1
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Anand T, Reyes AA, Sjoquist MC, Magnotti L, Joseph B. Resuscitating the Endothelial Glycocalyx in Trauma and Hemorrhagic Shock. ANNALS OF SURGERY OPEN 2023; 4:e298. [PMID: 37746602 PMCID: PMC10513357 DOI: 10.1097/as9.0000000000000298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 09/26/2023] Open
Abstract
The endothelium is lined by a protective mesh of proteins and carbohydrates called the endothelial glycocalyx (EG). This layer creates a negatively charged gel-like barrier between the vascular environment and the surface of the endothelial cell. When intact the EG serves multiple functions, including mechanotransduction, cell signaling, regulation of permeability and fluid exchange across the microvasculature, and management of cell-cell interactions. In trauma and/or hemorrhagic shock, the glycocalyx is broken down, resulting in the shedding of its individual components. The shedding of the EG is associated with increased systemic inflammation, microvascular permeability, and flow-induced vasodilation, leading to further physiologic derangements. Animal and human studies have shown that the greater the severity of the injury, the greater the degree of shedding, which is associated with poor patient outcomes. Additional studies have shown that prioritizing certain resuscitation fluids, such as plasma, cryoprecipitate, and whole blood over crystalloid shows improved outcomes in hemorrhaging patients, potentially through a decrease in EG shedding impacting downstream signaling. The purpose of the following paragraphs is to briefly describe the EG, review the impact of EG shedding and hemorrhagic shock, and begin entertaining the notion of directed resuscitation. Directed resuscitation emphasizes transitioning from macroscopic 1:1 resuscitation to efforts that focus on minimizing EG shedding and maximizing its reconstitution.
Collapse
Affiliation(s)
- Tanya Anand
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | | | - Michael C. Sjoquist
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Louis Magnotti
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | - Bellal Joseph
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Barrett L, Curry N, Abu-Hanna J. Experimental Models of Traumatic Injuries: Do They Capture the Coagulopathy and Underlying Endotheliopathy Induced by Human Trauma? Int J Mol Sci 2023; 24:11174. [PMID: 37446351 PMCID: PMC10343021 DOI: 10.3390/ijms241311174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Trauma-induced coagulopathy (TIC) is a major cause of morbidity and mortality in patients with traumatic injury. It describes the spectrum of coagulation abnormalities that occur because of the trauma itself and the body's response to the trauma. These coagulation abnormalities range from hypocoagulability and hyperfibrinolysis, resulting in potentially fatal bleeding, in the early stages of trauma to hypercoagulability, leading to widespread clot formation, in the later stages. Pathological changes in the vascular endothelium and its regulation of haemostasis, a phenomenon known as the endotheliopathy of trauma (EoT), are thought to underlie TIC. Our understanding of EoT and its contribution to TIC remains in its infancy largely due to the scarcity of experimental research. This review discusses the mechanisms employed by the vascular endothelium to regulate haemostasis and their dysregulation following traumatic injury before providing an overview of the available experimental in vitro and in vivo models of trauma and their applicability for the study of the EoT and its contribution to TIC.
Collapse
Affiliation(s)
- Liam Barrett
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK;
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Nicola Curry
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LD, UK
| | - Jeries Abu-Hanna
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| |
Collapse
|
4
|
Matthay ZA, Fields AT, Nunez-Garcia B, Park JJ, Jones C, Leligdowicz A, Hendrickson CM, Callcut RA, Matthay MA, Kornblith LZ. Importance of catecholamine signaling in the development of platelet exhaustion after traumatic injury. J Thromb Haemost 2022; 20:2109-2118. [PMID: 35592998 PMCID: PMC10450647 DOI: 10.1111/jth.15763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Impaired ex vivo platelet aggregation is common in trauma patients. The mechanisms driving these impairments remain incompletely understood, but functional platelet exhaustion due to excessive in vivo activation is implicated. Given platelet adrenoreceptors and known catecholamine surges after injury, impaired ex vivo platelet aggregation in trauma patients may be linked to catecholamine-induced functional platelet exhaustion. OBJECTIVE To determine the relationship of catecholamines with platelet-dependent hemostasis after injury and to model catecholamine-induced functional platelet exhaustion in healthy donor platelets. PATIENTS/METHODS Whole blood was collected from 67 trauma patients as part of a prospective cohort study. Platelet aggregometry and rotational thromboelastometry were performed, and plasma epinephrine (EPI) and norepinephrine (NE) concentrations were measured. The effect of catecholamines on healthy donor platelets was examined in a microfluidic model, with platelet aggregometry, and by flow cytometry examining surface markers of platelet activation. RESULTS In trauma patients, EPI and NE were associated with impaired platelet aggregation (both p < 0.05), and EPI was additionally associated with decreased viscoelastic clot strength, increased fibrinolysis, and mortality (all p < 0.05). In healthy donors, short duration incubation with EPI enhanced platelet aggregation, platelet adhesion under flow, and increased glycoprotein IIb/IIIa activation, while weaker effects were observed with NE. Compared with short incubation, longer incubation with EPI resulted in decreased platelet adhesion, platelet aggregation, and surface expression of glycoprotein IIb/IIIa. CONCLUSIONS These findings suggest sympathoadrenal activation in trauma patients contributes to impaired ex vivo platelet aggregation, which mechanistically may be explained by a functionally exhausted platelet phenotype under prolonged exposure to high plasma catecholamine levels.
