1
|
Kato H, Iwahana T, Ono R, Okada S, Matsumiya G, Kobayashi Y. Hemodynamic parameters at rest predicting exercise capacity in patients supported with left ventricular assist device. J Artif Organs 2024; 27:7-14. [PMID: 36933087 DOI: 10.1007/s10047-023-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Left ventricular assist devices improve prognosis and quality of life, but exercise capacity remains limited in most patients after device implantation. Left ventricular assist device optimization through right heart catheterization reduces device-related complications. However, hemodynamic parameters associated with exercise capacity under optimized conditions. The aim of this study was to elucidate the predictors of exercise capacity from hemodynamic parameters at rest after left ventricular assist device optimization. We retrospectively reviewed 24 patients who underwent a ramp test with right heart catheterization, echocardiography and cardiopulmonary exercise testing more than 6 months after left ventricular assist device implantation. Pump speed was optimized to a lower setting that achieved right atrial pressure < 12 mmHg, pulmonary capillary wedge pressure < 18 mmHg, and cardiac index > 2.2 L/min/m2, then exercise capacity was assessed by cardiopulmonary exercise testing. After left ventricular assist device optimization, the mean right atrial pressure, pulmonary capillary wedge pressure, cardiac index, and peak oxygen consumption were 7 ± 5 mmHg, 10 ± 7 mmHg, 2.7 ± 0.5 L/min/m2, and 13.2 ± 3.0 mL/min/kg, respectively. Pulse pressure, stroke volume, right atrial pressure, mean pulmonary artery pressure, and pulmonary capillary wedge pressure were significantly associated with peak oxygen consumption. Multivariate linear regression analysis of factors predicting peak oxygen consumption revealed that pulse pressure, right atrial pressure, and aortic insufficiency remained independent predictors (β = 0.401, p = 0.007; β = - 0.558, p < 0.001; β = - 0.369, p = 0.010, respectively). Our findings suggests that cardiac reserve, volume status, right ventricular function, and aortic insufficiency predict exercise capacity in patients with a left ventricular assist device.
Collapse
Affiliation(s)
- Hirotoshi Kato
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan.
| | - Togo Iwahana
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| | - Ryohei Ono
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| |
Collapse
|
2
|
Apostolo A, Vignati C, Cittar M, Baracchini N, Mushtaq S, Cattadori G, Sciomer S, Trombara F, Piepoli M, Agostoni P. Determinants of exercise performance in heart failure patients with extremely reduced cardiac output and left ventricular assist device. Eur J Prev Cardiol 2023; 30:ii63-ii69. [PMID: 37819220 DOI: 10.1093/eurjpc/zwad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/13/2023]
Abstract
The evaluation of exercise capacity and cardiac output (QC) is fundamental in the management of patients with advanced heart failure (AdHF). QC and peak oxygen uptake (VO2) have a pivotal role in the prognostic stratification and in the definition of therapeutic interventions, including medical therapies and devices, but also specific treatments such as heart transplantation and left ventricular assist device (LVAD) implantation. Due to the intertwined relationship between exercise capacity and daily activities, exercise intolerance dramatically has impact on the quality of life of patients. It is a multifactorial process that includes alterations in central and peripheral haemodynamic regulation, anaemia and iron deficiency, pulmonary congestion, pulmonary hypertension, and peripheral O2 extraction. This paper aims to review the pathophysiological background of exercise limitations in HF patients and to examine the complex physiology of exercise in LVAD recipients, analysing the interactions between the cardiopulmonary system, the musculoskeletal system, the autonomic nervous system, and the pump. We performed a literature review to highlight the current knowledge on this topic and possible interventions that can be implemented to increase exercise capacity in AdHF patients-including administration of levosimendan, rehabilitation, and the intriguing field of LVAD speed changes. The present paper confirms the role of CPET in the follow-up of this peculiar population and the impact of exercise capacity on the quality of life of AdHF patients.
