1
|
Hanumegowda SM, Srinivasa C, Shivaiah A, Venkatappa MM, Shankar RL, Lakshmaiah RK, Gonchigar SJ, Sannaningaiah D. Kenaf Seed Cysteine Protease (KSCP) Inhibits the Intrinsic Pathway of the Blood Coagulation Cascade and Platelet Aggregation. Curr Protein Pept Sci 2024; 25:394-408. [PMID: 38031777 DOI: 10.2174/0113892037265109231114065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Thrombosis is the key event that obstructs the flow of blood throughout the circulatory system, leading to stroke, myocardial infarction and severe cardiovascular complications. Currently, available antithrombotic drugs trigger several life-threatening side effects. INTRODUCTION Antithrombotic agents from natural sources devoid of adverse effects are grabbing high attention. In our previous study, we reported the antioxidant, anticoagulant and antiplatelet properties of kenaf seed protein extract. Therefore, in the current study, purification and characterization of cysteine protease from kenaf seed protein extract responsible for potential antithrombotic activity was undertaken. METHODS Purification of KSCP (Kenaf Seed Cysteine Protease) was carried out using gel permeation and ion exchange column chromatography. The purity of the enzyme was evaluated by SDS PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis). RP-HPLC (Reverse Phase High-Performance Liquid Chromatography), MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-Of-Flight) and CD (Circular Dichroism techniques) were employed for its characterization. Proteolytic, fibrinolytic and kinetic study was done using spectroscopy. Plasma recalcification time, Prothrombin Time (PT), Thrombin clotting time (TCT), Activated Partial Thromboplastin Time (APTT), bleeding time and platelet aggregation studies were carried out for antithrombotic activity of KSCP. RESULT A single sharp band of KSCP was observed under both reduced and non-reduced conditions, having a molecular mass of 24.1667kDa. KSCP was found to contain 30.3% helix turns and 69.7% random coils without a beta-pleated sheet. KSCP digested casein and fibrin, and its activity was inhibited by iodoacetic acid (IAA). KSCP was optimally active at pH 6.0 at the temperature of 40°C. KSCP exhibited anticoagulant properties by interfering in the intrinsic pathway of the blood coagulation cascade. Furthermore, KSCP dissolved both whole blood and plasma clots and platelet aggregation. CONCLUSION KSCP purified from kenaf seed extract showed antithrombotic potential. Hence, it could be a better candidate for the management of thrombotic complications.
Collapse
Affiliation(s)
- Sujatha M Hanumegowda
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta-577451, Shivamogga, Karnataka, India
| | - Chandramma Srinivasa
- Department of Studies and Research in Biochemistry, Tumkur University-572102, Tumkur, Karnataka, India
| | - Ashwini Shivaiah
- Department of Studies and Research in Biochemistry, Tumkur University-572102, Tumkur, Karnataka, India
| | - Manjula M Venkatappa
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta-577451, Shivamogga, Karnataka, India
| | - Rohith L Shankar
- Department of Seribiotechnology, Yuvaraja's College, University of Mysore-57005, Karnataka, India
| | - Ramesh K Lakshmaiah
- Department of Food Science, Maharani College for Women, University of Mysore-570004, Karnataka, India
| | - Sathisha J Gonchigar
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta-577451, Shivamogga, Karnataka, India
| | - Devaraja Sannaningaiah
- Department of Studies and Research in Biochemistry, Tumkur University-572102, Tumkur, Karnataka, India
| |
Collapse
|
2
|
Chong Tai LI, Ahmed S, Chokshi RR. Ischemic Colitis in a Young Female Following Herbal Supplement Ingestion. Cureus 2023; 15:e45315. [PMID: 37846238 PMCID: PMC10577007 DOI: 10.7759/cureus.45315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
Ischemic colitis is typically considered a disease of the elderly, given their atherosclerotic risk factors and other comorbidities. Ischemic colitis in the younger population is considered very uncommon. We present an interesting case of a young female presenting with abdominal pain and hematochezia found to have ischemic colitis on pathological biopsy results after a colonoscopy. She was an otherwise healthy female with no medical problems prior to her hospitalization but endorsed recent use of a bitter herbal tea to relieve her symptoms. Here, we review potential causes of ischemic colitis, including herbal remedies, which have been linked to causing hypercoagulable and hypotensive states.
