1
|
Wang R, Veera SCM, Asan O, Liao T. A Systematic Review on the Use of Consumer-Based ECG Wearables on Cardiac Health Monitoring. IEEE J Biomed Health Inform 2024; 28:6525-6537. [PMID: 39240746 DOI: 10.1109/jbhi.2024.3456028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
This systematic review aims to summarize the consumer wearable devices used for collecting ECG signals, explore the models or algorithms employed in diagnosing and preventing heart-related diseases through ECG analysis, and discuss the challenges and future work related to adopting health monitoring using consumer wearable devices. Following the PRISMA method, we identified and reviewed 102 relevant papers from PubMed, IEEE, and Web of Science databases, covering the period from May 2013 to May 2023. This review comprehensively summarizes consumer wearable devices with ECG functions, available ECG datasets, and various algorithms for detecting cardiac diseases and monitoring long-term health. It also discusses the integration challenges and future directions in cardiac health monitoring. The results highlight a preference for deep learning algorithms, such as Convolutional Neural Networks (CNNs) and their variations, in analyzing ECG data due to the ability to automate feature extraction and reduce memory requirements. The review also discusses potential limitations of the current literature, including lack of reasoning and comparison of algorithms and limited data generalizability. By analyzing the current literature, this review provides an overview of state-of-the-art technologies, identifies key findings, and suggests potential avenues for future research and implementation.
Collapse
|
2
|
Hou Y, Fan Z, Li J, Zeng Z, Lv G, Lin J, Zhou L, Wu T, Cao Q. Deep Learning-based 12-Lead Electrocardiogram for Low Left Ventricular Ejection Fraction Detection in Patients. Can J Cardiol 2024:S0828-282X(24)00980-2. [PMID: 39343388 DOI: 10.1016/j.cjca.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Reduced left ventricular ejection fraction (LVEF) initiates heart failure, and promptly identifying low ejection fraction is crucial for managing progression and averting mortality. In this study we developed an artificial intelligence-enabled electrocardiogram (AI-ECG) algorithm to identify patients with low ejection fraction and predict LVEF values. METHODS The electrocardiogram data were used as input, and the algorithm generated the probability of the patient suffering a low ejection fraction and estimated the LVEF value. A 5-year follow-up study on a group of individuals who initially had normal LVEF values was also performed. Furthermore, external validation of the algorithm performance was conducted using the Medical Information Mart for Intensive Care-IV database. RESULTS The algorithm's performance on the test set yielded an area under the curve value of 0.965 for detecting LVEF ≤ 50%. The algorithm had an accuracy of 92.8%, sensitivity of 88.8%, and specificity of 92.9%. For LVEF regression, the method showed a mean absolute error of 5.28 (95% confidence interval, 5.23-5.33) for the testing set. Additionally, the algorithm obtained an area under the curve value of 0.848 and a mean absolute error value of 9.56 during external validation. Patients with false positive results had a significantly greater likelihood of developing a low ejection fraction compared with patients who received true negative results (26.2% vs 2.0%; P < 0.0001). CONCLUSIONS The AI-ECG algorithm is capable of identifying low ejection fraction in patients with high accuracy. The AI-ECG algorithm is an efficient, prompt, and cost-effective screening tool for early heart failure.
Collapse
Affiliation(s)
- Yuxin Hou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Centre for Collaborative Research, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhiping Fan
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Centre for Collaborative Research, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zi Zeng
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Lv
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsheng Lin
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhou
- Centre for Collaborative Research, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Tao Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Centre for Collaborative Research, Shanghai University of Medicine and Health Sciences, Shanghai, China; China Hospital Development Institute of Medical Intelligence Development, Shanghai Jiao Tong University School, Shanghai, China.
| | - Qing Cao
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wong CK, Lau YM, Lui HW, Chan WF, San WC, Zhou M, Cheng Y, Huang D, Lai WH, Lau YM, Siu CW. Automatic detection of cardiac conditions from photos of electrocardiogram captured by smartphones. Heart 2024; 110:1074-1082. [PMID: 38768982 DOI: 10.1136/heartjnl-2023-323822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Researchers have developed machine learning-based ECG diagnostic algorithms that match or even surpass cardiologist level of performance. However, most of them cannot be used in real-world, as older generation ECG machines do not permit installation of new algorithms. OBJECTIVE To develop a smartphone application that automatically extract ECG waveforms from photos and to convert them to voltage-time series for downstream analysis by a variety of diagnostic algorithms built by researchers. METHODS A novel approach of using objective detection and image segmentation models to automatically extract ECG waveforms from photos taken by clinicians was devised. Modular machine learning models were developed to sequentially perform waveform identification, gridline removal, and scale calibration. The extracted data were then analysed using a machine learning-based cardiac rhythm classifier. RESULTS Waveforms from 40 516 scanned and 444 photographed ECGs were automatically extracted. 12 828 of 13 258 (96.8%) scanned and 5399 of 5743 (94.0%) photographed waveforms were correctly cropped and labelled. 11 604 of 12 735 (91.1%) scanned and 5062 of 5752 (88.0%) photographed waveforms achieved successful voltage-time signal extraction after automatic gridline and background noise removal. In a proof-of-concept demonstration, an atrial fibrillation diagnostic algorithm achieved 91.3% sensitivity, 94.2% specificity, 95.6% positive predictive value, 88.6% negative predictive value and 93.4% F1 score, using photos of ECGs as input. CONCLUSION Object detection and image segmentation models allow automatic extraction of ECG signals from photos for downstream diagnostics. This novel pipeline circumvents the need for costly ECG hardware upgrades, thereby paving the way for large-scale implementation of machine learning-based diagnostic algorithms.
Collapse
Affiliation(s)
- Chun-Ka Wong
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuk Ming Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hin Wai Lui
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Fung Chan
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing Chun San
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mi Zhou
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yangyang Cheng
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Duo Huang
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing Hon Lai
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yee Man Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chung Wah Siu
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Salih AM, Galazzo IB, Gkontra P, Rauseo E, Lee AM, Lekadir K, Radeva P, Petersen SE, Menegaz G. A review of evaluation approaches for explainable AI with applications in cardiology. Artif Intell Rev 2024; 57:240. [PMID: 39132011 PMCID: PMC11315784 DOI: 10.1007/s10462-024-10852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI models and is important in building trust in model predictions. XAI explanations themselves require evaluation as to accuracy and reasonableness and in the context of use of the underlying AI model. This review details the evaluation of XAI in cardiac AI applications and has found that, of the studies examined, 37% evaluated XAI quality using literature results, 11% used clinicians as domain-experts, 11% used proxies or statistical analysis, with the remaining 43% not assessing the XAI used at all. We aim to inspire additional studies within healthcare, urging researchers not only to apply XAI methods but to systematically assess the resulting explanations, as a step towards developing trustworthy and safe models. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-024-10852-w.