Collapse
Affiliation(s)
- Anna Apostolo
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
| | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Via della Commenda 19, 20122, Milano, Italy
| | - Marco Cittar
- Cardiovascular Department, 'Azienda Sanitaria Universitaria Giuliano-Isontina', Via Costantino Costantinides, 2, 34128, Trieste, Italy
| | - Nikita Baracchini
- Cardiovascular Department, 'Azienda Sanitaria Universitaria Giuliano-Isontina', Via Costantino Costantinides, 2, 34128, Trieste, Italy
| | - Saima Mushtaq
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
| | - Gaia Cattadori
- Cardio-rehabilitation Unit, Multimedica IRCCS, Via Milanese, 300, 20099, Milano, Italy
| | - Susanna Sciomer
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 'Sapienza', Rome University, Viale dell'Università, 37, 00185, Rome, Italy
| | - Filippo Trombara
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
| | - Massimo Piepoli
- Clinical Cardiology, Policlinico San Donato IRCCS, University of Milan, Piazza Edmondo Malan, 2, 20097, Milan, Italy
- Department of Preventive Cardiology, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367, Wroclaw, Poland
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Via della Commenda 19, 20122, Milano, Italy
| |
Collapse
|
3
|
Agdamag AC, Van Iterson EH, Tang WHW, Finet JE. Prognostic Role of Metabolic Exercise Testing in Heart Failure. J Clin Med 2023; 12:4438. [PMID: 37445473 DOI: 10.3390/jcm12134438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Heart failure is a clinical syndrome with significant heterogeneity in presentation and severity. Serial risk-stratification and prognostication can guide management decisions, particularly in advanced heart failure, when progression toward advanced therapies or end-of-life care is warranted. Each currently utilized prognostic marker carries its own set of challenges in acquisition, reproducibility, accuracy, and significance. Left ventricular ejection fraction is foundational for heart failure syndrome classification after clinical diagnosis and remains the primary parameter for inclusion in most clinical trials; however, it does not consistently correlate with symptoms and functional capacity, which are also independently prognostic in this patient population. Utilizing the left ventricular ejection fraction as the sole basis of prognostication provides an incomplete characterization of this condition and is prone to misguide medical decision-making when used in isolation. In this review article, we survey and exposit the important role of metabolic exercise testing across the heart failure spectrum, as a complementary diagnostic and prognostic modality. Metabolic exercise testing, also known as cardiopulmonary exercise testing, provides a comprehensive evaluation of the multisystem (i.e., neurological, respiratory, circulatory, and musculoskeletal) response to exercise performance. These differential responses can help identify the predominant contributors to exercise intolerance and exercise symptoms. Additionally, the aerobic exercise capacity (i.e., oxygen consumption during exercise) is directly correlated with overall life expectancy and prognosis in many disease states. Specifically in heart failure patients, metabolic exercise testing provides an accurate, objective, and reproducible assessment of the overall circulatory sufficiency and circulatory reserve during physical stress, being able to isolate the concurrent chronotropic and stroke volume responses for a reliable depiction of the circulatory flow rate in real time.
Collapse
Affiliation(s)
- Arianne Clare Agdamag
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erik H Van Iterson
- Section of Preventive Cardiology and Rehabilitation, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Emanuel Finet
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Rosenbaum AN, Antaki JF, Behfar A, Villavicencio MA, Stulak J, Kushwaha SS. Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021; 12:2731-2767. [PMID: 34964115 DOI: 10.1002/cphy.c210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Kerrigan DJ, Cowger JA, Keteyian SJ. Exercise in patients with left ventricular devices: The interaction between the device and the patient. Prog Cardiovasc Dis 2021; 70:33-39. [PMID: 34921848 DOI: 10.1016/j.pcad.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022]
Abstract
Advances in the engineering of surgically implanted, durable left ventricular assist devices (LVAD) has led to improvements in the two-year survival of patients on LVAD support, which is now comparable to that of heart transplant (HT) recipients. And with the advent of magnetic levitation technology, both the survival rate and average time on LVAD support are expected to improve even further. However, despite these advances, the functional capacity of patients on LVAD support remains reduced compared to those who received a HT. A few small clinical trials have shown improvement in functional capacity with exercise training. Peak oxygen uptake improves modestly (10%-20%) with exercise training, suggesting a possible celling-effect linked to the ability of the LVAD to increase flow during exercise. This paper reviews both (a) the effect of the LVAD on the cardiorespiratory responses during a single, acute bout of exercise up to maximum and (b) the central and peripheral adaptations that occur among patients with an LVAD who undergo an exercise training regimen. We also address the tenets of the exercise prescription that are unique to patients with a durable LVAD.