Collapse
Affiliation(s)
| | - Syed Ahmed
- Internal Medicine, Broward Health Medical Center, Fort Lauderdale, USA
| | - Rajiv R Chokshi
- Internal Medicine, Broward General Medical Center, Fort Lauderdale, USA
| |
Collapse
|
3
|
Shivaiah A, Srinivsa C, Hanumegowda SM, Kengaiah J, Nandish SKM, Ramachandraiah C, M SS, Thippande Gowda T, R R, Shinde M, Sannaningaiah D. Pennisetum glaucum Protein Extract Protects RBC, Liver, Kidney, Small Intestine from Oxidative Damage and Exhibits Anticoagulant, Antiplatelet Activity. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:211-223. [PMID: 36484782 DOI: 10.1080/07315724.2020.1865217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 06/17/2023]
Abstract
UNLABELLED High level of exogenous ROS in the circulation affects RBC membrane integrity which facilitates the generation of endogenous RBC ROS, implicated in series of physiological changes primarily associated with thrombosis and vital tissue damage. Although, Pennisetum glaucum (pearl millet) stores abundance of proteins, their therapeutic potential is least explored. Thus, the purpose of this study is to examine the role of Pennisetum Glaucum Protein Extract (PGE) on oxidative stress induced cell/tissue damage and thrombosis. In this investigation, protein characterization was done by using SDS-PAGE, Native-PAGE, PAS-staining and HPLC. In-vitro oxidative stress was induced in RBC using sodium nitrite. While, in-vivo oxidative stress was induced in experimental rats using diclofenac. Stress markers and biochemical parameters were evaluated. Role of PGE on thrombosis was assessed by using, in-vitro plasma recalcification time, activated partial thromboplastin time, prothrombin time, mouse tail bleeding time (In-vivo) and platelet aggregation. PGE revealed varied range of molecular weight proteins on SDS-PAGE. PGE normalized the sodium nitrite induced oxidative damage of RBC and diclofenac induced oxidative damage in liver, kidney and small intestine. PGE exhibited anticoagulant effect by increasing the coagulation time of both PRP and PPP and mouse tail bleeding time. Furthermore, PGE prolonged the clotting time of only APTT but did not affect PT. PGE inhibited agonists ADP and epinephrine induced platelet aggregation. Our findings suggest, PGE could be a better contender in the management of oxidative stress and its associated diseases. ABBREVIATIONS PGEPennisetum Glaucum protein ExtractAPPTActivated Partial Thromboplastin TimePTProthrombin TimeROSReactive Oxygen SpeciesPRPPlatelet Rich PlasmaPPPPlatelet Poor PlasmaSDS-PAGESodium Dodecyl Sulfate-Polyacrylamide Gel ElectrophoresisPASPeriodic Acid-schiff StainingODOptical DensityINRInternational Normalized RatioPBSPhosphate Buffered SalineSODSuperoxide DismutaseTCATrichloro Acetatic AcidDTNBDi-Thio-bis-NitroBenzoic acidSGOTSerum Glutamate Oxaloacetate TransaminaseSGPTSerum Glutamate Pyruvate TransaminaseALPAlkaline PhosphataseDFCDiclofenacSylSilymarinMEDMinimum Edema DoseMHDMinimum Hemorrhagic Dose.
