1
|
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care 2024; 14:147. [PMID: 39298039 DOI: 10.1186/s13613-024-01377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular function. These mechanisms cooperate through multiple organs and systems according to a complex set of long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms in other systems that can induce further damage. Despite the abundance of studies published on organ crosstalk in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. We explored these relationships in terms of the heart-kidney-lung, gut-microbiome-liver-brain, and adipose tissue-muscle-bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- André Borges
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal.
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal.
| | - Luís Bento
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal
| |
Collapse
|
2
|
Yao Z, Zhao Y, Lu L, Li Y, Yu Z. Extracerebral multiple organ dysfunction and interactions with brain injury after cardiac arrest. Resusc Plus 2024; 19:100719. [PMID: 39149223 PMCID: PMC11325081 DOI: 10.1016/j.resplu.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Cardiac arrest and successful resuscitation cause whole-body ischemia and reperfusion, leading to brain injury and extracerebral multiple organ dysfunction. Brain injury is the leading cause of death and long-term disability in resuscitated survivors, and was conceptualized and treated as an isolated injury, which has neglected the brain-visceral organ crosstalk. Extracerebral organ dysfunction is common and is significantly associated with mortality and poor neurological prognosis after resuscitation. However, detailed description of the characteristics of post-resuscitation multiple organ dysfunction is lacking, and the bidirectional interactions between brain and visceral organs need to be elucidated to explore new treatment for neuroprotection. This review aims to describe current concepts of post-cardiac arrest brain injury and specific characteristics of post-resuscitation dysfunction in cardiovascular, respiratory, renal, hepatic, adrenal, gastrointestinal, and neurohumoral systems. Additionally, we discuss the crosstalk between brain and extracerebral organs, especially focusing on how visceral organ dysfunction and other factors affect brain injury progression. We think that clarifying these interactions is of profound significance on how we treat patients for neural/systemic protection to improve outcome.
Collapse
Affiliation(s)
- Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yinping Li
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Song Z, Wang Z, Cai J, Zhou Y, Jiang Y, Tan J, Gu L. Down-regulating lncRNA KCNQ1OT1 relieves type II alveolar epithelial cell apoptosis during one-lung ventilation via modulating miR-129-5p/HMGB1 axis induced pulmonary endothelial glycocalyx. ENVIRONMENTAL TOXICOLOGY 2024; 39:3578-3596. [PMID: 38488667 DOI: 10.1002/tox.24201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Endothelial glycocalyx (EG) maintains vascular homeostasis and is destroyed after one-lung ventilation (OLV)-induced lung injury. Long noncoding RNAs (lncRNAs) are critically involved in various lung injuries. This study aimed to investigate the role and regulatory mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in OLV-induced lung injury and LPS-induced type II alveolar epithelial cell (AECII) apoptosis. METHODS The rat OLV model was established, and the effects of KCNQ1OT1 on OLV-induced ALI in vivo were explored. Bax and Caspase-3 expression in rat lung tissues was measured by immunochemistry (IHC). AECIIs were isolated from rat lungs and treated with LPS or normal saline (control) for in vitro analysis. The expression of KCNQ1OT1, miR-129-5p, and HMGB1 was measured by quantitative real-time PCR (qRT-PCR) or Western blot (WB). Cell proliferation and apoptosis were examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and flow cytometry. The downstream targets of KCNQ1OT1 were predicted by bioinformatics, and the binding relationship between KCNQ1OT1 and miR-129-3p was verified by dual-luciferase reporter assays. The potential target of miR-129-5p was further explored on the Targetscan website and revealed to target HMGB1. Enzyme-linked immunosorbent assay (ELISA) or WB was adopted to determine the levels of IL-1β, TNF-α, MDA, SOD, heparanase (HPA), matrix metalloproteinase 9 (MMP9), heparan sulfate (HS) and syndecan-1 (SDC-1). RESULTS KCNQ1OT1 and HMGB1 were up-regulated during OLV-induced lung injury, and their expression was positively correlated. KCNQ1OT1 knockdown reduced OLV-induced pulmonary edema and lung epithelial cell apoptosis, increased vascular permeability, reduced IL-1β, TNF-α, MDA, and SOD levels and glycocalyx markers by targeting miR-129-5p or upregulating HMGB1. Overexpressing KCNQ1OT1 promoted cell apoptosis, reduced cell proliferation, aggravated inflammation and oxidative stress, and up-regulated HMGB1, HPA and MMP9 in LPS-treated AECIIs, while the HMGB1 silencing showed the opposite effects. MiR-129-5p mimics partially eliminated the KCNQ1OT1-induced effects, while recombinant HMGB1 restored the effects of miR-129-5p overexpression on AECIIs. Additionally, KCNQ1OT1 was demonstrated to promote the activation of the p38 MAPK/Akt/ERK signaling pathways in AECIIs via HMGB1. CONCLUSION KCNQ1OT1 knockdown alleviated AECII apoptosis and EG damage during OLV by targeting miR-129-5p/HMGB1 to inactivate the p38 MAPK/Akt/ERK signaling. The findings of our study might deepen our understanding of the molecular basis in OLV-induced lung injury and provide clues for the targeted disease management.