Collapse
Affiliation(s)
- Dennis J Kerrigan
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA.
| | - Jennifer A Cowger
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Steven J Keteyian
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
6
|
Mirza KK, Szymanski MK, Schmidt T, de Jonge N, Brahmbhatt DH, Billia F, Hsu S, MacGowan GA, Jakovljevic DG, Agostoni P, Trombara F, Jorde U, Rochlani Y, Vandersmissen K, Reiss N, Russell SD, Meyns B, Gustafsson F. Prognostic Value of Peak Oxygen Uptake in Patients Supported With Left Ventricular Assist Devices (PRO-VAD). JACC-HEART FAILURE 2021; 9:758-767. [PMID: 34391745 DOI: 10.1016/j.jchf.2021.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study was to examine whether peak oxygen uptake (pVO2) and other cardiopulmonary exercise test (CPET)-derived variables could predict intermediate-term mortality in stable continuous flow LVAD recipients. BACKGROUND pVO2 is a cornerstone in the selection of patients for heart transplantation, but the prognostic power of pVO2 obtained in patients treated with a left ventricular assist device (LVAD) is unknown. METHODS We collected data for pVO2 and outcomes in adult LVAD recipients in a retrospective, multicenter study and evaluated cutoff values for pVO2 including: 1) values above or below medians; 2) grouping patients in tertiles; and 3) pVO2 ≤14 ml/kg/min if the patient was not treated with beta-blockers (BB) or pVO2 ≤12 ml/kg/min if the patient was taking BB therapy. RESULTS Nine centers contributed data from 450 patients. Patients were 53 ± 13 years of age; 78% were male; body mass index was 25 ± 5 kg/m2 with few comorbidities (stroke: 11%; diabetes: 18%; and peripheral artery disease: 4%). The cause of heart failure (HF) was most often nonischemic (66%). Devices included were the HeartMate II and 3 (Abbott); and Heartware ventricular assist devices Jarvik and Duraheart (Medtronic). The index CPET was performed at a median of 189 days (154 days-225 days) after LVAD implantation, and mean pVO2 was 14.1 ± 5 ml/kg/min (47% ± 14% of predicted value). Lower pVO2 values were strongly associated with poorer survival regardless of whether patients were analyzed for absolute pVO2 in ml/kg/min, pVO2 ≤12 BB/14 ml/kg/min, or as a percentage of predicted pVO2 values (P ≤ 0.001 for all). For patients with pVO2 >12 BB/14 and ventilation/carbon dioxide relationship (VE/VCO2) slope <35, the 1-year survival was 100%. CONCLUSIONS Even after LVAD implantation, pVO2 has prognostic value, similar to HF patients not supported by mechanical circulatory support devices. (PROgnostic Value of Exercise Capacity Measured as Peak Oxygen Uptake [pVO2] in Recipients of Left Ventricular Assist Devices [PRO-VAD]; NCT04423562).
Collapse
Affiliation(s)
- Kiran K Mirza
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark.
| | | | - Thomas Schmidt
- Schüchtermann-Klinik Bad Rothenfelde, Institute for Cardiovascular Research, Bad Rothenfelde, Germany, and Institute for Cardiology and Sports Medicine, German Sports University Cologne, Cologne, Germany
| | | | - Darshan H Brahmbhatt
- Peter Munk Cardiac Centre, Division of Cardiology, Ted Rogers Centre for Heart Research, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Cardiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Filio Billia
- Peter Munk Cardiac Centre, Division of Cardiology, Ted Rogers Centre for Heart Research, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Steven Hsu
- Advanced Heart Failure, Mechanical Circulatory Support, Transplant Cardiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Guy A MacGowan
- Department of Cardiology, Freeman Hospital and Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Health and Life Sciences, Coventry University, University Hospital Coventry and Warwickshire, United Kingdom
| | - Djordje G Jakovljevic
- Department of Cardiology, Freeman Hospital and Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Health and Life Sciences, Coventry University, University Hospital Coventry and Warwickshire, United Kingdom; Department of Cardiology, Freeman Hospital and Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy
| | - Filippo Trombara
- Montefiore Einstein Center for Heart and Vascular Care New York, New York City, New York, USA
| | - Ulrich Jorde
- Montefiore Einstein Center for Heart and Vascular Care New York, New York City, New York, USA
| | - Yogita Rochlani
- Montefiore Einstein Center for Heart and Vascular Care New York, New York City, New York, USA
| | | | - Nils Reiss
- Schüchtermann-Klinik Bad Rothenfelde, Institute for Cardiovascular Research, Bad Rothenfelde, Germany, and Institute for Cardiology and Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - Stuart D Russell
- Department of Cardiology, Duke University Health System, Durham, North Carolina, USA
| | - Bart Meyns
- Department of Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Rigshospitalet, Copenhagen, Denmark. https://twitter.com/FinnGustafsson
| | | |
Collapse
|
7
|
Effects of Continuous-Flow Left Ventricular Assist Device Therapy on Peripheral Vascular Function. ASAIO J 2021; 68:214-219. [DOI: 10.1097/mat.0000000000001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Mangner N, Garbade J, Heyne E, van den Berg M, Winzer EB, Hommel J, Sandri M, Jozwiak-Nozdrzykowska J, Meyer AL, Lehmann S, Schmitz C, Malfatti E, Schwarzer M, Ottenheijm CAC, Bowen TS, Linke A, Adams V. Molecular Mechanisms of Diaphragm Myopathy in Humans With Severe Heart Failure. Circ Res 2021; 128:706-719. [PMID: 33535772 DOI: 10.1161/circresaha.120.318060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Jens Garbade
- Department of Cardiac Surgery (J.G., S.L.), Heart Center Leipzig - University Hospital, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Germany (E.H., M.S.)