Collapse
Affiliation(s)
- Ahmed M. Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
- Department of Population Health Sciences, University of Leicester, University Rd, Leicester, LE1 7RH UK
- Department of Computer Science, University of Zakho, Duhok road, Zakho, Kurdistan Iraq
| | - Ilaria Boscolo Galazzo
- Department of Engineering for Innovative Medicine, University of Verona, S. Francesco, 22, 37129 Verona, Italy
| | - Polyxeni Gkontra
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Elisa Rauseo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Aaron Mark Lee
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Petia Radeva
- Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research, London, UK
- Alan Turing Institute, London, UK
| | - Gloria Menegaz
- Department of Engineering for Innovative Medicine, University of Verona, S. Francesco, 22, 37129 Verona, Italy
| |
Collapse
|
5
|
Bhave S, Rodriguez V, Poterucha T, Mutasa S, Aberle D, Capaccione KM, Chen Y, Dsouza B, Dumeer S, Goldstein J, Hodes A, Leb J, Lungren M, Miller M, Monoky D, Navot B, Wattamwar K, Wattamwar A, Clerkin K, Ouyang D, Ashley E, Topkara VK, Maurer M, Einstein AJ, Uriel N, Homma S, Schwartz A, Jaramillo D, Perotte AJ, Elias P. Deep learning to detect left ventricular structural abnormalities in chest X-rays. Eur Heart J 2024; 45:2002-2012. [PMID: 38503537 PMCID: PMC11156488 DOI: 10.1093/eurheartj/ehad782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/24/2023] [Accepted: 11/14/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND AND AIMS Early identification of cardiac structural abnormalities indicative of heart failure is crucial to improving patient outcomes. Chest X-rays (CXRs) are routinely conducted on a broad population of patients, presenting an opportunity to build scalable screening tools for structural abnormalities indicative of Stage B or worse heart failure with deep learning methods. In this study, a model was developed to identify severe left ventricular hypertrophy (SLVH) and dilated left ventricle (DLV) using CXRs. METHODS A total of 71 589 unique CXRs from 24 689 different patients completed within 1 year of echocardiograms were identified. Labels for SLVH, DLV, and a composite label indicating the presence of either were extracted from echocardiograms. A deep learning model was developed and evaluated using area under the receiver operating characteristic curve (AUROC). Performance was additionally validated on 8003 CXRs from an external site and compared against visual assessment by 15 board-certified radiologists. RESULTS The model yielded an AUROC of 0.79 (0.76-0.81) for SLVH, 0.80 (0.77-0.84) for DLV, and 0.80 (0.78-0.83) for the composite label, with similar performance on an external data set. The model outperformed all 15 individual radiologists for predicting the composite label and achieved a sensitivity of 71% vs. 66% against the consensus vote across all radiologists at a fixed specificity of 73%. CONCLUSIONS Deep learning analysis of CXRs can accurately detect the presence of certain structural abnormalities and may be useful in early identification of patients with LV hypertrophy and dilation. As a resource to promote further innovation, 71 589 CXRs with adjoining echocardiographic labels have been made publicly available.
Collapse
Affiliation(s)
- Shreyas Bhave
- Division of Cardiology and Department of Biomedical Informatics, Columbia University Irving Medical Center, 622 West 168th Street, PH20, NewYork, NY 10032, USA
| | - Victor Rodriguez
- Division of Cardiology and Department of Biomedical Informatics, Columbia University Irving Medical Center, 622 West 168th Street, PH20, NewYork, NY 10032, USA
| | - Timothy Poterucha
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - Simukayi Mutasa
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Yibo Chen
- Inova Fairfax Hospital Imaging Center, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Belinda Dsouza
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Shifali Dumeer
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Aaron Hodes
- Hackensack Radiology Group, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Matthew Lungren
- Department of Radiology, University of California, SanFrancisco, CA, USA
| | - Mitchell Miller
- Hackensack Radiology Group, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - David Monoky
- Hackensack Radiology Group, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Kapil Wattamwar
- Division of Vascular and Interventional Radiology, Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Anoop Wattamwar
- Hackensack Radiology Group, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Kevin Clerkin
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - David Ouyang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Veli K Topkara
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - Mathew Maurer
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Nir Uriel
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - Shunichi Homma
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - Allan Schwartz
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| | - Diego Jaramillo
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY, USA
| | - Adler J Perotte
- Division of Cardiology and Department of Biomedical Informatics, Columbia University Irving Medical Center, 622 West 168th Street, PH20, NewYork, NY 10032, USA
| | - Pierre Elias
- Division of Cardiology and Department of Biomedical Informatics, Columbia University Irving Medical Center, 622 West 168th Street, PH20, NewYork, NY 10032, USA
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA
| |
Collapse
|
6
|
Petmezas G, Papageorgiou VE, Vassilikos V, Pagourelias E, Tsaklidis G, Katsaggelos AK, Maglaveras N. Recent advancements and applications of deep learning in heart failure: Α systematic review. Comput Biol Med 2024; 176:108557. [PMID: 38728995 DOI: 10.1016/j.compbiomed.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Heart failure (HF), a global health challenge, requires innovative diagnostic and management approaches. The rapid evolution of deep learning (DL) in healthcare necessitates a comprehensive review to evaluate these developments and their potential to enhance HF evaluation, aligning clinical practices with technological advancements. OBJECTIVE This review aims to systematically explore the contributions of DL technologies in the assessment of HF, focusing on their potential to improve diagnostic accuracy, personalize treatment strategies, and address the impact of comorbidities. METHODS A thorough literature search was conducted across four major electronic databases: PubMed, Scopus, Web of Science and IEEE Xplore, yielding 137 articles that were subsequently categorized into five primary application areas: cardiovascular disease (CVD) classification, HF detection, image analysis, risk assessment, and other clinical analyses. The selection criteria focused on studies utilizing DL algorithms for HF assessment, not limited to HF detection but extending to any attempt in analyzing and interpreting HF-related data. RESULTS The analysis revealed a notable emphasis on CVD classification and HF detection, with DL algorithms showing significant promise in distinguishing between affected individuals and healthy subjects. Furthermore, the review highlights DL's capacity to identify underlying cardiomyopathies and other comorbidities, underscoring its utility in refining diagnostic processes and tailoring treatment plans to individual patient needs. CONCLUSIONS This review establishes DL as a key innovation in HF management, highlighting its role in advancing diagnostic accuracy and personalized care. The insights provided advocate for the integration of DL in clinical settings and suggest directions for future research to enhance patient outcomes in HF care.
Collapse
Affiliation(s)
- Georgios Petmezas
- 2nd Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Centre for Research and Technology Hellas, Thessaloniki, Greece.
| | | | - Vasileios Vassilikos
- 3rd Department of Cardiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios Pagourelias
- 3rd Department of Cardiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsaklidis
- Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Nicos Maglaveras
- 2nd Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Medhi D, Kamidi SR, Mamatha Sree KP, Shaikh S, Rasheed S, Thengu Murichathil AH, Nazir Z. Artificial Intelligence and Its Role in Diagnosing Heart Failure: A Narrative Review. Cureus 2024; 16:e59661. [PMID: 38836155 PMCID: PMC11148729 DOI: 10.7759/cureus.59661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Heart failure (HF) is prevalent globally. It is a dynamic disease with varying definitions and classifications due to multiple pathophysiologies and etiologies. The diagnosis, clinical staging, and treatment of HF become complex and subjective, impacting patient prognosis and mortality. Technological advancements, like artificial intelligence (AI), have been significant roleplays in medicine and are increasingly used in cardiovascular medicine to transform drug discovery, clinical care, risk prediction, diagnosis, and treatment. Medical and surgical interventions specific to HF patients rely significantly on early identification of HF. Hospitalization and treatment costs for HF are high, with readmissions increasing the burden. AI can help improve diagnostic accuracy by recognizing patterns and using them in multiple areas of HF management. AI has shown promise in offering early detection and precise diagnoses with the help of ECG analysis, advanced cardiac imaging, leveraging biomarkers, and cardiopulmonary stress testing. However, its challenges include data access, model interpretability, ethical concerns, and generalizability across diverse populations. Despite these ongoing efforts to refine AI models, it suggests a promising future for HF diagnosis. After applying exclusion and inclusion criteria, we searched for data available on PubMed, Google Scholar, and the Cochrane Library and found 150 relevant papers. This review focuses on AI's significant contribution to HF diagnosis in recent years, drastically altering HF treatment and outcomes.