Collapse
Affiliation(s)
- Zhenghuan Song
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
| | - Zhongqiu Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
| | - Jiaqin Cai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Yihu Zhou
- Department of Anesthesiology, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yueyi Jiang
- Department of Anesthesiology, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Jing Tan
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Lianbin Gu
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| |
Collapse
|
4
|
Jonassen TB, Jørgensen SE, Mitchell NH, Mogensen TH, Berg RMG, Ronit A, Plovsing RR. Alveolar cytokines and interferon autoantibodies in COVID-19 ARDS. Front Immunol 2024; 15:1353012. [PMID: 38571960 PMCID: PMC10987806 DOI: 10.3389/fimmu.2024.1353012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Background Type I interferon (IFN-I) and IFN autoantibodies play a crucial role in controlling SARS-CoV-2 infection. The levels of these mediators have only rarely been studied in the alveolar compartment in patients with COVID-19 acute respiratory distress syndrome (CARDS) but have not been compared across different ARDS etiologies, and the potential effect of dexamethasone (DXM) on these mediators is not known. Methods We assessed the integrity of the alveolo-capillary membrane, interleukins, type I, II, and III IFNs, and IFN autoantibodies by studying the epithelial lining fluid (ELF) volumes, alveolar concentration of protein, and ELF-corrected concentrations of cytokines in two patient subgroups and controls. Results A total of 16 patients with CARDS (four without and 12 with DXM treatment), eight with non-CARDS, and 15 healthy controls were included. The highest ELF volumes and protein levels were observed in CARDS. Systemic and ELF-corrected alveolar concentrations of interleukin (IL)-6 appeared to be particularly low in patients with CARDS receiving DXM, whereas alveolar levels of IL-8 were high regardless of DXM treatment. Alveolar levels of IFNs were similar between CARDS and non-CARDS patients, and IFNα and IFNω autoantibody levels were higher in patients with CARDS and non-CARDS than in healthy controls. Conclusions Patients with CARDS exhibited greater alveolo-capillary barrier disruption with compartmentalization of IL-8, regardless of DXM treatment, whereas systemic and alveolar levels of IL-6 were lower in the DXM-treated subgroup. IFN-I autoantibodies were higher in the BALF of CARDS patients, independent of DXM, whereas IFN autoantibodies in plasma were similar to those in controls.
Collapse
Affiliation(s)
- Trine B. Jonassen
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
| | - Sofie E. Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nikki H. Mitchell
- Department of Clinical Biochemistry, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ronan M. G. Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Andreas Ronit
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
| | - Ronni R. Plovsing
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Basu S, Verma RN, Joshi A, Dwivedi D, Mateen MA, Bhatia JS. A prospective observational study to correlate lung ultrasound with clinical severity and prognosis score in patients with primary pulmonary pathology on invasive ventilatory support. Int J Crit Illn Inj Sci 2023; 13:151-158. [PMID: 38292395 PMCID: PMC10824203 DOI: 10.4103/ijciis.ijciis_31_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 02/01/2024] Open
Abstract
Background Lung ultrasound (LUS) is a known imaging modality employed for monitoring patients in an intensive care unit. This study evaluates, LUS in assessing disease severity and prognosis, by correlating its score with the three commonly used clinical severity scoring systems (CSSS), namely, sequential organ failure assessment (SOFA) score, acute physiology and chronic health evaluation (APACHE) II score, and simplified acute physiology score (SAPS) II. Methods This single-center prospective observational study included 54 adult patients of primary lung disease-induced acute respiratory distress syndrome (ARDS), on invasive ventilation. The primary objective was to correlate LUS score with SOFA score. Secondary objectives were to correlate LUS score with APACHE II and SAPS II scores. LUS score was also correlated with the estimated mortality derived from the above-mentioned scores. A subgroup analysis on COVID-19-positive cases was also carried out. All scores were calculated on the initiation of mechanical ventilation, daily for 7 days or mortality, whichever was earlier. Results A significant positive correlation (P < 0.001) was found between LUS and all three severity scores, as well as their corresponding estimated mortality percentages, for all days of the study period, in both non-COVID-19 ARDS patients and in COVID-19 patients. The merit of all four scores in differentiating between the survivor and mortality group for the duration of study also showed significant (P < 0.05) to very significant (P < 0.001) results. Conclusion Point-of-care LUS in conjunction with CSSS is a reliable tool for assessing the severity and progression of primary lung disease.
