnaz Matin-Mann
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Anne Seidlitz
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Pharmaceutics and Biopharmaceutics, University of Duesseldorf, Duesseldorf, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG, “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Lower Saxony, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG, “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Lower Saxony, Germany
| |
Collapse
|
2
|
Membrane curvature and connective fiber alignment in guinea pig round window membrane. Acta Biomater 2021; 136:343-362. [PMID: 34563725 DOI: 10.1016/j.actbio.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.
Collapse
|
3
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
Aksit A, Lalwani AK, Kysar JW, West AC. Simulation assisted design for microneedle manufacturing: Computational modeling of two-photon templated electrodeposition. JOURNAL OF MANUFACTURING PROCESSES 2021; 66:211-219. [PMID: 34012359 PMCID: PMC8128138 DOI: 10.1016/j.jmapro.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fully metallic micrometer-scale 3D architectures can be fabricated via a hybrid additive methodology combining multi-photon lithography with electrochemical deposition of metals. The methodology - referred to as two-photon templated electrodeposition (2PTE) - has significant design freedom that enables the creation of complicated, traditionally difficult-to-make, high aspect ratio metallic structures such as microneedles. These complicated geometries, combined with their fully metallic nature, can enable precision surgical applications such as inner ear drug delivery or fluid sampling. However, the process involves electrochemical deposition of metals into complicated 3D lithography patterns thicker than 500 μm. This causes potential and chemical gradients to develop within the 3D template, creating limitations to what can be designed. These limitations can be explored, understood, and overcome via numerical modeling. Herein we introduce a numerical model as a design tool that can predict growth for manufacturing complicated 3D metallic geometries. The model is successful in predicting the geometric result of 2PTE, and enables extraction of insights about geometric constraints through exploration of its mechanics.
Collapse
Affiliation(s)
- Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Anil K. Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Alan C. West
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
5
|
Investigating the Geometry and Mechanical Properties of Human Round Window Membranes Using Micro-Fringe Projection. Otol Neurotol 2021; 42:319-326. [PMID: 33278245 DOI: 10.1097/mao.0000000000002911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The geometry and the mechanical property of the round window membrane (RWM) have a fundamental impact on the function of cochlea. BACKGROUND Understanding the mechanical behavior of RWM is important for cochlear surgery and design for the cochlear implant. Although the anatomy of RWM has been widely studied and described in the literature, argument remains regarding the true shape of RWM. The mechanical properties of RWM are also scarcely reported due to the difficulty of the measurement of the small size RWM. METHODS In this paper, micro-fringe projection was used to reconstruct the 3-dimensional geometries of 14 RWMs. Mechanical properties of the RWMs were subsequently measured using finite element (FE) model and an inverse method. The three-dimensional surface topographies and the curvatures of the two major directions reconstructed from the micro-fringe projection both demonstrated wide variations among samples. RESULTS The diameters of the RWMs vary from 1.65 to 2.2 mm and the curvatures vary from -0.97 to 3.76 mm-1. The nonlinear elasticity parameters in the Ogden model for each sample was measured and the average effective Young's modulus is approximately 1.98 MPa. CONCLUSION The geometries and mechanical properties of the human RWM measured in the work could potentially be applied to surgery design and on modeling analysis for the cochlea.
Collapse
|
6
|
3D-Printed Microneedles Create Precise Perforations in Human Round Window Membrane in Situ. Otol Neurotol 2021; 41:277-284. [PMID: 31746817 DOI: 10.1097/mao.0000000000002480] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Three-dimensional (3D)-printed microneedles can create precise holes on the scale of micrometers in the human round window membrane (HRWM). BACKGROUND An intact round window membrane is a barrier to delivery of therapeutic and diagnostic agents into the inner ear. Microperforation of the guinea pig round window membrane has been shown to overcome this barrier by enhancing diffusion 35-fold. In humans, the challenge is to design a microneedle that can precisely perforate the thicker HRWM without damage. METHODS Based on the thickness and mechanical properties of the HRWM, two microneedle designs were 3D-printed to perforate the HRWM from fresh frozen temporal bones in situ (n = 18 total perforations), simultaneously measuring force and displacement. Perforations were analyzed using confocal microscopy; microneedles were examined for deformity using scanning electron microscopy. RESULTS HRWM thickness was determined to be 60.1 ± 14.6 (SD) μm. Microneedles separated the collagen fibers and created slit-shaped perforations with the major axis equal to the microneedle shaft diameter. Microneedles needed to be displaced only minimally after making initial contact with the RWM to create a complete perforation, thus avoiding damage to intracochlear structures. The microneedles were durable and intact after use. CONCLUSION 3D-printed microneedles can create precise perforations in the HRWM without damaging intracochlear structures. As such, they have many potential applications ranging from aspiration of cochlear fluids using a lumenized needle for diagnosis and creating portals for therapeutic delivery into the inner ear.