| | | | - Ephraim B Winzer
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Jennifer Hommel
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Marcus Sandri
- Department of Cardiology (M.S., J.J.-N.), Heart Center Leipzig - University Hospital, Germany
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Germany (E.H., M.S.)
| | | | - Anna L Meyer
- Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Germany (A.L.M.)
| | - Sven Lehmann
- Department of Cardiac Surgery (J.G., S.L.), Heart Center Leipzig - University Hospital, Germany
| | - Clara Schmitz
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Edoardo Malfatti
- Neurology, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, Garches, France (E.M.). U1179 UVSQ-INSERM, Université Versailles-Saint-Quentin-en-Yvelines, France
| | | | - Coen A C Ottenheijm
- Physiology, Amsterdam UMC (location VUmc), the Netherlands (M.v.d.B., C.A.C.O.)
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom (T.S.B.)
| | - Axel Linke
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany (A.L., V.A.)
| | - Volker Adams
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany (A.L., V.A.)
| |
Collapse
|
9
|
Felix SEA, Oerlemans MIF, Ramjankhan FZ, Muller SA, Kirkels HH, van Laake LW, Suyker WJL, Asselbergs FW, de Jonge N. One year improvement of exercise capacity in patients with mechanical circulatory support as bridge to transplantation. ESC Heart Fail 2021; 8:1796-1805. [PMID: 33710786 PMCID: PMC8120393 DOI: 10.1002/ehf2.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS Mechanical circulatory support (MCS) results in substantial improvement of prognosis and functional capacity. Currently, duration of MCS as a bridge to transplantation (BTT) is often prolonged due to shortage of donor hearts. Because long-term results of exercise capacity after MCS are largely unknown, we studied serial cardiopulmonary exercise tests (CPETs) during the first year after MCS implantation. METHODS AND RESULTS Cardiopulmonary exercise tests at 6 and 12 months after MCS implantation in BTT patients were retrospectively analysed, including clinical factors related to exercise capacity. A total of 105 MCS patients (67% male, 50 ± 12 years) underwent serial CPET at 6 and 12 months after implantation. Power (105 ± 35 to 114 ± 40 W; P ≤ 0.001) and peak VO2 per kilogram (pVO2/kg) improved significantly (16.5 ± 5.0 to 17.2 ± 5.5 mL/kg/min (P = 0.008)). Improvement in pVO2 between 6 and 12 months after LVAD implantation was not related to heart failure aetiology or haemodynamic severity prior to MCS. We identified maximal heart rate at exercise as an important factor for pVO2. Younger age and lower BMI were related to further improvement. At 12 months, 25 (24%) patients had a normal exercise capacity (Weber classification A, pVO2 > 20 mL/kg/min). CONCLUSIONS Exercise capacity (power and pVO2) increased significantly between 6 and 12 months after MCS independent of Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profile or heart failure aetiology. Heart rate at exercise importantly relates to exercise capacity. This long-term improvement in exercise capacity is important information for the growing group of long-term MCS patients as this is critical for the quality of life of patients.