Collapse
Affiliation(s)
- Zachary A. Matthay
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California, USA
| | - Alexander T. Fields
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California, USA
| | - Brenda Nunez-Garcia
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California, USA
| | - John J. Park
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California, USA
| | - Chayse Jones
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Aleksandra Leligdowicz
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Carolyn M. Hendrickson
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rachael A. Callcut
- Department of Surgery, University of California, Davis, Sacramento, California, USA
| | - Michael A. Matthay
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lucy Z. Kornblith
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Potential therapeutic role of pharmacological sympathectomy in Martorell ulcer. Postepy Dermatol Alergol 2022; 38:1112-1114. [PMID: 35126024 PMCID: PMC8802976 DOI: 10.5114/ada.2021.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022] Open
|
6
|
Zou Z, Li L, Schäfer N, Huang Q, Maegele M, Gu Z. Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J Neuroinflammation 2021; 18:134. [PMID: 34126995 PMCID: PMC8204552 DOI: 10.1186/s12974-021-02192-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide; more than 10 million people are hospitalized for TBI every year around the globe. While the primary injury remains unavoidable and not accessible to treatment, the secondary injury which includes oxidative stress, inflammation, excitotoxicity, but also complicating coagulation abnormalities, is potentially avoidable and profoundly affects the therapeutic process and prognosis of TBI patients. The endothelial glycocalyx, the first line of defense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. However, this component is highly vulnerable to damage and also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual, and computational investigation of this vascular component. In this review, we summarize the current knowledge on (i) structure and function of the endothelial glycocalyx, (ii) its potential role in the development of TBI associated coagulopathy, and (iii) the options available at present for detecting and protecting the endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhimin Zou
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China
| | - Nadine Schäfer
- Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany
| | - Qiaobing Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Marc Maegele
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany. .,Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany.
| | - Zhengtao Gu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.
| |
Collapse
|
7
|
Savioli G, Ceresa IF, Caneva L, Gerosa S, Ricevuti G. Trauma-Induced Coagulopathy: Overview of an Emerging Medical Problem from Pathophysiology to Outcomes. MEDICINES (BASEL, SWITZERLAND) 2021; 8:16. [PMID: 33805197 PMCID: PMC8064317 DOI: 10.3390/medicines8040016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
Coagulopathy induced by major trauma is common, affecting approximately one-third of patients after trauma. It develops independently of iatrogenic, hypothermic, and dilutive causes (such as iatrogenic cause in case of fluid administration), which instead have a pejorative aspect on coagulopathy. Notwithstanding the continuous research conducted over the past decade on Trauma-Induced Coagulopathy (TIC), it remains a life-threatening condition with a significant impact on trauma mortality. We reviewed the current evidence regarding TIC diagnosis and pathophysiological mechanisms and summarized the different iterations of optimal TIC management strategies among which product resuscitation, potential drug administrations, and hemostatis-focused approaches. We have identified areas of ongoing investigation and controversy in TIC management.
Collapse
Affiliation(s)
- Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, PhD University of Pavia, 27100 Pavia, Italy; (I.F.C.); (S.G.)
| | - Iride Francesca Ceresa
- Emergency Department, IRCCS Policlinico San Matteo, PhD University of Pavia, 27100 Pavia, Italy; (I.F.C.); (S.G.)
| | - Luca Caneva
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sebastiano Gerosa
- Emergency Department, IRCCS Policlinico San Matteo, PhD University of Pavia, 27100 Pavia, Italy; (I.F.C.); (S.G.)
| | - Giovanni Ricevuti
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
- Saint Camillus International University of Health Sciences, 00152 Rome, Italy
| |
Collapse
|
8
|
Duque P, Mora L, Levy JH, Schöchl H. Pathophysiological Response to Trauma-Induced Coagulopathy: A Comprehensive Review. Anesth Analg 2020; 130:654-664. [PMID: 31633501 DOI: 10.1213/ane.0000000000004478] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypercoagulability can occur after severe tissue injury, that is likely related to tissue factor exposure and impaired endothelial release of tissue plasminogen activator (tPA). In contrast, when shock and hypoperfusion occur, activation of the protein C pathway and endothelial tPA release induce a shift from a procoagulant to a hypocoagulable and hyperfibrinolytic state with a high risk of bleeding. Both thrombotic and bleeding phenotypes are associated with increased mortality and are influenced by the extent and severity of tissue injury and degree of hemorrhagic shock. Response to trauma is a complex, dynamic process in which risk can shift from bleeding to thrombosis depending on the injury pattern, hemostatic treatment, individual responses, genetic predisposition, and comorbidities. Based on this body of knowledge, we will review and consider future directions for the management of severely injured trauma patients.