Collapse
Affiliation(s)
- Diptiman Medhi
- Internal Medicine, Gauhati Medical College and Hospital, Guwahati, Guwahati, IND
| | | | | | - Shifa Shaikh
- Cardiology, SMBT Institute of Medical Sciences and Research Centre, Igatpuri, IND
| | - Shanida Rasheed
- Emergency Medicine, East Sussex Healthcare NHS Trust, Eastbourne, GBR
| | | | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, Quetta, PAK
| |
Collapse
|
8
|
Bhattarai SP, Dzikowicz DJ, Xue Y, Block R, Tucker RG, Bhandari S, Boulware VE, Stone B, Carey MG. Estimating Ejection Fraction from the 12 Lead ECG among Patients with Acute Heart Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304875. [PMID: 38585894 PMCID: PMC10996705 DOI: 10.1101/2024.03.25.24304875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Identifying patients with low left ventricular ejection fraction (LVEF) in the emergency department using an electrocardiogram (ECG) may optimize acute heart failure (AHF) management. We aimed to assess the efficacy of 527 automated 12-lead ECG features for estimating LVEF among patients with AHF. Method Medical records of patients >18 years old and AHF-related ICD codes, demographics, LVEF %, comorbidities, and medication were analyzed. Least Absolute Shrinkage and Selection Operator (LASSO) identified important ECG features and evaluated performance. Results Among 851 patients, the mean age was 74 years (IQR:11), male 56% (n=478), and the median body mass index was 29 kg/m2 (IQR:1.8). A total of 914 echocardiograms and ECGs were matched; the time between ECG-Echocardiogram was 9 hours (IQR of 9 hours); ≤30% LVEF (16.45%, n=140). Lasso demonstrated 42 ECG features important for estimating LVEF ≤30%. The predictive model of LVEF ≤30% demonstrated an area under the curve (AUC) of 0.86, a 95% confidence interval (CI) of 0.83 to 0.89, a specificity of 54% (50% to 57%), and a sensitivity of 91 (95% CI: 88% to 96%), accuracy 60% (95% CI:60 % to 63%) and, negative predictive value of 95%. Conclusions An explainable machine learning model with physiologically feasible predictors may be useful in screening patients with low LVEF in AHF.
Collapse
Affiliation(s)
| | - Dillon J Dzikowicz
- University of Rochester School of Nursing, NY
- University of Rochester Medical Center, NY
- Clinical Cardiovascular Research Center, University of Rochester Medical Center, NY
| | - Ying Xue
- University of Rochester School of Nursing, NY
| | - Robert Block
- Department of Public Health Sciences, University of Rochester Medical Center, NY
- Cardiology Division, Department of Medicine, University of Rochester Medical Center
| | | | | | | | | | - Mary G Carey
- University of Rochester School of Nursing, NY
- University of Rochester Medical Center, NY
| |
Collapse
|
9
|
König S, Hohenstein S, Nitsche A, Pellissier V, Leiner J, Stellmacher L, Hindricks G, Bollmann A. Artificial intelligence-based identification of left ventricular systolic dysfunction from 12-lead electrocardiograms: external validation and advanced application of an existing model. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:144-151. [PMID: 38505486 PMCID: PMC10944686 DOI: 10.1093/ehjdh/ztad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 03/21/2024]
Abstract
Aims The diagnostic application of artificial intelligence (AI)-based models to detect cardiovascular diseases from electrocardiograms (ECGs) evolves, and promising results were reported. However, external validation is not available for all published algorithms. The aim of this study was to validate an existing algorithm for the detection of left ventricular systolic dysfunction (LVSD) from 12-lead ECGs. Methods and results Patients with digitalized data pairs of 12-lead ECGs and echocardiography (at intervals of ≤7 days) were retrospectively selected from the Heart Center Leipzig ECG and electronic medical records databases. A previously developed AI-based model was applied to ECGs and calculated probabilities for LVSD. The area under the receiver operating characteristic curve (AUROC) was computed overall and in cohorts stratified for baseline and ECG characteristics. Repeated echocardiography studies recorded ≥3 months after index diagnostics were used for follow-up (FU) analysis. At baseline, 42 291 ECG-echocardiography pairs were analysed, and AUROC for LVSD detection was 0.88. Sensitivity and specificity were 82% and 77% for the optimal LVSD probability cut-off based on Youden's J. AUROCs were lower in ECG subgroups with tachycardia, atrial fibrillation, and wide QRS complexes. In patients without LVSD at baseline and available FU, model-generated high probability for LVSD was associated with a four-fold increased risk of developing LVSD during FU. Conclusion We provide the external validation of an existing AI-based ECG-analysing model for the detection of LVSD with robust performance metrics. The association of false positive LVSD screenings at baseline with a deterioration of ventricular function during FU deserves a further evaluation in prospective trials.
Collapse
Affiliation(s)
- Sebastian König
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289 Leipzig, Germany
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Sven Hohenstein
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Anne Nitsche
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Vincent Pellissier
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Johannes Leiner
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289 Leipzig, Germany
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Lars Stellmacher
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289 Leipzig, Germany
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289 Leipzig, Germany
- Helios Health Institute, Real World Evidence & Health Technology Assessment, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| |
Collapse
|
10
|
Bourazana A, Xanthopoulos A, Briasoulis A, Magouliotis D, Spiliopoulos K, Athanasiou T, Vassilopoulos G, Skoularigis J, Triposkiadis F. Artificial Intelligence in Heart Failure: Friend or Foe? Life (Basel) 2024; 14:145. [PMID: 38276274 PMCID: PMC10817517 DOI: 10.3390/life14010145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In recent times, there have been notable changes in cardiovascular medicine, propelled by the swift advancements in artificial intelligence (AI). The present work provides an overview of the current applications and challenges of AI in the field of heart failure. It emphasizes the "garbage in, garbage out" issue, where AI systems can produce inaccurate results with skewed data. The discussion covers issues in heart failure diagnostic algorithms, particularly discrepancies between existing models. Concerns about the reliance on the left ventricular ejection fraction (LVEF) for classification and treatment are highlighted, showcasing differences in current scientific perceptions. This review also delves into challenges in implementing AI, including variable considerations and biases in training data. It underscores the limitations of current AI models in real-world scenarios and the difficulty in interpreting their predictions, contributing to limited physician trust in AI-based models. The overarching suggestion is that AI can be a valuable tool in clinicians' hands for treating heart failure patients, as far as existing medical inaccuracies have been addressed before integrating AI into these frameworks.
Collapse
Affiliation(s)
- Angeliki Bourazana
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Alexandros Briasoulis
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa, Iowa City, IA 52242, USA
| | - Dimitrios Magouliotis
- Department of Cardiothoracic Surgery, University of Thessaly, 41110 Larissa, Greece; (D.M.); (K.S.)
| | - Kyriakos Spiliopoulos
- Department of Cardiothoracic Surgery, University of Thessaly, 41110 Larissa, Greece; (D.M.); (K.S.)
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London W2 1NY, UK
| | - George Vassilopoulos
- Department of Hematology, University Hospital of Larissa, University of Thessaly Medical School, 41110 Larissa, Greece
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | | |
Collapse
|
11
|
Yoon M, Park JJ, Hur T, Hua CH, Hussain M, Lee S, Choi DJ. Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future. INTERNATIONAL JOURNAL OF HEART FAILURE 2024; 6:11-19. [PMID: 38303917 PMCID: PMC10827704 DOI: 10.36628/ijhf.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.
Collapse
Affiliation(s)
- Minjae Yoon
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Joo Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Taeho Hur
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea
| | - Cam-Hao Hua
- Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea
| | - Musarrat Hussain
- Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea
| | - Sungyoung Lee
- Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea
| | - Dong-Ju Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
12
|
Khan MS, Arshad MS, Greene SJ, Van Spall HGC, Pandey A, Vemulapalli S, Perakslis E, Butler J. Artificial intelligence and heart failure: A state-of-the-art review. Eur J Heart Fail 2023; 25:1507-1525. [PMID: 37560778 DOI: 10.1002/ejhf.2994] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Heart failure (HF) is a heterogeneous syndrome affecting more than 60 million individuals globally. Despite recent advancements in understanding of the pathophysiology of HF, many issues remain including residual risk despite therapy, understanding the pathophysiology and phenotypes of patients with HF and preserved ejection fraction, and the challenges related to integrating a large amount of disparate information available for risk stratification and management of these patients. Risk prediction algorithms based on artificial intelligence (AI) may have superior predictive ability compared to traditional methods in certain instances. AI algorithms can play a pivotal role in the evolution of HF care by facilitating clinical decision making to overcome various challenges such as allocation of treatment to patients who are at highest risk or are more likely to benefit from therapies, prediction of adverse outcomes, and early identification of patients with subclinical disease or worsening HF. With the ability to integrate and synthesize large amounts of data with multidimensional interactions, AI algorithms can supply information with which physicians can improve their ability to make timely and better decisions. In this review, we provide an overview of the AI algorithms that have been developed for establishing early diagnosis of HF, phenotyping HF with preserved ejection fraction, and stratifying HF disease severity. This review also discusses the challenges in clinical deployment of AI algorithms in HF, and the potential path forward for developing future novel learning-based algorithms to improve HF care.