Collapse
Affiliation(s)
- Susanne E A Felix
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Martinus I F Oerlemans
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Faiz Z Ramjankhan
- Department of Cardiothoracic Surgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Steven A Muller
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | - Linda W van Laake
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Willem J L Suyker
- Department of Cardiothoracic Surgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.,Institute of Health Informatics and Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
10
|
Dridi NP, Vishram-Nielsen JKK, Gustafsson F. Exercise Tolerance in Patients Treated With a Durable Left Ventricular Assist Device: Importance of Myocardial Recovery. J Card Fail 2020; 27:486-493. [PMID: 33347995 DOI: 10.1016/j.cardfail.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
The number of patients supported with left ventricular assist devices (LVADs) is growing and support times are increasing. This has led to a greater focus on functional capacity of these patients. LVADs greatly improve heart failure symptoms, but surprisingly, improvement in peak oxygen uptake (pVO2) is small and remains decreased at approximately 50% of normal values. Inadequate increase in cardiac output during exercise is the main responsible factor for the low pVO2 in LVAD recipients. Some patients experience LV recovery during mechanical unloading and these patients have a higher pVO2. Here we review the various components determining exercise cardiac output in LVAD recipients and discuss the potential impact of cardiac recovery on these components. LV recovery may affect several components, leading to improved hemodynamics during exercise and, in turn, physical capacity in patients with advanced heart failure undergoing LVAD implantation.
Collapse
Affiliation(s)
- Nadia Paarup Dridi
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Mirza KK, Gustafsson F. Determinants of Functional Capacity and Quality of Life After Implantation of a Durable Left Ventricular Assist Device. Card Fail Rev 2020; 6:e29. [PMID: 33133643 PMCID: PMC7592460 DOI: 10.15420/cfr.2020.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous-flow left ventricular assist devices (LVAD) are increasingly used as destination therapy in patients with end-stage heart failure and, with recent improvements in pump design, adverse event rates are decreasing. Implanted patients experience improved survival, quality of life (QoL) and functional capacity (FC). However, improvement in FC and QoL after implantation is not unequivocal, and this has implications for patient selection and preimplantation discussions with patients and relatives. This article identifies preimplantation predictors of lack of improvement in FC and QoL after continuous-flow LVAD implantation and discusses potential mechanisms, allowing for the identification of potential factors that can be modified. In particular, the pathophysiology behind insufficient improvement in peak oxygen uptake is discussed. Data are included from 40 studies, resulting in analysis of >700 exercise tests. Mean peak oxygen uptake was 13.4 ml/kg/min (equivalent to 48% of predicted value; 259 days after implantation, range 31–1,017 days) and mean 6-minute walk test distance was 370 m (182 days after implantation, range 43–543 days). Finally, the interplay between improvement in FC and QoL is discussed.
Collapse
Affiliation(s)
- Kiran K Mirza
- Department of Cardiology, Rigshospitalet Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet Copenhagen, Denmark
| |
Collapse
|
12
|
Fresiello L, Jacobs S, Timmermans P, Buys R, Hornikx M, Goetschalckx K, Droogne W, Meyns B. Limiting factors of peak and submaximal exercise capacity in LVAD patients. PLoS One 2020; 15:e0235684. [PMID: 32645710 PMCID: PMC7347393 DOI: 10.1371/journal.pone.0235684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS Although patients supported with a Continuous-Flow Left Ventricular Assist Device (CF-LVAD) are hemodynamically stable, their exercise capacity is limited. Hence, the aim of this work was to investigate the underlying factors that lead to peak and submaximal exercise intolerance of CF-LVAD supported patients. METHODS Seven months after CF-LVAD implantation, eighty three patients performed a maximal cardiopulmonary exercise test and a six minute walk test. Peak oxygen uptake and the distance walked were measured and expressed as a percentage of the predicted value (%VO2p and %6MWD, respectively). Preoperative conditions, echocardiography, laboratory results and pharmacological therapy data were collected and a correlation analysis against %VO2p and %6MWD was performed. RESULTS CF-LVAD patients showed a relatively higher submaximal exercise capacity (%6MWD = 64±16%) compared to their peak exertion (%VO2p = 51±14%). The variables that correlated with %VO2p were CF-LVAD parameters, chronotropic response, opening of the aortic valve at rest, tricuspid insufficiency, NT-proBNP and the presence of a cardiac implantable electronic device. On the other hand, the variables that correlated with %6MWD were diabetes, creatinine, urea, ventilation efficiency and CF-LVAD pulsatility index. Additionally, both %6MWD and %VO2p were influenced by the CF-LVAD implantation timing, calculated from the occurrence of the cardiac disease. CONCLUSION Overall, both %6MWD and %VO2p depend on the duration of heart failure prior to CF-LVAD implantation. %6MWD is primarily determined by parameters underlying the patient's general condition, while %VO2p mostly relies on the residual function and chronotropic response of the heart. Moreover, since %VO2p was relatively lower compared to %6MWD, we might infer that CF-LVAD can support submaximal exercise but is not sufficient during peak exertion. Hence concluding that the contribution of the ventricle is crucial in sustaining hemodynamics at peak exercise.