Collapse
Affiliation(s)
- Patricia Duque
- From the Anesthesiology and Critical Care Department, Gregorio Marañon Hospital, Madrid, Spain
| | - Lidia Mora
- Anesthesiology and Critical Care Department, Vall d´Hebron, Hospital, Barcelona, Spain
| | - Jerrold H Levy
- Departments of Anesthesiology and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
9
|
Al-Shafei AI, Musa SM, Rayis DA, Lutfi MF, El-Gendy OA, Adam I. Heart rate variability and hematological parameters in pregnant women. J Clin Lab Anal 2020; 34:e23250. [PMID: 32091186 PMCID: PMC7307359 DOI: 10.1002/jcla.23250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background There are few researches on hematological parameters (hemoglobin, red cell distribution width [RDW], white blood cells [WBCs], mean platelets volume [MPV], and heart rate variability [HRV]). There are no published data on this concept (HRV and hematological parameters) during pregnancy. Methods A cross‐sectional study was conducted at Saad Abul Ela hospital in Khartoum, Sudan during the period of July to August 2018. Pregnant women with singleton, a live baby, were enrolled in this study. Clinical history and examination were performed. HRV (autonomic modulation) was assessed using time and frequency domain HRV indices. Results One hundred and five pregnant women were enrolled. The median (quartile) of the age, parity, and gestational age was 30.0 (25.0‐35.0) years, 1.0 (0‐3.0), and 38.0 (32.0‐39.0) weeks, respectively. While there were positive correlations between hemoglobin and low frequency (LF), RDW and high frequency (HF), WBCs and HF Norm, WBCs and LF/HF, MPV and HF Norm, LF Norm and LF/HF, there was no significant correlation between the hematological (hemoglobin, WBCs, RDW, and MPV) and HRV parameters. Linear regression analysis showed no significant association between age, parity, gestational age, body mass index, hemoglobin, RDW, and HRV variables. The Log10 WBCs were negatively associated with Log10 HF (ms2/Hz). MPV was positively associated with LF Norm and negatively associated with HF Norm. Conclusion The study failed to show significant associations between age, parity, gestational age, hemoglobin, RDW, and HRV variables. The WBCs were negatively associated with HF. MPV was positively associated with LF Norm, and it was negatively associated with HF Norm.
Collapse
Affiliation(s)
- Ahmad I Al-Shafei
- Unaizah College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Shaza M Musa
- Faculty of medicine, Najran University, Saudi Arabia
| | - Duria A Rayis
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed F Lutfi
- College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Ola A El-Gendy
- Unaizah College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Ishag Adam
- College of Medicine, Qassim University, Qassim, Saudi Arabia.,Department of Obstetrics and Gynecology, Unaizah College of Medicine, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
10
|
Gaudette S, Hughes D, Boller M. The endothelial glycocalyx: Structure and function in health and critical illness. J Vet Emerg Crit Care (San Antonio) 2020; 30:117-134. [PMID: 32067360 DOI: 10.1111/vec.12925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To conduct a narrative review of the current literature in reference to the structure and function of the endothelial glycocalyx (EG) and its contribution to the pathophysiology of conditions relevant to the veterinary emergency and critical care clinician. Novel therapies for restoring or preserving the EG will also be discussed. DATA SOURCES Online databases (PubMed, CAB abstracts, Scopus) were searched between January 1st 2017 and May 1st 2017 for English language articles without publication date restriction. Keywords included EG, endothelial surface layer, degradation, syndecan-1, heparan sulfate, critical illness, sepsis, trauma, and therapeutics. DATA SYNTHESIS The EG is a complex and important structure located on the luminal surface of all blood vessels throughout the body. It plays an important role in normal vascular homeostasis including control of fluid exchange across the vascular barrier. Loss or degradation of the EG has an impact on inflammation, coagulation, and vascular permeability and tone. These changes are essential components in the pathophysiology of many conditions including sepsis and trauma. A substantial body of experimental animal and human clinical research over the last decade has demonstrated increased circulating concentrations of EG degradation products in these conditions. However, veterinary-specific research into the EG and critical illness is currently lacking. The utility of EG degradation products as diagnostic and prognostic tools continues to be investigated and new therapies to preserve or improve EG structure and function are under development. CONCLUSIONS The recognition of the presence of the EG has changed our understanding of transvascular fluid flux and the pathophysiology of many conditions of critical illness. The EG is an exciting target for novel therapeutics to improve morbidity and mortality in conditions such as sepsis and trauma.
Collapse
Affiliation(s)
- Sarah Gaudette
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Dez Hughes
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia.,Translational Research and Clinical Trials (TRACTS) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Manuel Boller
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia.,Translational Research and Clinical Trials (TRACTS) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
11
|
Tan K, Harazim M, Tang B, Mclean A, Nalos M. The association between premorbid beta blocker exposure and mortality in sepsis-a systematic review. Crit Care 2019; 23:298. [PMID: 31484576 PMCID: PMC6727531 DOI: 10.1186/s13054-019-2562-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The effect of premorbid β-blocker exposure on clinical outcomes in patients with sepsis is not well characterized. We aimed to examine the association between premorbid β-blocker exposure and mortality in sepsis. METHODS EMBase, MEDLINE, and Cochrane databases were searched for all studies of premorbid β-blocker and sepsis. The search was last updated on 22 June 2019. Two reviewers independently assessed, selected, and abstracted data from studies reporting chronic β-blocker use prior to sepsis and mortality. Main data extracted were premorbid β-blocker exposure, mortality, study design, and patient data. Two reviewers independently assessed the risk of bias and quality of evidence. RESULTS In total, nine studies comprising 56,414 patients with sepsis including 6576 patients with premorbid exposure to β-blockers were eligible. For the primary outcome of mortality, two retrospective studies reported adjusted odds ratios showing a reduction in mortality with premorbid β-blocker exposure. One study showed that premorbid β-blocker exposure decreases mortality in patients with septic shock. Another study showed that continued β-blockade during sepsis is associated with decreased mortality. CONCLUSION This systematic review suggests that β-blocker exposure prior to sepsis is associated with reduced mortality. There was insufficient data to conduct a bona fide meta-analysis. Whether the apparent reduction in mortality may be attributed to the mitigation of catecholamine excess is unclear. TRIAL REGISTRATION PROSPERO, CRD42019130558 registered June 12, 2019.