Collapse
Affiliation(s)
| | | | - Stephen J Greene
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Harriette G C Van Spall
- Department of Medicine and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Ambarish Pandey
- Canada Population Health Research Institute, Hamilton, ON, Canada
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sreekanth Vemulapalli
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | | | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Baylor Scott and White Research Institute, Dallas, TX, USA
| |
Collapse
|
13
|
Neri L, Oberdier MT, van Abeelen KCJ, Menghini L, Tumarkin E, Tripathi H, Jaipalli S, Orro A, Paolocci N, Gallelli I, Dall’Olio M, Beker A, Carrick RT, Borghi C, Halperin HR. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4805. [PMID: 37430719 PMCID: PMC10223364 DOI: 10.3390/s23104805] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023]
Abstract
Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data.
Collapse
Affiliation(s)
- Luca Neri
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Matt T. Oberdier
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Kirsten C. J. van Abeelen
- Department of Informatics, Systems, and Communication, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Internal Medicine, Radboud University Medical Center, 6525 AJ Nijmegen, The Netherlands
| | - Luca Menghini
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Ethan Tumarkin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Hemantkumar Tripathi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Sujai Jaipalli
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy
| | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Ilaria Gallelli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Massimo Dall’Olio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Amir Beker
- AccYouRate Group S.p.A., 67100 L’Aquila, Italy
| | - Richard T. Carrick
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Henry R. Halperin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Martínez-Sellés M, Marina-Breysse M. Current and Future Use of Artificial Intelligence in Electrocardiography. J Cardiovasc Dev Dis 2023; 10:jcdd10040175. [PMID: 37103054 PMCID: PMC10145690 DOI: 10.3390/jcdd10040175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
Collapse
Affiliation(s)
- Manuel Martínez-Sellés
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain
- Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Manuel Marina-Breysse
- Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IDOVEN Research, 28013 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain
| |
Collapse
|
15
|
Bjerkén LV, Rønborg SN, Jensen MT, Ørting SN, Nielsen OW. Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review. Heart Fail Rev 2023; 28:419-430. [PMID: 36344908 PMCID: PMC9640840 DOI: 10.1007/s10741-022-10283-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Screening for left ventricular systolic dysfunction (LVSD), defined as reduced left ventricular ejection fraction (LVEF), deserves renewed interest as the medical treatment for the prevention and progression of heart failure improves. We aimed to review the updated literature to outline the potential and caveats of using artificial intelligence-enabled electrocardiography (AIeECG) as an opportunistic screening tool for LVSD.We searched PubMed and Cochrane for variations of the terms "ECG," "Heart Failure," "systolic dysfunction," and "Artificial Intelligence" from January 2010 to April 2022 and selected studies that reported the diagnostic accuracy and confounders of using AIeECG to detect LVSD.Out of 40 articles, we identified 15 relevant studies; eleven retrospective cohorts, three prospective cohorts, and one case series. Although various LVEF thresholds were used, AIeECG detected LVSD with a median AUC of 0.90 (IQR from 0.85 to 0.95), a sensitivity of 83.3% (IQR from 73 to 86.9%) and a specificity of 87% (IQR from 84.5 to 90.9%). AIeECG algorithms succeeded across a wide range of sex, age, and comorbidity and seemed especially useful in non-cardiology settings and when combined with natriuretic peptide testing. Furthermore, a false-positive AIeECG indicated a future development of LVSD. No studies investigated the effect on treatment or patient outcomes.This systematic review corroborates the arrival of a new generic biomarker, AIeECG, to improve the detection of LVSD. AIeECG, in addition to natriuretic peptides and echocardiograms, will improve screening for LVSD, but prospective randomized implementation trials with added therapy are needed to show cost-effectiveness and clinical significance.
Collapse
Affiliation(s)
- Laura Vindeløv Bjerkén
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Søren Nicolaj Rønborg
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Magnus Thorsten Jensen
- Department of Cardiology, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- William Harvey Research Institute, Queen Mary University Hospital, London, UK
| | - Silas Nyboe Ørting
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
16
|
Wu H, Patel KHK, Li X, Zhang B, Galazis C, Bajaj N, Sau A, Shi X, Sun L, Tao Y, Al-Qaysi H, Tarusan L, Yasmin N, Grewal N, Kapoor G, Waks JW, Kramer DB, Peters NS, Ng FS. A fully-automated paper ECG digitisation algorithm using deep learning. Sci Rep 2022; 12:20963. [PMID: 36471089 PMCID: PMC9722713 DOI: 10.1038/s41598-022-25284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
There is increasing focus on applying deep learning methods to electrocardiograms (ECGs), with recent studies showing that neural networks (NNs) can predict future heart failure or atrial fibrillation from the ECG alone. However, large numbers of ECGs are needed to train NNs, and many ECGs are currently only in paper format, which are not suitable for NN training. We developed a fully-automated online ECG digitisation tool to convert scanned paper ECGs into digital signals. Using automated horizontal and vertical anchor point detection, the algorithm automatically segments the ECG image into separate images for the 12 leads and a dynamical morphological algorithm is then applied to extract the signal of interest. We then validated the performance of the algorithm on 515 digital ECGs, of which 45 were printed, scanned and redigitised. The automated digitisation tool achieved 99.0% correlation between the digitised signals and the ground truth ECG (n = 515 standard 3-by-4 ECGs) after excluding ECGs with overlap of lead signals. Without exclusion, the performance of average correlation was from 90 to 97% across the leads on all 3-by-4 ECGs. There was a 97% correlation for 12-by-1 and 3-by-1 ECG formats after excluding ECGs with overlap of lead signals. Without exclusion, the average correlation of some leads in 12-by-1 ECGs was 60-70% and the average correlation of 3-by-1 ECGs achieved 80-90%. ECGs that were printed, scanned, and redigitised, our tool achieved 96% correlation with the original signals. We have developed and validated a fully-automated, user-friendly, online ECG digitisation tool. Unlike other available tools, this does not require any manual segmentation of ECG signals. Our tool can facilitate the rapid and automated digitisation of large repositories of paper ECGs to allow them to be used for deep learning projects.
Collapse
Affiliation(s)
- Huiyi Wu
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
| | | | - Xinyang Li
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
| | - Bowen Zhang
- National University of Singapore, Singapore, Singapore
| | | | - Nikesh Bajaj
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
| | - Arunashis Sau
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Xili Shi
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
| | - Lin Sun
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
| | | | - Harith Al-Qaysi
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Lawrence Tarusan
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Najira Yasmin
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Natasha Grewal
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Gaurika Kapoor
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan W Waks
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Daniel B Kramer
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Nicholas S Peters
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK
| | - Fu Siong Ng
- Imperial College London, National Heart & Lung Institute, London, W12 0NN, UK.
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK.
- Cardiac Electrophysiology, National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Golany T, Radinsky K, Kofman N, Litovchik I, Young R, Monayer A, Love I, Tziporin F, Minha I, Yehuda Y, Ziv-Baran T, Fuchs S, Minha S. Physicians and Machine-Learning Algorithm Performance in Predicting Left-Ventricular Systolic Dysfunction from a Standard 12-Lead-Electrocardiogram. J Clin Med 2022; 11:6767. [PMID: 36431244 PMCID: PMC9699306 DOI: 10.3390/jcm11226767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Early detection of left ventricular systolic dysfunction (LVSD) may prompt early care and improve outcomes for asymptomatic patients. Standard 12-lead ECG may be used to predict LVSD. We aimed to compare the performance of Machine Learning Algorithms (MLA) and physicians in predicting LVSD from a standard 12-lead ECG. By utilizing a dataset of 13,820 pairs of ECGs and echocardiography, a deep residual convolutional neural network was trained for predicting LVSD (ejection fraction (EF) < 50%) from ECG. The ECGs of the test set (n = 850) were assessed for LVSD by the MLA and six physicians. The performance was compared using sensitivity, specificity, and C-statistics. The interobserver agreement between the physicians for the prediction of LVSD was moderate (κ = 0.50), with average sensitivity and specificity of 70%. The C-statistic of the MLA was 0.85. Repeating this analysis with LVSD defined as EF < 35% resulted in an improvement in physicians’ average sensitivity to 84% but their specificity decreased to 57%. The MLA C-statistic was 0.88 with this threshold. We conclude that although MLA outperformed physicians in predicting LVSD from standard ECG, prior to robust implementation of MLA in ECG machines, physicians should be encouraged to use this approach as a simple and readily available aid for LVSD screening.