Collapse
Affiliation(s)
- Ashwini Shivaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Chandramma Srinivsa
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Sujatha M Hanumegowda
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta, Shivamogga, India
| | - Jayanna Kengaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Sharath Kumar M Nandish
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Chethana Ramachandraiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Sebastin Santosh M
- Department of Medicinal Biochemistry and Microbiology (IMBM), Uppsala Biomedical Centre, Uppsala, Sweden
| | - Thippeswamy Thippande Gowda
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Rajesh R
- Liveon Biolabs Private Limited, Tumkur, India
| | - Manohar Shinde
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Devaraja Sannaningaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| |
Collapse
|
4
|
Tafazoli A. Cancer procoagulant inhibitors: New drugs for an old target. J Oncol Pharm Pract 2022; 28:695-697. [PMID: 35040384 DOI: 10.1177/10781552211073606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ali Tafazoli
- Clinical Pharmacy Department, School of Pharmacy, 556492Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
5
|
Gonchigar S, Sannaningaiah D, Hanumegowda S, Srinivasa C, Shivaiah A, Venkatappa M, Hanumanthappa R, Rangappa R, Laxmaiah R. Protein extract of kenaf seed exhibits anticoagulant, antiplatelet and antioxidant activities. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Singh RS, Singh A, Kaur H, Batra G, Sarma P, Kaur H, Bhattacharyya A, Sharma AR, Kumar S, Upadhyay S, Tiwari V, Avti P, Prakash A, Medhi B. Promising traditional Indian medicinal plants for the management of novel Coronavirus disease: A systematic review. Phytother Res 2021; 35:4456-4484. [PMID: 34132429 PMCID: PMC8441711 DOI: 10.1002/ptr.7150] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Traditional Indian medical practices (Ayurveda, Siddha, Unani, and homeopathy) are a vast reservoir of knowledge about medicinal plants. The promising pharmacological properties of these plants have paved the way for developing therapy against novel Coronavirus (CoV) infection. The current review will summarize published works of literature on the effects of traditional Indian medicinal plants against acute respiratory infection (COVID‐19, SARS, Influenza, and Respiratory syncytial virus infection) and registered clinical trials of traditional Indian herbal medicines in COVID‐19. The current study aims to comprehensively evaluate the data of traditional Indian medicinal plants to warrant their use in COVID‐19 management. PubMed, Embase, and Cochrane databases were searched along with different clinical trial databases. A total of 22 relevant traditional Indian medicinal plants (35 relevant studies) were included in the current study having potential antiviral properties against virus‐induced respiratory illness along with promising immunomodulatory and thrombolytic properties. Further, 36 randomized and nonrandomized registered clinical trials were also included that were aimed at evaluating the efficacy of herbal plants or their formulations in COVID‐19 management. The antiviral, immunomodulatory, and thrombolytic activities of the traditional Indian medicinal plants laid down a strong rationale for their use in developing therapies against SARS‐CoV‐2 infection. The study identified some important potential traditional Indian medicinal herbs such as Ocimum tenuiflorum, Tinospora cordifolia, Achyranthes bidentata, Cinnamomum cassia, Cydonia oblonga, Embelin ribes, Justicia adhatoda, Momordica charantia, Withania somnifera, Zingiber officinale, Camphor, and Kabusura kudineer, which could be used in therapeutic strategies against SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpinder Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sujata Upadhyay
- Department of Physilogy, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University Campus, Varanasi, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Purification and characterization of non-enzymatic glycoprotein (NEGp) from flax seed buffer extract that exhibits anticoagulant and antiplatelet activity. Int J Biol Macromol 2020; 163:317-326. [PMID: 32629053 DOI: 10.1016/j.ijbiomac.2020.06.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022]
Abstract
The current study deals with the purification and characterization of non-enzymatic glycoprotein (NEGp) from flax seed buffer extract. Sephadex G-100 and DEAE-A25 column chromatography techniques were employed to isolate NEGp. NEGp showed single sharp band at 29 kDa region on 10% SDS-PAGE, and under reduced and non-reduced conditions revealed its monomeric nature. Besides, NEGp taken up the PAS stain at 29 kDa region reveals the presence of carbohydrate moiety. Purity of NEGp was adjudged by RP-HPLC, as it revealed a single sharp peak at the retention time of 3.4 min. The exact molecular mass of NEGp was found to be 26 kDa which was confirmed by MALDI-TOF. Circular di-chromism spectra of NEGp showed 12.0% α-helix, 24.3% α-helix turn and 63.7% random coils without beta pleated sheets. NEGp was found to exhibit anticoagulant activity by extending clotting time of both platelet rich plasma and platelet poor plasma from control 240 s to 1800 s and 280 s to 2100 s respectively at the concentration of 8 μg. NEGp inhibited the agonists such as ADP, epinephrine and arachidonic acid induced platelet aggregation in washed platelets. The percentage of inhibition was found to be 70%, 80% and 60% respectively. While, it did not interfere in thrombin, PAF and collagen induced platelet aggregation. NEGp did not hydrolyse RBC membrane, devoid of haemorrhagic and edema inducing properties in experimental mice.