Collapse
|
7
|
Szeto B, Aksit A, Valentini C, Yu M, Werth EG, Goeta S, Tang C, Brown LM, Olson ES, Kysar JW, Lalwani AK. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear Res 2021; 400:108141. [PMID: 33307286 PMCID: PMC8656365 DOI: 10.1016/j.heares.2020.108141] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis. METHODS The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy. RESULTS There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker. CONCLUSION Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Chris Valentini
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Michelle Yu
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
8
|
Characterization of the Sheep Round Window Membrane. J Assoc Res Otolaryngol 2020; 22:1-17. [PMID: 33258054 DOI: 10.1007/s10162-020-00778-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Intratympanic injection is a clinically used approach to locally deliver therapeutic molecules to the inner ear. Drug diffusion, at least in part, is presumed to occur through the round window membrane (RWM), one of the two openings to the inner ear. Previous studies in human temporal bones have identified a three-layered structure of the RWM with a thickness of 70-100 μm. This is considerably thicker than the RWM in rodents, which are mostly used to model RWM permeability and assess drug uptake. The sheep has been suggested as a large animal model for inner ear research given the similarities in structure and frequency range for hearing. Here, we report the structure of the sheep RWM. The RWM is anchored within the round window niche (average vertical diameter of 2.1 ± 0.3 mm and horizontal diameter of 2.3 ± 0.4 mm) and has a curvature that leans towards the scala tympani. The centre of the RWM is the thinnest (55-71 μm), with increasing thickness towards the edges (< 171 μm), where the RWM forms tight attachments to the surrounding bony niche. The layered RWM structure, including an outer epithelial layer, middle connective tissue and inner epithelial layer, was identified with cellular features such as wavy fibre bundles, melanocytes and blood vessels. An attached "meshwork structure" which extends over the cochlear aqueduct was seen, as in humans. The striking anatomical similarities between sheep and human RWM suggest that sheep may be evaluated as a more appropriate system to predict RWM permeability and drug delivery in humans than rodent models.
Collapse
|
9
|
Anatomical and Functional Consequences of Microneedle Perforation of Round Window Membrane. Otol Neurotol 2020; 41:e280-e287. [DOI: 10.1097/mao.0000000000002491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig Otolaryngol 2020; 5:122-131. [PMID: 32128438 PMCID: PMC7042639 DOI: 10.1002/lio2.336] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The treatment of inner ear disorders remains challenging due to anatomic barriers intrinsic to the bony labyrinth. The purpose of this review is to highlight recent advances and strategies for overcoming these barriers and to discuss promising future avenues for investigation. DATA SOURCES The databases used were PubMed, EMBASE, and Web of Science. RESULTS Although some studies aimed to improve systemic delivery using nanoparticle systems, the majority enhanced local delivery using hydrogels, nanoparticles, and microneedles. Developments in direct intracochlear delivery include intracochlear injection and intracochlear implants. CONCLUSIONS In the absence of a systemic drug that targets only the inner ear, the best alternative is local delivery that harnesses a combination of new strategies to overcome anatomic barriers. The combination of microneedle technology with hydrogel and nanoparticle delivery is a promising area for future investigation. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Harry Chiang
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Chris Valentini
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Michelle Yu
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Jeffrey W. Kysar
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| | - Anil K. Lalwani
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| |
Collapse
|
11
|
Santimetaneedol A, Wang Z, Arteaga DN, Aksit A, Prevoteau C, Yu M, Chiang H, Fafalis D, Lalwani AK, Kysar JW. Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407. Colloids Surf B Biointerfaces 2019; 182:110300. [PMID: 31326623 DOI: 10.1016/j.colsurfb.2019.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Microperforations in the round window membrane have been suggested for enhancing the rate and reliability of drug delivery into the cochlea. Intratympanic injection, the most common delivery method, involves injecting therapy into the middle ear to establish a reservoir from which drug diffuses across the round window membrane into the cochlea. This process is highly variable because (i) the reservoir, if liquid, can lose contact with the membrane and (ii) diffusion across the membrane is intrinsically variable even with a stable reservoir. To address these respective sources of variability, we compared the thermoreversible hydrogel poloxamer 407 (P407) to saline as a drug carrier and studied the effect of membrane microperforations on drug diffusion rate. We used Rhodamine B as a drug proxy to measure permeance across an artificial membrane in a horizontal diffusion cell. We found that permeance of Rhodamine B from a saline reservoir was an order of magnitude higher than that from a P407 reservoir across unperforated membranes. Moreover, permeance increased with total perforation cross-sectional area regardless of number of perforations (p < 0.05 for all saline-based experiments), but the same association was not found with P407. Rather, for a P407 reservoir, only a large perforation increased permeance (p < 0.001), while multiple small perforations did not (p = 0.749). These results confirm that for drug dissolved in saline, multiple small perforations can effectively enhance diffusion. However, for drug dissolved in P407, larger perforations are necessary.