Collapse
Affiliation(s)
- Tomer Golany
- Taub Faculty of Computer Sciences, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Kira Radinsky
- Taub Faculty of Computer Sciences, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Kofman
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Ilya Litovchik
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Revital Young
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Antoinette Monayer
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Itamar Love
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Faina Tziporin
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Ido Minha
- Department of Mathematics and Computer Science, The Open University, Raanana 4353701, Israel
| | - Yakir Yehuda
- Taub Faculty of Computer Sciences, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventative Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shmuel Fuchs
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| | - Sa’ar Minha
- Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Department of Cardiology, Shamir Medical Center, Be’er-Yaakov 7033001, Israel
| |
Collapse
|
18
|
Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8002. [PMID: 36298352 PMCID: PMC9610988 DOI: 10.3390/s22208002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.
Collapse
Affiliation(s)
- Jian-Dong Huang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Jinling Wang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Elaine Ramsey
- Department of Global Business & Enterprise, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Gerard Leavey
- School of Psychology, Ulster University at Coleraine, Londonderry BT52 1SA, UK
| | - Timothy J. A. Chico
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joan Condell
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| |
Collapse
|
19
|
Bennis FC, Hoogendoorn M, Aussems C, Korevaar JC. Prediction of heart failure 1 year before diagnosis in general practitioner patients using machine learning algorithms: a retrospective case-control study. BMJ Open 2022; 12:e060458. [PMID: 36041765 PMCID: PMC9438066 DOI: 10.1136/bmjopen-2021-060458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Heart failure (HF) is a commonly occurring health problem with high mortality and morbidity. If potential cases could be detected earlier, it may be possible to intervene earlier, which may slow progression in some patients. Preferably, it is desired to reuse already measured data for screening of all persons in an age group, such as general practitioner (GP) data. Furthermore, it is essential to evaluate the number of people needed to screen to find one patient using true incidence rates, as this indicates the generalisability in the true population. Therefore, we aim to create a machine learning model for the prediction of HF using GP data and evaluate the number needed to screen with true incidence rates. DESIGN, SETTINGS AND PARTICIPANTS GP data from 8543 patients (-2 to -1 year before diagnosis) and controls aged 70+ years were obtained retrospectively from 01 January 2012 to 31 December 2019 from the Nivel Primary Care Database. Codes about chronic illness, complaints, diagnostics and medication were obtained. Data were split in a train/test set. Datasets describing demographics, the presence of codes (non-sequential) and upon each other following codes (sequential) were created. Logistic regression, random forest and XGBoost models were trained. Predicted outcome was the presence of HF after 1 year. The ratio case:control in the test set matched true incidence rates (1:45). RESULTS Sole demographics performed average (area under the curve (AUC) 0.692, CI 0.677 to 0.706). Adding non-sequential information combined with a logistic regression model performed best and significantly improved performance (AUC 0.772, CI 0.759 to 0.785, p<0.001). Further adding sequential information did not alter performance significantly (AUC 0.767, CI 0.754 to 0.780, p=0.07). The number needed to screen dropped from 14.11 to 5.99 false positives per true positive. CONCLUSION This study created a model able to identify patients with pending HF a year before diagnosis.
Collapse
Affiliation(s)
- Frank C Bennis
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Health Services Research (Nivel), Utrecht, The Netherlands
| | - Mark Hoogendoorn
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Claire Aussems
- Netherlands Institute for Health Services Research (Nivel), Utrecht, The Netherlands
| | - Joke C Korevaar
- Netherlands Institute for Health Services Research (Nivel), Utrecht, The Netherlands
| |
Collapse
|
20
|
Lin W, Jia S, Chen Y, Shi H, Zhao J, Li Z, Wu Y, Jiang H, Zhang Q, Wang W, Chen Y, Feng C, Xia S. Korotkoff sounds dynamically reflect changes in cardiac function based on deep learning methods. Front Cardiovasc Med 2022; 9:940615. [PMID: 36093170 PMCID: PMC9458936 DOI: 10.3389/fcvm.2022.940615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Korotkoff sounds (K-sounds) have been around for over 100 years and are considered the gold standard for blood pressure (BP) measurement. K-sounds are also unique for the diagnosis and treatment of cardiovascular diseases; however, their efficacy is limited. The incidences of heart failure (HF) are increasing, which necessitate the development of a rapid and convenient pre-hospital screening method. In this review, we propose a deep learning (DL) method and the possibility of using K-methods to predict cardiac function changes for the detection of cardiac dysfunctions.
Collapse
Affiliation(s)
- Wenting Lin
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sixiang Jia
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yiwen Chen
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hanning Shi
- Department of Anime and Comics, Hangzhou Normal University, Hangzhou, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhe Li
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yiteng Wu
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hangpan Jiang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qi Zhang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wei Wang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yayu Chen
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
21
|
Choi J, Lee S, Chang M, Lee Y, Oh GC, Lee HY. Deep learning of ECG waveforms for diagnosis of heart failure with a reduced left ventricular ejection fraction. Sci Rep 2022; 12:14235. [PMID: 35987961 PMCID: PMC9392508 DOI: 10.1038/s41598-022-18640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe performance and clinical implications of the deep learning aided algorithm using electrocardiogram of heart failure (HF) with reduced ejection fraction (DeepECG-HFrEF) were evaluated in patients with acute HF. The DeepECG-HFrEF algorithm was trained to identify left ventricular systolic dysfunction (LVSD), defined by an ejection fraction (EF) < 40%. Symptomatic HF patients admitted at Seoul National University Hospital between 2011 and 2014 were included. The performance of DeepECG-HFrEF was determined using the area under the receiver operating characteristic curve (AUC) values. The 5-year mortality according to DeepECG-HFrEF results was analyzed using the Kaplan–Meier method. A total of 690 patients contributing 18,449 ECGs were included with final 1291 ECGs eligible for the study (mean age 67.8 ± 14.4 years; men, 56%). HFrEF (+) identified an EF < 40% and HFrEF (−) identified EF ≥ 40%. The AUC value was 0.844 for identifying HFrEF among patients with acute symptomatic HF. Those classified as HFrEF (+) showed lower survival rates than HFrEF (−) (log-rank p < 0.001). The DeepECG-HFrEF algorithm can discriminate HFrEF in a real-world HF cohort with acceptable performance. HFrEF (+) was associated with higher mortality rates. The DeepECG-HFrEF algorithm may help in identification of LVSD and of patients at risk of worse survival in resource-limited settings.
Collapse
|
22
|
Zeng Y, Yang S, Yu X, Lin W, Wang W, Tong J, Xia S. A multimodal parallel method for left ventricular dysfunction identification based on phonocardiogram and electrocardiogram signals synchronous analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9612-9635. [PMID: 35942775 DOI: 10.3934/mbe.2022447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heart failure (HF) is widely acknowledged as the terminal stage of cardiac disease and represents a global clinical and public health problem. Left ventricular ejection fraction (LVEF) measured by echocardiography is an important indicator of HF diagnosis and treatment. Early identification of LVEF reduction and early treatment is of great significance to improve LVEF and the prognosis of HF. This research aims to introduce a new method for left ventricular dysfunction (LVD) identification based on phonocardiogram (ECG) and electrocardiogram (PCG) signals synchronous analysis. In the present study, we established a database called Synchronized ECG and PCG Database for Patients with Left Ventricular Dysfunction (SEP-LVDb) consisting of 1046 synchronous ECG and PCG recordings from patients with reduced (n = 107) and normal (n = 699) LVEF. 173 and 873 recordings were available from the reduced and normal LVEF group, respectively. Then, we proposed a parallel multimodal method for LVD identification based on synchronous analysis of PCG and ECG signals. Two-layer bidirectional gate recurrent unit (Bi-GRU) was used to extract features in the time domain, and the data were classified using residual network 18 (ResNet-18). This research confirmed that fused ECG and PCG signals yielded better performance than ECG or PCG signals alone, with an accuracy of 93.27%, precision of 93.34%, recall of 93.27%, and F1-score of 93.27%. Verification of the model's performance with an independent dataset achieved an accuracy of 80.00%, precision of 79.38%, recall of 80.00% and F1-score of 78.67%. The Bi-GRU model outperformed Bi-directional long short-term memory (Bi-LSTM) and recurrent neural network (RNN) models with a best selection frame length of 3.2 s. The Saliency Maps showed that SEP-LVDPN could effectively learn features from the data.