Collapse
Affiliation(s)
- Kaiquan Tan
- Nepean Clinical School, Sydney Medical School, University of Sydney, Penrith, Australia
| | - Martin Harazim
- Medical Intensive Care Unit, Teaching Hospital and Biomedical Centre, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Benjamin Tang
- Nepean Clinical School, Sydney Medical School, University of Sydney, Penrith, Australia
- Centre for Immunology and Allergy Research, Westmead Millennium Institute, Westmead, Australia
| | - Anthony Mclean
- Nepean Clinical School, Sydney Medical School, University of Sydney, Penrith, Australia
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, Australia
| | - Marek Nalos
- Nepean Clinical School, Sydney Medical School, University of Sydney, Penrith, Australia.
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, Australia.
- Medical Intensive Care Unit, Teaching Hospital and Biomedical Centre, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic.
| |
Collapse
|
12
|
Luo X, Gao H, Yu X, Jiang Z, Yang W. Spectral analysis of heart rate variability for trauma outcome prediction: an analysis of 210 ICU multiple trauma patients. Eur J Trauma Emerg Surg 2019; 47:153-160. [PMID: 31209555 DOI: 10.1007/s00068-019-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE This study aimed to test and compare short-term spectral HRV indices with most used trauma scorings in outcome prediction of multiple trauma, and then to explore the efficacy of their combined application. METHODS A prospective study was conducted for patients with blunt multiple trauma admitted to an emergency intensive care unit (ICU) between January 2016 and December 2017. Short-term spectral HRV indices on admission were measured, including normalized low-frequency power (nLF), normalized high-frequency power (nHF), and the nLF/nHF ratio. Injury severity score (ISS), new injury severity score (NISS), and revised trauma score (RTS) were evaluated for each patient, as well as probability of survival (Ps) by trauma and injury severity score (TRISS) model. The primary outcome was 30-day mortality and secondary outcomes were incidence of multiple organ dysfunction syndrome (MODS) and length of ICU stay. RESULTS Two hundred and ten patients were recruited. The nLF/nHF ratio, RTS, and Ps(TRISS) were independent predictors of 30-day mortality, while nLF/nHF, NISS and RTS were independent predictors of MODS. The area under the receiver operating characteristic (ROC) curve (AUC) of nLF/nHF for 30-day mortality prediction was 0.924, comparable to RTS (0.951) and Ps(TRISS) (0.892). AUC of nLF/nHF-RTS combination was 0.979, significantly greater than that of each alone. Combination of nLF/nHF and Ps(TRISS) showed an increased AUC (0.984) compared to each of them. The nLF/nHF ratio presented a similar AUC (0.826) to NISS (0.818) or RTS (0.850) for MODS prediction. AUC of nLF/nHF-RTS combination was 0.884, significantly greater than that of nLF/nHF. Combination of nLF/nHF and NISS showed a greater AUC (0.868) than each alone. The nLF/nHF ratio, NISS, RTS, and Ps(TRISS) were correlated with length of ICU stay for survivors, with correlation coefficients 0.476, 0.617, - 0.588, and - 0.539. CONCLUSIONS These findings suggest that the short-term spectral analysis of HRV might be a potential early tool to assess injury severity and predict outcome of multiple trauma. Combination of nLF/nHF and conventional trauma scores can provide more accuracy in outcome prediction of multiple trauma.
Collapse
Affiliation(s)
- Xiaomin Luo
- Department of Emergency, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Haijun Gao
- Department of Emergency, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xingxia Yu
- Department of Emergency, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zongping Jiang
- Department of Emergency, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Weize Yang
- Department of Emergency, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| |
Collapse
|
13
|
β-Blockade use for Traumatic Injuries and Immunomodulation: A Review of Proposed Mechanisms and Clinical Evidence. Shock 2018; 46:341-51. [PMID: 27172161 DOI: 10.1097/shk.0000000000000636] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic nervous system activation and catecholamine release are important events following injury and infection. The nature and timing of different pathophysiologic insults have significant effects on adrenergic pathways, inflammatory mediators, and the host response. Beta adrenergic receptor blockers (β-blockers) are commonly used for treatment of cardiovascular disease, and recent data suggests that the metabolic and immunomodulatory effects of β-blockers can expand their use. β-blocker therapy can reduce sympathetic activation and hypermetabolism as well as modify glucose homeostasis and cytokine expression. It is the purpose of this review to examine either the biologic basis for proposed mechanisms or to describe current available clinical evidence for the use of β-blockers in traumatic brain injury, spinal cord injury, hemorrhagic shock, acute traumatic coagulopathy, erythropoietic dysfunction, metabolic dysfunction, pulmonary dysfunction, burns, immunomodulation, and sepsis.