Collapse
|
8
|
Nandish SKM, Kengaiah J, Ramachandraiah C, Chandramma, Shivaiah A, Santhosh SM, Thirunavukkarasu, Sannaningaiah D. Flaxseed Cysteine Protease Exhibits Strong Anticoagulant, Antiplatelet, and Clot-Dissolving Properties. BIOCHEMISTRY (MOSCOW) 2020; 85:1113-1126. [PMID: 33050855 DOI: 10.1134/s0006297920090102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we purified and characterized flaxseed cysteine protease (FSCP) with strong anticoagulant, antiplatelet, and clot-dissolving properties. The enzyme was purified to homogeneity by a combination of gel permeation and ion-exchange column chromatography techniques. The purity of the enzyme was evaluated by SDS-PAGE, RP-HPLC, and MALDI-TOF. FSCP was observed as a single band of approximately 160 kDa in SDS-PAGE under reducing and non-reducing conditions. The exact molecular mass of FSCP was found to be 168 kDa by MALDI-TOF spectrometry. The CD spectra of FSCP revealed the presence of 25.6% helices, 25.8% turns, and 48% random coils with no beta-sheet structures. FSCP hydrolyzed both casein and gelatin with a specific activity of 3.5 and 4.2 unit/mg min respectively. The proteolytic activity of FSCP was completely abolished by iodoacetic acid (IAA), suggesting FSCP is a cysteine protease. The pH optimum for the proteolytic activity of FSCP was pH 6.0; the temperature optimum was 30°C. FSCP exhibited strong anticoagulant effect in both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) by extending the clotting time from 222 to 1100 s and from 256 to 1210 s, respectively. FSCP degraded human fibrinogen and fibrin clots. The products of fibrinogen degradation by thrombin and FSCP were different. Furthermore, FSCP inhibited aggregation of washed platelets triggered by ADP, epinephrine, thrombin, collagen, arachidonic acid, and platelet activating factor (PAF). FSCP was found to be nontoxic as it did not damage the membrane of red blood cells (RBCs) and did not induce hemorrhage and edema in experimental mice.
Collapse
Affiliation(s)
- S K M Nandish
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - J Kengaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Ch Ramachandraiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Chandramma
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - A Shivaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - S M Santhosh
- Department of Medicinal Biochemistry and Microbiology (IMBM), Uppsala Biomedical Centre, Uppsala, 75237, Sweden
| | - Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, Tamil Nadu, 605014, India
| | - D Sannaningaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
9
|
Gogoi D, Jha S, Chattopadhyay P, Mukherjee AK. A simple, cost‐effective, and rapid separation process for the isolation of anticoagulant active fraction from the fruit extract of
Momordica charantia
: Characterization of bioactive components and anticoagulant mechanism of active fraction in a mouse model. J Sep Sci 2020; 43:3902-3912. [DOI: 10.1002/jssc.202000452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Debananda Gogoi
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology, School of Sciences Tezpur University Tezpur Assam India
| | - Shambhavi Jha
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology, School of Sciences Tezpur University Tezpur Assam India
| | | | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology, School of Sciences Tezpur University Tezpur Assam India
| |
Collapse
|
10
|
Bharadwaj SS, Poojary B, Nandish SKM, Kengaiah J, Kirana MP, Shankar MK, Das AJ, Kulal A, Sannaningaiah D. Efficient Synthesis and in Silico Studies of the Benzimidazole Hybrid Scaffold with the Quinolinyloxadiazole Skeleton with Potential α-Glucosidase Inhibitory, Anticoagulant, and Antiplatelet Activities for Type-II Diabetes Mellitus Management and Treating Thrombotic Disorders. ACS OMEGA 2018; 3:12562-12574. [PMID: 30411010 PMCID: PMC6217529 DOI: 10.1021/acsomega.8b01476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 06/03/2023]
Abstract
The current study evaluates antidiabetic, anticoagulant, and antiplatelet activity of novel benzimidazole-containing quinolinyl oxadiazoles. These derivatives are synthesized and characterized using spectroscopy (FT-IR, 1H NMR, and mass spectroscopy) and single-crystal X-ray diffraction methods. The inhibitory effects of these compounds were evaluated by the α-glucosidase inhibitory assay and shows the activity in the range of IC50 = 0.66 ± 0.05 to 3.79 ± 0.46 μg/mL. In addition, molecular docking studies revealed that benzimidazole-containing quinolinyl oxadiazoles can correctly dock into the target receptor protein of the human intestinal α-glucosidase, while their bioavailability/drug-likeness was predicted to be acceptable but requires further optimization. On the other hand, compound 8a and 8d showed anticoagulant activity as they enhanced the clotting time from control 180-410 and 180-390 s, respectively, in platelet rich plasma and 230-460 and 230-545 s in platelet poor plasma. Furthermore, only 8a showed antiplatelet activity by inhibiting epinephrine-induced platelet aggregation, and the observed aggregation inhibition was found to be 93.4%. Compounds 8a-f show nontoxic properties because of the non-hydrolyzing properties in the RBC cells. In addition, 8a and 8d show anti-edema and anti-hemorrhagic properties in the experimental mice. These findings reveal that benzimidazole-containing quinolinyl oxadiazoles act as α-glucosidase inhibitors to develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic and antithrombotic agents.