Collapse
Affiliation(s)
- Yajing Zeng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Jinhua 321000, China
| | - Siyu Yang
- School of Information and Technology, Zhejiang Sci-Tech University, Hangzhou 310000, China
| | - Xiongkai Yu
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Jinhua 321000, China
| | - Wenting Lin
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Jinhua 321000, China
| | - Wei Wang
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jijun Tong
- School of Information and Technology, Zhejiang Sci-Tech University, Hangzhou 310000, China
| | - Shudong Xia
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Jinhua 321000, China
| |
Collapse
|
23
|
Leclercq C, Witt H, Hindricks G, Katra RP, Albert D, Belliger A, Cowie MR, Deneke T, Friedman P, Haschemi M, Lobban T, Lordereau I, McConnell MV, Rapallini L, Samset E, Turakhia MP, Singh JP, Svennberg E, Wadhwa M, Weidinger F. Wearables, telemedicine, and artificial intelligence in arrhythmias and heart failure: Proceedings of the European Society of Cardiology: Cardiovascular Round Table. Europace 2022; 24:1372-1383. [PMID: 35640917 DOI: 10.1093/europace/euac052] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/31/2022] Open
Abstract
Digital technology is now an integral part of medicine. Tools for detecting, screening, diagnosis, and monitoring health-related parameters have improved patient care and enabled individuals to identify issues leading to better management of their own health. Wearable technologies have integrated sensors and can measure physical activity, heart rate and rhythm, and glucose and electrolytes. For individuals at risk, wearables or other devices may be useful for early detection of atrial fibrillation or sub-clinical states of cardiovascular disease, disease management of cardiovascular diseases such as hypertension and heart failure, and lifestyle modification. Health data are available from a multitude of sources, namely clinical, laboratory and imaging data, genetic profiles, wearables, implantable devices, patient-generated measurements, and social and environmental data. Artificial intelligence is needed to efficiently extract value from this constantly increasing volume and variety of data and to help in its interpretation. Indeed, it is not the acquisition of digital information, but rather the smart handling and analysis that is challenging. There are multiple stakeholder groups involved in the development and effective implementation of digital tools. While the needs of these groups may vary, they also have many commonalities, including the following: a desire for data privacy and security; the need for understandable, trustworthy, and transparent systems; standardized processes for regulatory and reimbursement assessments; and better ways of rapidly assessing value.
Collapse
Affiliation(s)
- Christophe Leclercq
- Department of Cardiology, CHU Rennes and Inserm, LTSI, University of Rennes, Centre Cardio-Pneumologique, CHU Pontchaillou, Service de Cardiologie et Maladies Vasculaires, 2 Rue Henri le Guilloux, 35000, Rennes, France
| | - Henning Witt
- Department of Internal Medicine, Pfizer, Berlin, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center, Leipzig Heart Institute, Leipzig, Germany
| | - Rodolphe P Katra
- Cardiac Rhythm Management, Research & Technology, Medtronic, Minneapolis, MN, USA
| | | | - Andrea Belliger
- Institute for Communication and Leadership, and Lucerne University of Education, Lucerne, Switzerland
| | - Martin R Cowie
- Royal Brompton Hospital & School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology and Arrhythmology Heart Center, Bad Neustadt, Germany
| | - Paul Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mehdiyar Haschemi
- Siemens Healthineers, Segment Advanced Therapies, Clinical Segment Cardiovascular Care, Forchheim, Bavaria, Germany
| | - Trudie Lobban
- Atrial Fibrillation Association (AF Association), Arrhythmia Alliance (A-A), and STARS (Syncope Trust And Reflex anoxic Seizures), UK & International
| | | | - Michael V McConnell
- Fitbit/Google; Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Leonardo Rapallini
- Research and Development, Cardiac Diagnostics and Services Business, Medtronic, Minneapolis, MN, USA
| | - Eigil Samset
- GE Healthcare Cardiology Solutions, Chicago, IL, USA
| | - Mintu P Turakhia
- Center for Digital Health, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emma Svennberg
- Department Electrophysiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Franz Weidinger
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstrasse, Vienna, Austria
| |
Collapse
|
24
|
Chen HY, Lin CS, Fang WH, Lee CC, Ho CL, Wang CH, Lin C. Artificial Intelligence-Enabled Electrocardiogram Predicted Left Ventricle Diameter as an Independent Risk Factor of Long-Term Cardiovascular Outcome in Patients With Normal Ejection Fraction. Front Med (Lausanne) 2022; 9:870523. [PMID: 35479951 PMCID: PMC9035739 DOI: 10.3389/fmed.2022.870523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heart failure (HF) is a global disease with increasing prevalence in an aging society. However, the survival rate is poor despite the patient receiving standard treatment. Early identification of patients with a high risk of HF is important but challenging. Left ventricular end-diastolic diameter (LV-D) increase was an independent risk factor of HF and adverse cardiovascular (CV) outcomes. In this study, we aimed to develop an artificial intelligence (AI) enabled electrocardiogram (ECG) system to detect LV-D increase early. Objective We developed a deep learning model (DLM) to predict left ventricular end-diastolic and end-systolic diameter (LV-D and LV-S) with internal and external validations and investigated the relationship between ECG-LV-D and echocardiographic LV-D and explored the contributions of ECG-LV-D on future CV outcomes. Methods Electrocardiograms and corresponding echocardiography data within 7 days were collected and paired for DLM training with 99,692 ECGs in the development set and 20,197 ECGs in the tuning set. The other 7,551 and 11,644 ECGs were collected from two different hospitals to validate the DLM performance in internal and external validation sets. We analyzed the association and prediction ability of ECG-LVD for CV outcomes, including left ventricular (LV) dysfunction, CV mortality, acute myocardial infarction (AMI), and coronary artery disease (CAD). Results The mean absolute errors (MAE) of ECG-LV-D were 5.25/5.29, and the area under the receiver operating characteristic (ROC) curves (AUCs) were 0.8297/0.8072 and 0.9295/0.9148 for the detection of mild (56 ≦ LV-D < 65 mm) and severe (LV-D ≧ 65 mm) LV-D dilation in internal/external validation sets, respectively. Patients with normal ejection fraction (EF) who were identified as high ECHO-LV-D had the higher hazard ratios (HRs) of developing new onset LV dysfunction [HR: 2.34, 95% conference interval (CI): 1.78–3.08], CV mortality (HR 2.30, 95% CI 1.05–5.05), new-onset AMI (HR 2.12, 95% CI 1.36–3.29), and CAD (HR 1.59, 95% CI 1.26–2.00) in the internal validation set. In addition, the ECG-LV-D presents a 1.88-fold risk (95% CI 1.47–2.39) on new-onset LV dysfunction in the external validation set. Conclusion The ECG-LV-D not only identifies high-risk patients with normal EF but also serves as an independent risk factor of long-term CV outcomes.
Collapse
Affiliation(s)
- Hung-Yi Chen
- Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Wen-Hui Fang
- Department of Family and Community Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- Artificial Intelligence of Things Center, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chia-Cheng Lee
- Medical Informatics Office, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Chin Lin
- Artificial Intelligence of Things Center, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- Medical Technology Education Center, National Defense Medical Center, School of Medicine, Taipei, Taiwan
- *Correspondence: Chin Lin,
| |
Collapse
|
25
|
Petmezas G, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, Katsaggelos AK, Maglaveras N. State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint). JMIR Med Inform 2022; 10:e38454. [PMID: 35969441 PMCID: PMC9425174 DOI: 10.2196/38454] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient’s health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals. Objective This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications. Methods The PubMed search engine was systematically searched by combining “deep learning” and keywords such as “ecg,” “ekg,” “electrocardiogram,” “electrocardiography,” and “electrocardiology.” Irrelevant articles were excluded from the study after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence of a quantitative evaluation of the proposed approaches. Results We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6 distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation of DL models. Conclusions We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.