Collapse
Affiliation(s)
- A Santimetaneedol
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Z Wang
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - D N Arteaga
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Medical Center, New York, NY, United States
| | - A Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - C Prevoteau
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Medical Center, New York, NY, United States
| | - M Yu
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Medical Center, New York, NY, United States
| | - H Chiang
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Medical Center, New York, NY, United States
| | - D Fafalis
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - A K Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head & Neck Surgery, Columbia University Medical Center, New York, NY, United States.
| | - J W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head & Neck Surgery, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Alper CM, Luntz M, Takahashi H, Ghadiali SN, Swarts JD, Teixeira MS, Csákányi Z, Yehudai N, Kania R, Poe DS. Panel 2: Anatomy (Eustachian Tube, Middle Ear, and Mastoid-Anatomy, Physiology, Pathophysiology, and Pathogenesis). Otolaryngol Head Neck Surg 2017; 156:S22-S40. [PMID: 28372527 DOI: 10.1177/0194599816647959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective In this report, we review the recent literature (ie, past 4 years) to identify advances in our understanding of the middle ear-mastoid-eustachian tube system. We use this review to determine whether the short-term goals elaborated in the last report were achieved, and we propose updated goals to guide future otitis media research. Data Sources PubMed, Web of Science, Medline. Review Methods The panel topic was subdivided, and each contributor performed a literature search within the given time frame. The keywords searched included middle ear, eustachian tube, and mastoid for their intersection with anatomy, physiology, pathophysiology, and pathology. Preliminary reports from each panel member were consolidated and discussed when the panel met on June 11, 2015. At that meeting, the progress was evaluated and new short-term goals proposed. Conclusions Progress was made on 13 of the 20 short-term goals proposed in 2011. Significant advances were made in the characterization of middle ear gas exchange pathways, modeling eustachian tube function, and preliminary testing of treatments for eustachian tube dysfunction. Implications for Practice In the future, imaging technologies should be developed to noninvasively assess middle ear/eustachian tube structure and physiology with respect to their role in otitis media pathogenesis. The new data derived from these structure/function experiments should be integrated into computational models that can then be used to develop specific hypotheses concerning otitis media pathogenesis and persistence. Finally, rigorous studies on medical or surgical treatments for eustachian tube dysfunction should be undertaken.
Collapse
Affiliation(s)
- Cuneyt M Alper
- 1 Department of Pediatric Otolaryngology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,2 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,3 Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michal Luntz
- 4 Department of Otolaryngology Head and Neck Surgery, Bnai Zion Medical Center; Technion-The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Haruo Takahashi
- 5 Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Samir N Ghadiali
- 6 Department of Biomedical Engineering, Ohio University, Columbus, Ohio, USA.,7 Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Ohio University, Columbus, Ohio, USA
| | - J Douglas Swarts
- 2 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Miriam S Teixeira
- 2 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zsuzsanna Csákányi
- 8 Department of Pediatric Otorhinolaryngology, Heim Pal Children's Hospital, Budapest, Hungary
| | - Noam Yehudai
- 4 Department of Otolaryngology Head and Neck Surgery, Bnai Zion Medical Center; Technion-The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Romain Kania
- 9 Department of Otorhinolaryngology-Head and Neck Surgery, Lariboisière Hospital, Diderot University, University Paris Sorbonne, Paris, France
| | - Dennis S Poe
- 10 Department of Otology and Laryngology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA.,11 Department of Otolaryngology and Communications Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Watanabe H, Cardoso L, Lalwani AK, Kysar JW. A dual wedge microneedle for sampling of perilymph solution via round window membrane. Biomed Microdevices 2016; 18:24. [PMID: 26888440 DOI: 10.1007/s10544-016-0046-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Here, considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. The sharpness of the needle was evaluated via a surface profilometer. Guinea pig RWM was penetrated in vitro, and 1 μL of perilymph was sampled and analyzed via UV-vis spectroscopy. The prototype wedge shaped needle was successfully fabricated with the tip curvature of 4.5 μm and the surface roughness of 3.66 μm in root mean square. The needle created oval perforation with minor and major diameter of 143 and 344 μm (n = 6). The sampling duration and standard deviation of aspirated volume were 3 s and 6.8 % respectively. The protein concentration was 1.74 mg/mL. The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable.