Collapse
|
14
|
Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury. Shock 2018; 46:96-103. [PMID: 27206278 PMCID: PMC4978599 DOI: 10.1097/shk.0000000000000642] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Acute coagulopathy after traumatic brain injury (TBI) involves a complex multifactorial hemostatic response that is poorly characterized. Objectives: To examine early posttraumatic alterations in coagulofibrinolytic, endothelial, and inflammatory blood biomarkers in relation to sympathetic nervous system (SNS) activation and 6-month patient outcomes, using multivariate partial least-squares (PLS) analysis. Patients and Methods: A multicenter observational study of 159 adult isolated TBI patients admitted to the emergency department at an urban level I trauma center, was performed. Plasma concentrations of 6 coagulofibrinolytic, 10 vascular endothelial, 19 inflammatory, and 2 catecholamine biomarkers were measured by immunoassay on admission and 24 h postinjury. Neurological outcome at 6 months was assessed using the Extended Glasgow Outcome Scale. PLS-discriminant analysis was used to identify salient biomarker contributions to unfavorable outcome, whereas PLS regression analysis was used to evaluate the covariance between SNS correlates (catecholamines) and biomarkers of coagulopathy, endotheliopathy, and inflammation. Results: Biomarker profiles in patients with an unfavorable outcome displayed procoagulation, hyperfibrinolysis, glycocalyx and endothelial damage, vasculature activation, and inflammation. A strong covariant relationship was evident between catecholamines and biomarkers of coagulopathy, endotheliopathy, and inflammation at both admission and 24 h postinjury. Conclusions: Biomarkers of coagulopathy and endotheliopathy are associated with poor outcome after TBI. Catecholamine levels were highly correlated with endotheliopathy and coagulopathy markers within the first 24 h after injury. Further research is warranted to characterize the pathogenic role of SNS-mediated hemostatic alterations in isolated TBI.
Collapse
|
15
|
Giordano S, Spiezia L, Campello E, Simioni P. The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology. Intern Emerg Med 2017; 12:981-991. [PMID: 28477287 DOI: 10.1007/s11739-017-1674-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
The emergency management of acute severe bleeding in trauma patients has changed significantly in recent years. In particular, greater attention is now being devoted to a prompt assessment of coagulation alterations, which allows for immediate haemostatic resuscitation procedures when necessary. The importance of an early trauma-induced coagulopathy (TIC) diagnosis has led physicians to increase the efforts to better understand the pathophysiological alterations observed in the haemostatic system after traumatic injuries. As yet, the knowledge of TIC is not exhaustive, and further studies are needed. The aim of this review is to gather all the currently available data and information in an attempt to gain a better understanding of TIC. A comprehensive literature search was performed using MEDLINE database. The bibliographies of relevant articles were screened for additional publications. In major traumas, coagulopathic bleeding stems from a complex interplay among haemostatic and inflammatory systems, and is characterized by a multifactorial dysfunction. In the abundance of biochemical and pathophysiological changes occurring after trauma, it is possible to discern endogenously induced primary predisposing conditions and exogenously induced secondary predisposing conditions. TIC remains one of the most diagnostically and therapeutically challenging condition.
Collapse
Affiliation(s)
- Stefano Giordano
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.
| | - Luca Spiezia
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Elena Campello
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Paolo Simioni
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
16
|
Cerny V, Astapenko D, Brettner F, Benes J, Hyspler R, Lehmann C, Zadak Z. Targeting the endothelial glycocalyx in acute critical illness as a challenge for clinical and laboratory medicine. Crit Rev Clin Lab Sci 2017; 54:343-357. [PMID: 28958185 DOI: 10.1080/10408363.2017.1379943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this manuscript is to review the role of endothelial glycocalyx (EG) in the field of critical and perioperative medicine and to discuss possible future directions for investigations in this area. Under physiological conditions, EG has several well-defined functions aimed to prevent the disruption of vessel wall integrity. Under pathological conditions, the EG represent one of the earliest sites of injury during inflammation. EG structure and function distortion contribute to organ dysfunction related to sepsis, trauma, or global ischemia of any origin. Discovering new therapeutic approaches (either pharmacological or non-pharmacological) aimed to protect the EG against injury represents a promising direction in clinical medicine. Further, the currently-used common interventions in the acutely ill - fluids, blood products, nutritional support, organ-supporting techniques (e.g. continuous renal replacement therapy, extracorporeal circulation), temperature modulation and many others - should be re-evaluated during acute illness in terms of their EG "friendliness". To assess new therapies that protect the EG, or to evaluate the effect of currently-used interventions on EG integrity, a relevant marker or method to determine EG damage is needed. Such marker or method should be available to clinicians within hours, preferably in the form of a point-of-care test at the bedside. Collaborative research between clinical disciplines and laboratory medicine is warranted, and targeting the EG represents major challenges for both.