Collapse
Affiliation(s)
- Georgios Petmezas
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leandros Stefanopoulos
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Kilintzis
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Tzavelis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - John A Rogers
- Department of Material Science, Northwestern University, Evanston, IL, United States
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Johnson AE, Brewer LC, Echols MR, Mazimba S, Shah RU, Breathett K. Utilizing Artificial Intelligence to Enhance Health Equity Among Patients with Heart Failure. Heart Fail Clin 2022; 18:259-273. [PMID: 35341539 PMCID: PMC8988237 DOI: 10.1016/j.hfc.2021.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patients with heart failure (HF) are heterogeneous with various intrapersonal and interpersonal characteristics contributing to clinical outcomes. Bias, structural racism, and social determinants of health have been implicated in unequal treatment of patients with HF. Through several methodologies, artificial intelligence (AI) can provide models in HF prediction, prognostication, and provision of care, which may help prevent unequal outcomes. This review highlights AI as a strategy to address racial inequalities in HF; discusses key AI definitions within a health equity context; describes the current uses of AI in HF, strengths and harms in using AI; and offers recommendations for future directions.
Collapse
Affiliation(s)
- Amber E Johnson
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Veterans Affairs Pittsburgh Health System, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - LaPrincess C Brewer
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Melvin R Echols
- Division of Cardiovascular Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Sula Mazimba
- Division of Cardiovascular Medicine, Advanced Heart Failure and Transplant Center, University of Virginia, 2nd Floor, 1221 Lee Street, Charlottesville, VA 22903, USA
| | - Rashmee U Shah
- Division of Cardiovascular Medicine, University of Utah, 30 N 1900 E, Cardiology, 4A100, Salt Lake City, UT 84132, USA
| | - Khadijah Breathett
- Division of Cardiovascular Medicine, Sarver Heart Center, University of Arizona, 1501 North Campbell Avenue, PO Box 245046, Tucson, AZ 85724, USA.
| |
Collapse
|
27
|
Chen HY, Lin CS, Fang WH, Lou YS, Cheng CC, Lee CC, Lin C. Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis. J Pers Med 2022; 12:455. [PMID: 35330455 PMCID: PMC8950054 DOI: 10.3390/jpm12030455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND: The ejection fraction (EF) provides critical information about heart failure (HF) and its management. Electrocardiography (ECG) is a noninvasive screening tool for cardiac electrophysiological activities that has been used to detect patients with low EF based on a deep learning model (DLM) trained via large amounts of data. However, no studies have widely investigated its clinical impacts. OBJECTIVE: This study developed a DLM to estimate EF via ECG (ECG-EF). We further investigated the relationship between ECG-EF and echo-based EF (ECHO-EF) and explored their contributions to future cardiovascular adverse events. METHODS: There were 57,206 ECGs with corresponding echocardiograms used to train our DLM. We compared a series of training strategies and selected the best DLM. The architecture of the DLM was based on ECG12Net, developed previously. Next, 10,762 ECGs were used for validation, and another 20,629 ECGs were employed to conduct the accuracy test. The changes between ECG-EF and ECHO-EF were evaluated. The primary follow-up adverse events included future ECHO-EF changes and major adverse cardiovascular events (MACEs). RESULTS: The sex-/age-matching strategy-trained DLM achieved the best area under the curve (AUC) of 0.9472 with a sensitivity of 86.9% and specificity of 89.6% in the follow-up cohort, with a correlation of 0.603 and a mean absolute error of 7.436. In patients with accurate prediction (initial difference < 10%), the change traces of ECG-EF and ECHO-EF were more consistent (R-square = 0.351) than in all patients (R-square = 0.115). Patients with lower ECG-EF (≤35%) exhibited a greater risk of cardiovascular (CV) complications, delayed ECHO-EF recovery, and earlier ECHO-EF deterioration than patients with normal ECG-EF (>50%). Importantly, ECG-EF demonstrated an independent impact on MACEs and all CV adverse outcomes, with better prediction of CV outcomes than ECHO-EF. CONCLUSIONS: The ECG-EF could be used to initially screen asymptomatic left ventricular dysfunction (LVD) and it could also independently contribute to the predictions of future CV adverse events. Although further large-scale studies are warranted, DLM-based ECG-EF could serve as a promising diagnostic supportive and management-guided tool for CV disease prediction and the care of patients with LVD.
Collapse
Affiliation(s)
- Hung-Yi Chen
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Sheng Lou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Cheng Lee
- Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chin Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
28
|
Kwon JM, Jo YY, Lee SY, Kang S, Lim SY, Lee MS, Kim KH. Artificial Intelligence-Enhanced Smartwatch ECG for Heart Failure-Reduced Ejection Fraction Detection by Generating 12-Lead ECG. Diagnostics (Basel) 2022; 12:654. [PMID: 35328207 PMCID: PMC8947562 DOI: 10.3390/diagnostics12030654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We developed and validated an artificial intelligence (AI)-enabled smartwatch ECG to detect heart failure-reduced ejection fraction (HFrEF). METHODS This was a cohort study involving two hospitals (A and B). We developed the AI in two steps. First, we developed an AI model (ECGT2T) to synthesize ten-lead ECG from the asynchronized 2-lead ECG (Lead I and II). ECGT2T is a deep learning model based on a generative adversarial network, which translates source ECGs to reference ECGs by learning styles of the reference ECGs. For this, we included adult patients aged ≥18 years from hospital A with at least one digitally stored 12-lead ECG. Second, we developed an AI model to detect HFrEF using a 10 s 12-lead ECG. The AI model was based on convolutional neural network. For this, we included adult patients who underwent ECG and echocardiography within 14 days. To validate the AI, we included adult patients from hospital B who underwent two-lead smartwatch ECG and echocardiography on the same day. The AI model generates a 10 s 12-lead ECG from a two-lead smartwatch ECG using ECGT2T and detects HFrEF using the generated 12-lead ECG. RESULTS We included 137,673 patients with 458,745 ECGs and 38,643 patients with 88,900 ECGs from hospital A for developing the ECGT2T and HFrEF detection models, respectively. The area under the receiver operating characteristic curve of AI for detecting HFrEF using smartwatch ECG was 0.934 (95% confidence interval 0.913-0.955) with 755 patients from hospital B. The sensitivity, specificity, positive predictive value, and negative predictive value of AI were 0.897, 0.860, 0.258, and 0.994, respectively. CONCLUSIONS An AI-enabled smartwatch 2-lead ECG could detect HFrEF with reasonable performance.
Collapse
Affiliation(s)
- Joon-myoung Kwon
- Medical Research Team, Medical AI, Inc., San Francisco, CA 94103, USA; (J.-m.K.); (Y.-Y.J.); (S.K.); (S.-Y.L.); (M.S.L.)
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon 14754, Korea;
- Department of Critical Care and Emergency Medicine, Incheon Sejong Hospital, Incheon 21080, Korea
- Medical R&D Center, Body Friend, Co., Ltd., Seoul 06302, Korea
| | - Yong-Yeon Jo
- Medical Research Team, Medical AI, Inc., San Francisco, CA 94103, USA; (J.-m.K.); (Y.-Y.J.); (S.K.); (S.-Y.L.); (M.S.L.)
| | - Soo Youn Lee
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon 14754, Korea;
- Division of Cardiology, Cardiovascular Center, Incheon Sejong Hospital, Incheon 21080, Korea
| | - Seonmi Kang
- Medical Research Team, Medical AI, Inc., San Francisco, CA 94103, USA; (J.-m.K.); (Y.-Y.J.); (S.K.); (S.-Y.L.); (M.S.L.)
| | - Seon-Yu Lim
- Medical Research Team, Medical AI, Inc., San Francisco, CA 94103, USA; (J.-m.K.); (Y.-Y.J.); (S.K.); (S.-Y.L.); (M.S.L.)
| | - Min Sung Lee
- Medical Research Team, Medical AI, Inc., San Francisco, CA 94103, USA; (J.-m.K.); (Y.-Y.J.); (S.K.); (S.-Y.L.); (M.S.L.)