Collapse
Affiliation(s)
- Libera Fresiello
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- * E-mail:
| | - Steven Jacobs
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philippe Timmermans
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Roselien Buys
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Miek Hornikx
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kaatje Goetschalckx
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Walter Droogne
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Exercise Capacity in Mechanically Supported Advanced Heart Failure Patients: It Is All About the Beat. ASAIO J 2020; 66:339-342. [DOI: 10.1097/mat.0000000000001164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Effect of Heart Rate Reserve on Exercise Capacity in Patients Treated with a Continuous Left Ventricular Assist Device. ASAIO J 2020; 66:160-165. [DOI: 10.1097/mat.0000000000000955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Guihaire J, Haddad F, Hoppenfeld M, Amsallem M, Christle JW, Owyang C, Shaikh K, Hsu JL. Physiology of the Assisted Circulation in Cardiogenic Shock: A State-of-the-Art Perspective. Can J Cardiol 2020; 36:170-183. [PMID: 32036862 PMCID: PMC7121859 DOI: 10.1016/j.cjca.2019.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 01/18/2023] Open
Abstract
Mechanical circulatory support (MCS) has made rapid progress over the last 3 decades. This was driven by the need to develop acute and chronic circulatory support as well as by the limited organ availability for heart transplantation. The growth of MCS was also driven by the use of extracorporeal membrane oxygenation (ECMO) after the worldwide H1N1 influenza outbreak of 2009. The majority of mechanical pumps (ECMO and left ventricular assist devices) are currently based on continuous flow pump design. It is interesting to note that in the current era, we have reverted from the mammalian pulsatile heart back to the continuous flow pumps seen in our simple multicellular ancestors. This review will highlight key physiological concepts of the assisted circulation from its effects on cardiac dynamic to principles of cardiopulmonary fitness. We will also examine the physiological principles of the ECMO-assisted circulation, anticoagulation, and the haemocompatibility challenges that arise when the blood is exposed to a foreign mechanical circuit. Finally, we conclude with a perspective on smart design for future development of devices used for MCS.
Collapse
Affiliation(s)
- Julien Guihaire
- Department of Cardiac Surgery, Research and Innovation Unit, RHU BioArt Lung 2020, Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France.
| | - Francois Haddad
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, USA
| | - Mita Hoppenfeld
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Myriam Amsallem
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey W Christle
- Department of Medicine, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Clark Owyang
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Khizer Shaikh
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Koerber DM, Rosenbaum AN, Olson TP, Kushwaha S, Stulak J, Maltais S, Behfar A. Exercise-induced hypoxemia predicts heart failure hospitalization and death in patients supported with left ventricular assist devices. Int J Artif Organs 2019; 43:165-172. [PMID: 31630619 DOI: 10.1177/0391398819882435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following implantation of continuous-flow left ventricular assist devices, mechanical off-loading results in improved resting hemodynamics; however, peak exercise capacity generally does not increase substantially. This study evaluated patients supported by continuous-flow left ventricular assist devices who were invasively monitored during exercise to define parameters that underpin exercise capacity and outcomes. A review of all patients supported by continuous-flow left ventricular assist devices who underwent supine bicycle ergometry exercise testing with measurement of pulmonary gas exchange during right heart catheterization for evaluation of dyspnea at one institution between 2007 and 2018 was performed (n = 22). The primary outcome of this investigation was death or heart failure hospitalization. Although resting filling pressures were relatively preserved, resting cardiac index (Fick) was low (2.1 ± 0.5 mL/kg/min). An impaired cardiac output reserve was present in 75% of patients. On univariate modeling, patients with supine exercise-induced hypoxemia (O2 saturation <90%) experienced significantly diminished hospitalization-free survival (unadjusted hazard ratio = 11.0, confidence interval = 2.4-57.2, p = 0.003), which persisted despite adjustment for right heart catheterization peak VO2 and peak cardiac output (adjusted hazard ratio = 25, confidence interval = 3.6-322, p = 0.001). Our findings suggest that supine exercise testing provides additional prognostic utility in the continuous-flow left ventricular assist device population.