Collapse
Affiliation(s)
- Vladimir Cerny
- a Department of Anaesthesiology, Perioperative Medicine and Intensive Care , JE Purkinje University, Masaryk Hospital , Usti nad Labem , Czech Republic.,b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic.,c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada
| | - David Astapenko
- c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic
| | - Florian Brettner
- e Department of Anaesthesiology , University Hospital of Munich, Ludwig-Maximilians University , Munich , Germany
| | - Jan Benes
- f Department of Anaesthesiology and Intensive Care Medicine , Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic.,g Biomedical Centre, Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic
| | - Radomir Hyspler
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| | - Christian Lehmann
- d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada.,h Department of Microbiology and Immunology , Dalhousie University , Halifax , Canada.,i Department of Pharmacology , Dalhousie University , Halifax , Canada
| | - Zdenek Zadak
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| |
Collapse
|
17
|
Li T, Liu X, Zhao Z, Ni L, Liu C. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model. Oncotarget 2017; 8:91350-91361. [PMID: 29207649 PMCID: PMC5710929 DOI: 10.18632/oncotarget.20518] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
Disruption of endothelial cell function is a principle event in cardiovascular disease. Accordingly, therapies have mostly focused on repairing the endothelium, but little attention has been paid to the reconstruction of glycocalyx, which covers the endothelium and protects the function of endothelial cells. Sulodexide has a similar glycosaminoglycan structure to glycocalyx, so it is assumed to be effective in remodeling the glycocalyx following damage. We assessed the effect of sulodexide on glycocalyx remodeling and endothelial function in the balloon-injury rat carotid artery model. Electron micrographs showed that sulodexide (2mg/kg, administered by intraperitoneal injection for seven days after injury) could reconstruct the endothelial glycocalyx and recover the clear cytoarchitecture. With regard to endothelial function, sulodexide increased endothelial nitric oxide synthase level, attenuated endothelial hyperplasia, and inhibited platelet aggregation that benefitted from glycocalyx reforming. Sulodexide decreased the glycocalyx damage related expression of CD31 and intercellular cell adhesion molecule-1 in endothelium, accompanying by the downregulation of leukocyte counts and C-reactive protein levels. The levels of the atherosclerosis-related factors, osteopontin and vascular cell adhesion molecule-1, which increased in activated endothelial cells lacking glycocalyx, were normalized by sulodexide. Along with the benefit of glycocalyx reconstruction, sulodexide reversed the dyslipidemia. Moreover, sulodexide prevented CD68-positive inflammatory cells infiltration into the vascular wall, presumably as a result of glycocalyx reconstruction. In summary, sulodexide treatment reconstructed glycocalyx which therefore preserved endothelial function and attenuated the expression of inflammatory factors, and decreased the blood coagulation and lipid metabolism, all of which are important for vascular healing.
Collapse
Affiliation(s)
- Tianjia Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xinnong Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhewei Zhao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
18
|
Activation of the protein C pathway and endothelial glycocalyx shedding is associated with coagulopathy in an ovine model of trauma and hemorrhage. J Trauma Acute Care Surg 2017; 81:674-84. [PMID: 27488493 DOI: 10.1097/ta.0000000000001190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Acute traumatic coagulopathy (ATC) is an endogenous coagulopathy that develops following tissue injury and shock. The pathogenesis of ATC remains poorly understood, with platelet dysfunction, activation of the protein C pathway, and endothelial glycocalyx shedding all hypothesized to contribute to onset. The primary aim of this study was to develop an ovine model of traumatic coagulopathy, with a secondary aim of assessing proposed pathophysiological mechanisms within this model. METHODS Twelve adult Samm-Border Leicester cross ewes were anesthetized, instrumented, and divided into three groups. The moderate trauma group (n = 4) underwent 20% blood volume hemorrhage, bilateral tibial fractures, and pulmonary contusions. The severe trauma group (n = 4) underwent the same injuries, an additional hamstring crush injury, and 30% blood volume hemorrhage. The remaining animals (n = 4) were uninjured controls. Blood samples were collected at baseline and regularly after injury for evaluation of routine hematology, arterial blood gases, coagulation and platelet function, and factor V, factor VIII, plasminogen activator inhibitor 1, syndecan 1, and hyaluranon levels. RESULTS At 4 hours after injury, a mean increase in international normalized ratio of 20.50% ± 12.16% was evident in the severe trauma group and 22.50% ± 1.00% in the moderate trauma group. An increase in activated partial thromboplastin time was evident in both groups, with a mean of 34.25 ± 1.71 seconds evident at 2 hours in the severe trauma animals and 34.75 ± 2.50 seconds evident at 4 hours in the moderate trauma animals. This was accompanied by a reduction in ROTEM EXTEM A10 in the severe trauma group to 40.75 ± 8.42 mm at 3 hours after injury. Arterial lactate and indices of coagulation function were significantly correlated (R = -0.86, p < 0.0001). Coagulopathy was also correlated with activation of the protein C pathway and endothelial glycocalyx shedding. While a significant reduction in platelet count was evident in the severe trauma group at 30 minutes after injury (p = 0.018), there was no evidence of altered platelet function on induced aggregation testing. Significant fibrinolysis was not evident. CONCLUSIONS Animals in the severe trauma group developed coagulation changes consistent with current definitions of ATC. The degree of coagulopathy was correlated with the degree of shock, quantified by arterial lactate. Activation of the protein C pathway and endothelial glycocalyx shedding were correlated with the development of coagulopathy; however, altered platelet function was not evident in this model.
Collapse
|
19
|
Maegele M, Gu ZT, Huang QB, Yang H. Updated concepts on the pathophysiology and the clinical management of trauma hemorrhage and coagulopathy. Chin J Traumatol 2017; 20:125-132. [PMID: 28552329 PMCID: PMC5473714 DOI: 10.1016/j.cjtee.2017.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 02/04/2023] Open
Abstract
Uncontrolled hemorrhage and subsequent trauma-induced coagulopathy (TIC) are still the principle causes for preventable death after trauma and early detection and aggressive management have been associated with reduced mortality. Despite increasing knowledge about trauma resuscitation, best practice to treat this newly defined entity is still under debate. A synopsis of best current knowledge with reference to the updated European trauma guideline on the management of severe trauma hemorrhage and TIC is presented. The implementation of evidence-based local protocols and algorithms including clinical quality and safety management systems together with parameters to assess key measures of bleeding control and outcome is advocated.