Collapse
Affiliation(s)
- Hirobumi Watanabe
- Department of Mechanical Engineering, Columbia University, 220 Mudd Building 500 West 120th Street, New York, NY, 10027, USA.
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of The University of New York, New York, NY, 10031, USA
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, 220 Mudd Building 500 West 120th Street, New York, NY, 10027, USA
| |
Collapse
|
14
|
Stevens JP, Watanabe H, Kysar JW, Lalwani AK. Serrated needle design facilitates precise round window membrane perforation. J Biomed Mater Res A 2016; 104:1633-7. [PMID: 26914984 DOI: 10.1002/jbm.a.35692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 11/07/2022]
Abstract
The round window membrane (RWM) has become the preferred route, over cochleostomy, for the introduction of cochlear implant electrodes as it minimizes inner ear trauma. However, in the absence of a tool designed for creating precise perforation, current practices lead to tearing of the RWM and significant intracochlear pressure fluctuations. On the basis of RWM mechanical properties, we have designed a multi-serrated needle to create consistent holes without membrane tearing or damaging inner ear structures. Four and eight-serrated needles were designed and produced with wire electrical discharge machining (EDM). The needle's ability to create RWM perforations was tested in deidentified, commercially acquired temporal bones with the assistance of a micromanipulator. Subsequently, specimens were imaged under light and scanning electron microscopy (SEM). The needles created consistent, appropriately sized holes in the membrane with minimal tearing. While a four-serrated crown needle made rectangular/trapezoid perforations, the octagonal crown formed smooth oval holes within the membrane. Though designed for single use, the needle tolerated repeated use without significant damage. The serrated needles formed precise perforations in the RWM while minimizing damage during cochlear implantation. The octagonal needle design created the preferred oval perforation better than the quad needle. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1633-1637, 2016.
Collapse
Affiliation(s)
- James P Stevens
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hirobumi Watanabe
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
15
|
Wazen JM, Stevens JP, Watanabe H, Kysar JW, Lalwani AK. Silver/silver chloride microneedles can detect penetration through the round window membrane. J Biomed Mater Res B Appl Biomater 2015; 105:307-311. [DOI: 10.1002/jbm.b.33557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/11/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Joseph M. Wazen
- Department of Otolaryngology-Head and Neck Surgery; Columbia University College of Physicians and Surgeons; New York New York
| | - James P. Stevens
- Department of Otolaryngology-Head and Neck Surgery; Columbia University College of Physicians and Surgeons; New York New York
| | - Hirobumi Watanabe
- Department of Otolaryngology-Head and Neck Surgery; Columbia University College of Physicians and Surgeons; New York New York
- Department of Mechanical Engineering; Columbia University; New York New York
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering; Columbia University; New York New York
| | - Anil K. Lalwani
- Department of Otolaryngology-Head and Neck Surgery; Columbia University College of Physicians and Surgeons; New York New York
| |
Collapse
|
16
|
Abstract
HYPOTHESIS Introduction of microperforations in round window membrane (RWM) will allow reliable and predictable intracochlear delivery of pharmaceutical, molecular, or cellular therapeutic agents. BACKGROUND Reliable delivery of medications into the inner ear remains a formidable challenge. The RWM is an attractive target for intracochlear delivery. However, simple diffusion across intact RWM is limited by what material can be delivered, size of material to be delivered, difficulty with precise dosing, timing, and precision of delivery over time. Further, absence of reliable methods for measuring diffusion across RWM in vitro is a significant experimental impediment. METHODS A novel model for measuring diffusion across guinea pig RWM, with and without microperforation, was developed and tested: cochleae, sparing the RWM, were embedded in 3D-printed acrylic holders using hybrid dental composite and light cured to adapt the round window niche to 3 ml Franz diffusion cells. Perforations were created with 12.5-μm-diameter needles and examined with light microscopy. Diffusion of 1 mM Rhodamine B across RWM in static diffusion cells was measured via fluorescence microscopy. RESULTS The diffusion cell apparatus provided reliable and replicable measurements of diffusion across RWM. The permeability of Rhodamine B across intact RWM was 5.1 × 10(9-) m/s. Manual application of microperforation with a 12.5-μm-diameter tip produced an elliptical tear removing 0.22 ± 0.07% of the membrane and was associated with a 35× enhancement in diffusion (P < 0.05). CONCLUSION Diffusion cells can be applied to the study of RWM permeability in vitro. Microperforation in RWM is an effective means of increasing diffusion across the RWM.
Collapse
|
17
|
Microanatomic Analysis of the Round Window Membrane by White Light Interferometry and Microcomputed Tomography for Mechanical Amplification. Otol Neurotol 2014. [DOI: 10.1097/01.mao.0000450279.94289.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|