Collapse
Affiliation(s)
- Sulagna Basu
- Department of Anaesthesia and Critical Care, Command Hospital (EC), Kolkata, West Bengal, India
| | - Rishiraj Narayan Verma
- Department of Anaesthesia and Critical Care, Command Hospital (EC), Kolkata, West Bengal, India
| | - Aditya Joshi
- Department of Anaesthesia and Critical Care, Command Hospital (EC), Kolkata, West Bengal, India
| | - Deepak Dwivedi
- Department of Anaesthesia and Critical Care, Command Hospital (EC), Kolkata, West Bengal, India
| | - Mohammad Abdul Mateen
- Department of Anaesthesia and Critical Care, Command Hospital (EC), Kolkata, West Bengal, India
| | - Jagdeep Singh Bhatia
- Department of Anaesthesia and Critical Care, Command Hospital (EC), Kolkata, West Bengal, India
| |
Collapse
|
6
|
Ma A, Wang B, Cheng J, Dong M, Li Y, Wei C, Zhou Y, Xue Y, Gao H, Zhao L, Li S, Qin Y, Zhang M, Wu Q, Yang J, Kang Y. Effects of airway pressure release ventilation on multi-organ injuries in severe acute respiratory distress syndrome pig models. BMC Pulm Med 2022; 22:468. [PMID: 36476475 PMCID: PMC9730639 DOI: 10.1186/s12890-022-02238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Extra-pulmonary multi-organ failure in patients with severe acute respiratory distress syndrome (ARDS) is a major cause of high mortality. Our purpose is to assess whether airway pressure release ventilation (APRV) causes more multi-organ damage than low tidal volume ventilation (LTV). METHODS Twenty one pigs were randomized into control group (n = 3), ARDS group (n = 3), LTV group (n = 8) and APRV group (n = 7). Severe ARDS model was induced by repeated bronchial saline lavages. Pigs were ventilated and monitored continuously for 48 h. Respiratory data, hemodynamic data, serum inflammatory cytokines were collected throughout the study. Histological injury and apoptosis were assessed by two pathologists. RESULTS After severe ARDS modeling, pigs in ARDS, LTV and APRV groups experienced significant hypoxemia and reduced lung static compliance (Cstat). Oxygenation recovered progressively after 16 h mechanical ventilation (MV) in LTV and APRV group. The results of the repeated measures ANOVA showed no statistical difference in the PaO2/FiO2 ratio between the APRV and LTV groups (p = 0.54). The Cstat showed a considerable improvement in APRV group with statistical significance (p < 0.01), which was significantly higher than in the LTV group since 16 h (p = 0.04). Histological injury scores showed a significantly lower injury score in the middle and lower lobes of the right lung in the APRV group compared to LTV (pmiddle = 0.04, plower = 0.01), and no significant increase in injury scores for extra-pulmonary organs, including kidney (p = 0.10), small intestine (p = 1.0), liver (p = 0.14, p = 0.13) and heart (p = 0.20). There were no significant differences in serum inflammatory cytokines between the two groups. CONCLUSION In conclusion, in the experimental pig models of severe ARDS induced by repetitive saline lavage, APRV improved lung compliance with reduced lung injury of middle and lower lobes, and did not demonstrate more extra-pulmonary organ injuries as compared with LTV.