Collapse
Affiliation(s)
- Marc Maegele
- Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr 200, D-51109 Köln, Germany,Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr 200, D-51109 Köln, Germany,Corresponding author. Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr 200, D-51109 Köln, Germany. Fax: +49 (0)221 89 07 30 85.Department for Trauma and Orthopedic SurgeryCologne-Merheim Medical Center (CMMC)University Witten/Herdecke (UW/H)Campus Cologne-Merheim, Ostmerheimerstr 200KölnD-51109Germany
| | - Zheng-Tao Gu
- Department of Intensive Care, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qiao-Bing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, PR China
| | - Hong Yang
- Department of Intensive Care, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
20
|
Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:25. [PMID: 28179016 PMCID: PMC5299749 DOI: 10.1186/s13054-017-1605-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One quarter of patients suffering from acute critical illness such as severe trauma, sepsis, myocardial infarction (MI) or post cardiac arrest syndrome (PCAS) develop severe hemostatic aberrations and coagulopathy, which are associated with excess mortality. Despite the different types of injurious “hit”, acutely critically ill patients share several phenotypic features that may be driven by the shock. This response, mounted by the body to various life-threatening conditions, is relatively homogenous and most likely evolutionarily adapted. We propose that shock-induced sympatho-adrenal hyperactivation is a critical driver of endothelial cell and glycocalyx damage (endotheliopathy) in acute critical illness, with the overall aim of ensuring organ perfusion through an injured microvasculature. We have investigated more than 3000 patients suffering from different types of acute critical illness (severe trauma, sepsis, MI and PCAS) and have found a potential unifying pathologic link between sympatho-adrenal hyperactivation, endotheliopathy, and poor outcome. We entitled this proposed disease entity, shock-induced endotheliopathy (SHINE). Here we review the literature and discuss the pathophysiology of SHINE.
Collapse
Affiliation(s)
- Pär Ingemar Johansson
- Capital Region Blood Bank, Rigshospitalet Section for Transfusion Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, 9DK-2100, Copenhagen, Denmark. .,Department of Surgery, University of Texas Health Medical School, Houston, TX, USA. .,Centre for Systems Biology, The School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland.
| | - Jakob Stensballe
- Capital Region Blood Bank, Rigshospitalet Section for Transfusion Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, 9DK-2100, Copenhagen, Denmark.,Department of Anesthesia, Centre of Head and Orthopedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Capital Region Blood Bank, Rigshospitalet Section for Transfusion Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, 9DK-2100, Copenhagen, Denmark
| |
Collapse
|
21
|
Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, Cotton BA, Holcomb JB, Wade CE, Johansson PI. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma. J Trauma Acute Care Surg 2017; 82:293-301. [DOI: 10.1097/ta.0000000000001304] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Aeschbacher S, Schoen T, Dörig L, Kreuzmann R, Neuhauser C, Schmidt-Trucksäss A, Probst-Hensch NM, Risch M, Risch L, Conen D. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann Med 2017; 49:32-41. [PMID: 27534940 DOI: 10.1080/07853890.2016.1226512] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Heart rate (HR), heart rate variability (HRV), and inflammation are all associated with cardiovascular morbidity and mortality. The aim of this study was to assess potential interrelationships between these parameters in a young and healthy population. METHODS Healthy individuals aged 25-41 years were included in a prospective population-based study. All participants underwent 24-h electrocardiography using a validated device. The standard deviation of all normal RR intervals (SDNN) was pre-defined as the main HRV outcome variable. High-sensitivity C-reactive protein (hs-CRP), total leukocyte (LC) count and LC subtypes were obtained from venous blood samples. RESULTS A total of 2064 participants (47% men, 37 years) were included in this analysis. In multivariable linear regression analyses using SDNN as the outcome variable, β-coefficients (95% confidence intervals) per 1 standard deviation (SD) increase on the log-scale were -0.11 (-0.16; -0.07), p < .0001 for hs-CRP, -0.13 (-0.17; -0.09), p < .0001 for total LC count, -0.12 (-0.16; -0.08), p < .0001 for neutrophils, -0.04 (-0.09; 0.00), p = .05 for lymphocytes and -0.08 (-0.09; -0.02), p = .005 for monocytes. There were positive relationships between resting and ambulatory HR and inflammatory biomarkers, except for lymphocytes. CONCLUSION In this large cohort of young and healthy adults, inflammatory parameters were strongly associated with increased HR and decreased HRV, suggesting an important interaction between inflammatory pathways and the autonomic nervous system. Key message Inflammatory biomarkers, such as high-sensitivity C-reactive protein and leukocyte cell count with its subtypes were inversely associated with HRV and positively associated with HR. Our findings suggest important interrelationships between inflammatory pathways and the ANS.