Collapse
Affiliation(s)
- Daniel M Koerber
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas P Olson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Sudhir Kushwaha
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Simon Maltais
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Severin R, Sabbahi A, Ozemek C, Phillips S, Arena R. Approaches to improving exercise capacity in patients with left ventricular assist devices: an area requiring further investigation. Expert Rev Med Devices 2019; 16:787-798. [PMID: 31453716 DOI: 10.1080/17434440.2019.1660643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction: Left ventricular assist device (LVAD) implantation has become a well-established treatment option for patients with end stage heart failure (HF) who are refractory to medical therapy. While LVADs implantation does effectively improve hemodynamic performance many patients still possess peripheral pathological adaptations often present in end-stage HF. Therefore, increased attention has been placed on investigating the effects of exercise training for patients with LVADs to improve clinical outcomes. However, the available evidence on exercise training for patients with LVADs is limited. Areas covered: The purpose of this narrative review is to summarize: 1) The evolution of LVAD technology and usage; 2) The physiological responses to exercise in patients with LVADs; 3) The available evidence regarding exercise training; 4) Potential strategies to implement exercise training programs for this patient population. Expert opinion: The available evidence for exercise training to improve physical function and clinical outcomes for patients with LVADs is promising but limited. Future research is needed to further elucidate the ideal exercise training parameters, method of delivery for exercise training, and unique barriers and facilitators to exercise training for patients receiving LVAD implantation.
Collapse
Affiliation(s)
- Richard Severin
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Ahmad Sabbahi
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Cemal Ozemek
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Shane Phillips
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Ross Arena
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| |
Collapse
|
18
|
Gross C, Marko C, Mikl J, Altenberger J, Schlöglhofer T, Schima H, Zimpfer D, Moscato F. LVAD Pump Flow Does Not Adequately Increase With Exercise. Artif Organs 2018; 43:222-228. [PMID: 30155903 PMCID: PMC6589923 DOI: 10.1111/aor.13349] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Left ventricular assist devices (LVADs) restore cardiovascular circulatory demand at rest with a spontaneous increase in pump flow to exercise. The relevant contribution of cardiac output provided by the LVAD and ejected through the aortic valve for exercises of different intensities has been barely investigated in patients. The hypothesis of this study was that different responses in continuous recorded pump parameters occur for maximal and submaximal intensity exercises and that the pump flow change has an impact on the oxygen uptake at peak exercise (pVO2 ). Cardiac and pump parameters such as LVAD flow rate (QLVAD ), heart rate (HR), and aortic valve (AV) opening were analyzed from continuously recorded LVAD data during physical exercises of maximal (bicycle ergometer test) and submaximal intensities (6-min walk test and regular trainings). During all exercise sessions, the LVAD speed was kept constant. Cardiac and pump parameter responses of 16 patients for maximal and submaximal intensity exercises were similar for QLVAD : +0.89 ± 0.52 versus +0.59 ± 0.38 L/min (P = 0.07) and different for HR: +20.4 ± 15.4 versus +7.7 ± 5.8 bpm (P < 0.0001) and AV-opening with 71% versus 23% of patients (P < 0.0001). Multi-regression analysis with pVO2 (R2 = 0.77) showed relation to workload normalized by bodyweight (P = 0.0002), HR response (P = 0.001), AV-opening (P = 0.02), and age (P = 0.06) whereas the change in QLVAD was irrelevant. Constant speed LVADs provide inadequate support for maximum intensity exercises. AV-opening and improvements in HR show an important role for higher exercise capacities and reflect exercise intensities. Changes in pump flow do not impact pVO2 and are independent of AV-opening and response in HR. An LVAD speed control may lead to adequate left ventricular support during strenuous physical activities.
Collapse
Affiliation(s)
- Christoph Gross
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria
| | - Christiane Marko
- PVA Center for Ambulatory Rehabilitation Vienna, Vienna, Austria
| | - Johann Mikl
- Rehabilitation Center Felbring, Felbring, Austria
| | - Johann Altenberger
- Rehabilitation Center Großgmain, Großgmain, Austria.,Paracelsus Medical University, Salzburg, Austria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|