Collapse
Affiliation(s)
- Aijia Ma
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Bo Wang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Jiangli Cheng
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Meiling Dong
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yang Li
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Canzheng Wei
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yongfang Zhou
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yang Xue
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Hui Gao
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Lican Zhao
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Siyu Li
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Yiwei Qin
- grid.414880.1Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province China
| | - Mengni Zhang
- grid.412901.f0000 0004 1770 1022Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Qin Wu
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Jing Yang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yan Kang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
7
|
Monge R, Oris C, Jabaudon M, Braïlova M, Futier E, Sapin V, Pereira B, Lautrette A. Association between proteinuria trajectories and outcomes in critically ill patients with sepsis or shock. PLoS One 2022; 17:e0272835. [PMID: 36001593 PMCID: PMC9401181 DOI: 10.1371/journal.pone.0272835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Proteinuria results from kidney damage and can be a predictor of illness severity and mortality in the intensive care unit (ICU). However, the optimal timing of proteinuria measurements and the reference values remain undetermined. Our objective was to identify the patterns of proteinuria change associated with mortality in ICU patients with sepsis or shock. Methods This monocentric retrospective cohort study performed from April 2010 to April 2018 involved all ICU patients with sepsis or shock and at least two measurements of proteinuria from a 24h-urine collection during the first 10 days of ICU stay, the first of which was made within 48h after ICU admission. We identified proteinuria trajectories by a semi-parametric mixture model and analysed the association between the trajectories and the mortality at day 28 by Cox proportional-hazards model. Results A total of 3,344 measurements of proteinuria from 659 patients were analysed. Four proteinuria trajectories were identified. Trajectories 1, 2, 3 and 4 comprised 127, 421, 60 and 51 patients, and were characterized by a first proteinuria of 1.14 [0.66–1.55], 0.52 [0.26–0.91], 2.92 [2.38–3.84] and 2.58 [1.75–3.32] g/24h (p<0.001) and a mortality of 24.4%, 38%, 20% and 43% (p = 0.002), respectively. Trajectories 3 and 4 had a high first proteinuria (>2g/24h). Only, the proteinuria of trajectory 4 increased within 3 days following the first measurement and was associated with increased mortality at day 28 (hazard ratio: 2.36 95%CI [1.07–5.19], p = 0.03), regardless of acute renal failure. The factors associated with trajectory 4 were cancer (relative risk: 8.91 95%CI [2.09–38.02], p = 0.003) and use of inotropic drugs (relative risk: 0.17 95%CI [0.04–0.69], p = 0.01). Conclusion This exploratory study of ICU patients with sepsis or shock identified four proteinuria trajectories with distinct patterns of proteinuria change over time and mortality rates. These results provide novel insights into renal pathophysiology and may be helpful to investigate subphenotypes of kidney injury among ICU patients in future studies.
Collapse
Affiliation(s)
- Raphael Monge
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Charlotte Oris
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Marina Braïlova
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Emmanuel Futier
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandre Lautrette
- Department of Intensive Care Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- LMGE (Laboratoire Micro-organismes: Génome et Environnement), UMR CNRS 6023, Université Clermont Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
8
|
Reduction of NETosis by targeting CXCR1/2 reduces thrombosis, lung injury, and mortality in experimental human and murine sepsis. Br J Anaesth 2022; 128:283-293. [PMID: 34893315 PMCID: PMC8792833 DOI: 10.1016/j.bja.2021.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) facilitate bacterial clearance but also promote thrombosis and organ injury in sepsis. We quantified ex vivo NET induction in septic humans and murine models of sepsis to identify signalling pathways that may be modulated to improve outcome in human sepsis. METHODS NET formation in human donor neutrophils was quantified after incubation with plasma obtained from patients with sepsis or systemic inflammation (double-blinded assessment of extracellular DNA using immunofluorescence microscopy). NET formation (% neutrophils forming NETs) was correlated with plasma cytokine levels (MultiPlex assay). Experimental sepsis (caecal ligation and puncture or intraperitoneal injection of Escherichia coli) was assessed in C57/BL6 male mice. The effect of pharmacological inhibition of CXCR1/2 signalling (reparixin) on NET formation, organ injury (hepatic, renal, and cardiac biomarkers), and survival in septic mice was examined. RESULTS NET formation was higher after incubation with plasma from septic patients (median NETs=25% [10.5-46.5%]), compared with plasma obtained from patients with systemic inflammation (14% [4.0-23.3%]; P=0.02). Similar results were observed after incubation of plasma from mice with neutrophils from septic non-septic mice. Circulating CXCR1/2 ligands correlated with NETosis in patients (interleukin-8; r=0.643) and mice (macrophage inflammatory protein-2; r=0.902). In experimental sepsis, NETs were primarily observed in the lungs, correlating with fibrin deposition (r=0.702) and lung injury (r=0.692). Inhibition of CXCR1/2 using reparixin in septic mice reduced NET formation, multi-organ injury, and mortality, without impairing bacterial clearance. CONCLUSION CXCR1/2 signalling-induced NET formation is a therapeutic target in sepsis, which may be guided by ex vivo NET assays.