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon 14754, Korea;
- Department of Critical Care and Emergency Medicine, Incheon Sejong Hospital, Incheon 21080, Korea
| | - Kyung-Hee Kim
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon 14754, Korea;
- Division of Cardiology, Cardiovascular Center, Incheon Sejong Hospital, Incheon 21080, Korea
| |
Collapse
|
29
|
Lee YJ, Choi B, Lee MS, Jin U, Yoon S, Jo YY, Kwon JM. An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period. Int J Cardiol 2022; 352:72-77. [PMID: 35122911 DOI: 10.1016/j.ijcard.2022.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Peripartum cardiomyopathy (PPCM) is a fatal maternal complication, with left ventricular systolic dysfunction (LVSD; Left ventricular ejection fraction 45% or less) occurring at the end of pregnancy or in the months following delivery. The scarcity of screening tools for PPCM leads to a delayed diagnosis and increases its mortality and morbidity. We aim to evaluate an electrocardiogram (ECG)-deep learning model (DLM) for detecting cardiomyopathy in the peripartum period. METHODS For the DLM development and internal performance test for detecting LVSD, we obtained a dataset of 122,733 ECG-echocardiography pairs from 58,530 male and female patients from two community hospitals. For the DLM external validation, this study included 271 ECG-echocardiography pairs (157 unique pregnant and postpartum period women) examined in the Ajou University Medical Center (AUMC) between January 2007 and May 2020. All included cases underwent an ECG within two weeks before or after the day of transthoracic echocardiography, which was performed within a month before delivery, or within five months after delivery. Based on the diagnostic criteria of PPCM, we analyzed the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) to evaluate the model effectiveness. RESULTS The ECG-based DLM detected PPCM with an AUROC of 0.877. Moreover, its sensitivity, specificity, PPV, and NPV for the detection of PPCM were 0.877, 0.833, 0.809, 0.352, and 0.975, respectively. CONCLUSIONS An ECG-based DLM non-invasively and effectively detects cardiomyopathies occurring in the peripartum period and could be an ideal screening tool for PPCM.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Obstetrics and Gynecology, Gangdong Miz Women's Hospital, Seoul, Republic of Korea
| | - Byungjin Choi
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Min Sung Lee
- Medical research team, Medical AI, Seoul, Republic of Korea.
| | - Uram Jin
- Department of Cardiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seokyoung Yoon
- Ajou University School of Medicine, Department of Obstetrics and Gynecology, Republic of Korea
| | - Yong-Yeon Jo
- Medical research team, Medical AI, Seoul, Republic of Korea
| | - Joon-Myoung Kwon
- Medical research team, Medical AI, Seoul, Republic of Korea; Department of Emergency Medicine, Mediplex Sejong Hospital, Incheon, Republic of Korea.; Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea
| |
Collapse
|
30
|
Lee CH, Liu WT, Lou YS, Lin CS, Fang WH, Lee CC, Ho CL, Wang CH, Lin C. Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence. Digit Health 2022; 8:20552076221143249. [PMID: 36532114 PMCID: PMC9751170 DOI: 10.1177/20552076221143249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/17/2022] [Indexed: 09/10/2024] Open
Abstract
Background Artificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. Objective The study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. Methods The study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction ≤ 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. Results The area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. Conclusion The deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.
Collapse
Affiliation(s)
- Chun-Ho Lee
- School of Public Health, National Defense Medical Center, Taipei
| | - Wei-Ting Liu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Yu-Sheng Lou
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Chia-Cheng Lee
- Medical Informatics Office, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei
| | - Chin Lin
- School of Public Health, National Defense Medical Center, Taipei
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei
- Medical Technology Education Center, School of Medicine, National Defense Medical Center, Taipei
| |
Collapse
|
31
|
Lee S, Chu Y, Ryu J, Park YJ, Yang S, Koh SB. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Med J 2022; 63:S93-S107. [PMID: 35040610 PMCID: PMC8790582 DOI: 10.3349/ymj.2022.63.s93] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Several artificial intelligence (AI) models for the detection and prediction of cardiovascular-related diseases, including arrhythmias, diabetes, and sleep apnea, have been reported. This systematic review and meta-analysis aimed to identify AI models developed for or applicable to wearable and mobile devices for diverse cardiovascular-related diseases. MATERIALS AND METHODS The searched databases included Medline, Embase, and Cochrane Library. For AI models for atrial fibrillation (AF) detection, a meta-analysis of diagnostic accuracy was performed to summarize sensitivity and specificity. RESULTS A total of 102 studies were included in the qualitative review. There were AI models for the detection of arrythmia (n=62), followed by sleep apnea (n=11), peripheral vascular diseases (n=6), diabetes mellitus (n=5), hyper/hypotension (n=5), valvular heart disease (n=4), heart failure (n=3), myocardial infarction and cardiac arrest (n=2), and others (n=4). For quantitative analysis of 26 studies reporting AI models for AF detection, meta-analyzed sensitivity was 94.80% and specificity was 96.96%. Deep neural networks showed superior performance [meta-analyzed area under receiver operating characteristics curve (AUROC) of 0.981] compared to conventional machine learning algorithms (meta-analyzed AUROC of 0.961). However, AI models tested with proprietary dataset (meta-analyzed AUROC of 0.972) or data acquired from wearable devices (meta-analyzed AUROC of 0.977) showed inferior performance than those with public dataset (meta-analyzed AUROC of 0.986) or data from in-hospital devices (meta-analyzed AUROC of 0.983). CONCLUSION This review found that AI models for diverse cardiovascular-related diseases are being developed, and that they are gradually developing into a form that is suitable for wearable and mobile devices.
Collapse
Affiliation(s)
- Solam Lee
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yuseong Chu
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | - Jiseung Ryu
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | - Young Jun Park
- Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sejung Yang
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea.
| | - Sang Baek Koh
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
32
|
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram. Eur Heart J 2021; 42:4717-4730. [PMID: 34534279 PMCID: PMC8500024 DOI: 10.1093/eurheartj/ehab649] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare.
Collapse
Affiliation(s)
- Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - David M Harmon
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, 200 First Street SW, Rochester, MN 55905, USA
| | - Elijah R Behr
- Cardiology Research Center and Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St. George’s University of London and St. George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, UK
- Mayo Clinic Healthcare, 15 Portland Pl, London W1B 1PT, UK
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Dunn AJ, ElRefai MH, Roberts PR, Coniglio S, Wiles BM, Zemkoho AB. Deep learning methods for screening patients' S-ICD implantation eligibility. Artif Intell Med 2021; 119:102139. [PMID: 34531008 DOI: 10.1016/j.artmed.2021.102139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Subcutaneous Implantable Cardioverter-Defibrillators (S-ICDs) are used for prevention of sudden cardiac death triggered by ventricular arrhythmias. T Wave Over Sensing (TWOS) is an inherent risk with S-ICDs which can lead to inappropriate shocks. A major predictor of TWOS is a high T:R ratio (the ratio between the amplitudes of the T and R waves). Currently, patients' Electrocardiograms (ECGs) are screened over 10 s to measure the T:R ratio to determine the patients' eligibility for S-ICD implantation. Due to temporal variations in the T:R ratio, 10 s is not a long enough window to reliably determine the normal values of a patient's T:R ratio. In this paper, we develop a convolutional neural network (CNN) based model utilising phase space reconstruction matrices to predict T:R ratios from 10-second ECG segments without explicitly locating the R or T waves, thus avoiding the issue of TWOS. This tool can be used to automatically screen patients over a much longer period and provide an in-depth description of the behavior of the T:R ratio over that period. The tool can also enable much more reliable and descriptive screenings to better assess patients' eligibility for S-ICD implantation.
Collapse
Affiliation(s)
- Anthony J Dunn
- University of Southampton, School of Mathematical Sciences, United Kingdom
| | | | | | - Stefano Coniglio
- University of Southampton, School of Mathematical Sciences, United Kingdom
| | - Benedict M Wiles
- St George's University Hospitals NHS Foundation Trust, United Kingdom
| | - Alain B Zemkoho
- University of Southampton, School of Mathematical Sciences, United Kingdom.
| |
Collapse
|
34
|
|