Collapse
Affiliation(s)
- S. Shashidhar Bharadwaj
- Department
of Studies in Chemistry and PURSE Lab, Mangalore University, Mangalagangotri 574 199, India
| | - Boja Poojary
- Department
of Studies in Chemistry and PURSE Lab, Mangalore University, Mangalagangotri 574 199, India
| | - Sharath Kumar M. Nandish
- Department
of Studies and Research in Biochemistry and Centre for Bioscience
and Innovation, Tumkur University, Tumkur 572103, India
| | - Jayanna Kengaiah
- Department
of Studies and Research in Biochemistry and Centre for Bioscience
and Innovation, Tumkur University, Tumkur 572103, India
| | - Mugaranja P. Kirana
- Department
of Biological Sciences, Poornaprajna Institute
of Scientific Research, Bengaluru 560080, India
| | - Madan Kumar Shankar
- Department
of Studies in Chemistry and PURSE Lab, Mangalore University, Mangalagangotri 574 199, India
| | - Anupam J. Das
- Department
of Biotechnology, School of Chemical and Biological Sciences, REVA University, Kattigenahalli Campus, Bangalore 560064, Karnataka, India
| | - Ananda Kulal
- Department
of Biological Sciences, Poornaprajna Institute
of Scientific Research, Bengaluru 560080, India
| | - Devaraja Sannaningaiah
- Department
of Studies and Research in Biochemistry and Centre for Bioscience
and Innovation, Tumkur University, Tumkur 572103, India
| |
Collapse
|
11
|
Leite PM, de Freitas AA, Mourão ADOM, Martins MAP, Castilho RO. Warfarin Safety: A Cross-Sectional Study of the Factors Associated with the Consumption of Medicinal Plants in a Brazilian Anticoagulation Clinic. Am J Cardiovasc Drugs 2018; 18:231-243. [PMID: 29476459 DOI: 10.1007/s40256-018-0268-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to analyze factors associated with the consumption of medicinal plants by patients being treated with warfarin in a Brazilian anticoagulation clinic and to study the safety of medicinal plant use in patients on warfarin therapy. METHODS The study was performed as an observational cross-sectional analysis. Study participants were outpatients on long-term warfarin therapy for at least 2 months for atrial fibrillation or prosthetic cardiac valves. Interviews were carried out concerning information about the habits of medicinal herb consumption, and logistic regression analysis was performed to identify factors associated with the consumption of herbs. The scientific names of the medicinal plants were identified to search for information on the effects on the hemostasis of the interactions between the medicinal herbs reported and warfarin. RESULTS The mean age of the 273 patients included was 60.8 years; 58.7% were women. Medicinal plants were used by 67% of the participants. No association between demographic and clinical data and the use of medicinal plants was identified. Patients reported a total of 64 different plants, primarily consumed in the form of tea. The plants were mainly used to treat respiratory tract and central nervous system disorders. About 40% of the plants cited have been reported to potentially interfere with the anticoagulation therapy, principally by potentiating the effects of warfarin, which could, increase the risk of bleeding. CONCLUSION The use of medicinal plants was highly common and widespread in patients receiving warfarin as an anticoagulation therapy. Univariate analysis of variables associated with the consumption of herbs showed no statistically significant difference in the consumption of medicinal plants for any of the sociodemographic and clinical data. The medicinal plants that were reportedly consumed by the patients could affect hemostasis. This study reinforces the need for further studies evaluating the habits of patients consuming medicinal plants and their clinical implications, and will help to design strategies to manage the risks associated with warfarin-herbal interactions.
Collapse
|