Collapse
Affiliation(s)
- Stefanie Aeschbacher
- a Division of Internal Medicine, Department of Medicine , University Hospital Basel , Basel , Switzerland.,b Cardiovascular Research Institute Basel (CRIB), University Hospital Basel , Basel , Switzerland
| | - Tobias Schoen
- b Cardiovascular Research Institute Basel (CRIB), University Hospital Basel , Basel , Switzerland.,c Cardiology Division, University Hospital Basel , Basel , Switzerland
| | - Laura Dörig
- a Division of Internal Medicine, Department of Medicine , University Hospital Basel , Basel , Switzerland.,b Cardiovascular Research Institute Basel (CRIB), University Hospital Basel , Basel , Switzerland
| | - Rahel Kreuzmann
- a Division of Internal Medicine, Department of Medicine , University Hospital Basel , Basel , Switzerland.,b Cardiovascular Research Institute Basel (CRIB), University Hospital Basel , Basel , Switzerland
| | - Charlotte Neuhauser
- b Cardiovascular Research Institute Basel (CRIB), University Hospital Basel , Basel , Switzerland
| | - Arno Schmidt-Trucksäss
- d Department of Sport, Exercise and Health, Division Sports and Exercise Medicine , University of Basel , Basel , Switzerland
| | - Nicole M Probst-Hensch
- e Swiss Tropical and Public Health Institute , Basel , Switzerland.,f Epidemiology and Public Health, University Basel , Basel , Switzerland
| | - Martin Risch
- g Labormedizinisches Zentrum Dr Risch, Schaan, Principality of Liechtenstein.,h Division of Laboratory Medicine , Kantonsspital Graubünden , Chur , Switzerland
| | - Lorenz Risch
- g Labormedizinisches Zentrum Dr Risch, Schaan, Principality of Liechtenstein.,i Division of Clinical Biochemistry , Medical University , Innsbruck , Austria.,j Private University , Triesen , Principality of Liechtenstein
| | - David Conen
- a Division of Internal Medicine, Department of Medicine , University Hospital Basel , Basel , Switzerland.,b Cardiovascular Research Institute Basel (CRIB), University Hospital Basel , Basel , Switzerland
| |
Collapse
|
23
|
Advances in the understanding of trauma-induced coagulopathy. Blood 2016; 128:1043-9. [PMID: 27381903 DOI: 10.1182/blood-2016-01-636423] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023] Open
Abstract
Ten percent of deaths worldwide are due to trauma, and it is the third most common cause of death in the United States. Despite a profound upregulation in procoagulant mechanisms, one-quarter of trauma patients present with laboratory-based evidence of trauma-induced coagulopathy (TIC), which is associated with poorer outcomes including increased mortality. The most common causes of death after trauma are hemorrhage and traumatic brain injury (TBI). The management of TIC has significant implications in both because many hemorrhagic deaths could be preventable, and TIC is associated with progression of intracranial injury after TBI. This review covers the most recent evidence and advances in our understanding of TIC, including the role of platelet dysfunction, endothelial activation, and fibrinolysis. Trauma induces a plethora of biochemical and physiologic changes, and despite numerous studies reporting differences in coagulation parameters between trauma patients and uninjured controls, it is unclear whether some of these differences may be "normal" after trauma. Comparisons between trauma patients with differing outcomes and use of animal studies have shed some light on this issue, but much of the data continue to be correlative with causative links lacking. In particular, there are little data linking the laboratory-based abnormalities with true clinically evident coagulopathic bleeding. For these reasons, TIC continues to be a significant diagnostic and therapeutic challenge.
Collapse
|
24
|
Callum JL, Nascimento B, Alam A. Massive haemorrhage protocol: what's the best protocol? ACTA ACUST UNITED AC 2016. [DOI: 10.1111/voxs.12181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J. L. Callum
- Department of Clinical Pathology; Sunnybrook Health Sciences Centre; University of Toronto; Toronto ON Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto ON Canada
| | - B. Nascimento
- Department of Surgery; Sunnybrook Health Sciences Centre; University of Toronto; Toronto ON Canada
| | - A. Alam
- Department of Anesthesia; Sunnybrook Health Sciences Centre; University of Toronto; Toronto ON Canada
| |
Collapse
|
25
|
Xu L, Yu WK, Lin ZL, Tan SJ, Bai XW, Ding K, Li N. Impact of β-adrenoceptor blockade on systemic inflammation and coagulation disturbances in rats with acute traumatic coagulopathy. Med Sci Monit 2015; 21:468-76. [PMID: 25676919 PMCID: PMC4335590 DOI: 10.12659/msm.893544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Sympathetic hyperactivity occurs early in acute traumatic coagulopathy (ATC) and is closely related to its development. β-adrenoceptor antagonists are known to alleviate adverse sympathetic effects and improve outcome in various diseases. We investigated whether β-blockers have protective effects against inflammation and endothelial and hemostatic disorders in ATC. MATERIAL AND METHODS ATC was induced in male Sprague-Dawley rats by trauma and hemorrhagic shock. Rats were randomly assigned to the sham, ATCC (ATC control), and ATCB (ATC with beta-adrenoceptor blockade) groups. Rats were injected intraperitoneally with propranolol or vehicle at baseline. Heart rate variability (HRV) and markers of inflammation, coagulation, and endothelial activation were measured, and Western blotting analysis of nuclear factor (NF)-κB was done after shock. Separate ATCC and ATCB groups were observed to compare overall mortality. RESULTS HRV showed enhanced sympathetic tone in the ATCC group, which was reversed by propranolol. Propranolol attenuated the induction of pro-inflammatory cytokines TNF-α and IL-6, as well as fibrinolysis markers plasmin antiplasmin complex and tissue-type plasminogen activator. The increased serum syndecan-1 and soluble thrombomodulin were inhibited by propranolol, and the NF-κB expression was also decreased by propranolol pretreatment. But propranolol did not alter overall mortality in rats with ATC after shock. CONCLUSIONS Beta-adrenoceptor blockade can alleviate sympathetic hyperactivity and exert anti-inflammatory, anti-fibrinolysis, and endothelial protective effects, confirming its pivotal role in the pathogenesis of ATC. Its mechanism in ATC should be explored further.
Collapse
Affiliation(s)
- Lin Xu
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wen-kui Yu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Zhi-liang Lin
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Shan-jun Tan
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Xiao-wu Bai
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Jiangsu, China (mainland)
| | - Kai Ding
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|