Collapse
|
9
|
Redding MC, Pan JH, Kim YJ, Batish M, Trabulsi J, Lee JH, Kim JK. Apiaceous vegetables protect against acrolein-induced pulmonary injuries through modulating hepatic detoxification and inflammation in C57BL/6 male mice. J Nutr Biochem 2022; 101:108939. [PMID: 35016997 DOI: 10.1016/j.jnutbio.2022.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
Acrolein (Acr) is a reactive aldehyde in the environment. Acr causes oxidative stress and a cascade of catalytic events and has, thereby, been associated with increased risk of pulmonary diseases. Whether apiaceous vegetables (API) consumption can prevent Acr-induced pulmonary toxicity has not yet been explored hence, we investigated the effects of API on Acr-induced pulmonary damages in C57BL/6J mice. The mice were assigned into either negative control [NEG group; American Institute of Nutrition (AIN)-93G diet only], positive control (POS group; AIN-93G+Acr) or API intervention group (API group; AIN-93G+21% API+Acr). After 1 week of dietary intervention, the POS and API mice were exposed to Acr (10 µmol/kg body weight/day) for 5 days. During the exposure period, assigned diets remained the same. Prominent indicators lung of toxicity of POS mice were found, including mucus accumulation, macrophage infiltration, and hemorrhage, all of which were ameliorated by the API. Serum and lung inflammation markers, such as a tumor necrosis factor alpha were also increased by Acr while reduced by API. In the liver, API upregulated expression of glutathione S-transferases, which enhanced the metabolism of Acr into water-soluble 3-hydroxypropyl mercapturic acid for excretion. This is consistent with observed reductions in serum Acr-protein adducts. Taken together, our results suggest that API may provide protection against Acr-induced pulmonary damages and inflammation via enhancement of the hepatic detoxification of Acr.
Collapse
Affiliation(s)
- Mersady C Redding
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA; School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA; School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, USA
| | - Jillian Trabulsi
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, South Korea.
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA; School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
10
|
Lomeli M, Dominguez Cenzano L, Torres L, Chavarría U, Poblano M, Tendillo F, Blanch L, Mancebo J. Reclutamiento alveolar agresivo en el SDRA: más sombras que luces. Med Intensiva 2021. [DOI: 10.1016/j.medin.2020.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Aggressive alveolar recruitment in ARDS: More shadows than lights. Med Intensiva 2021; 45:431-436. [PMID: 34238723 DOI: 10.1016/j.medine.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Alveolar recruitment in acute respiratory distress syndrome (ARDS) is defined as the penetration of gas into previously unventilated areas or poorly ventilated areas. Alveolar recruitment during recruitment maneuvering (RM) depends on the duration of the maneuver, the recruitable lung tissue, and the balance between the recruitment of collapsed areas and over-insufflation of the ventilated areas. Alveolar recruitment is estimated using computed tomography of the lung and, at the patient bedside, through assessment of the recruited volume using pressure-volume curves and assessing lung morphology with pulmonary ultrasound and/or impedance tomography. The scientific evidence on RM in patients with ARDS remains subject to controversy. Randomized studies on ARDS have shown no benefit or have even reflected an increase in mortality. The routine use of RM is therefore not recommended.
Collapse
|
12
|
Abstract
In the last decade, the role of apoptosis in the pathophysiology of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) progression has been revisited as our understanding of ferroptosis and necroptosis has emerged. A growing body of evidence, reviewed here, ascribes a central pathophysiological role for ferroptosis and necroptosis to AKI, nephron loss, and acute tubular necrosis. We will introduce concepts to the non-cell-autonomous manner of kidney tubular injury during ferroptosis, a phenomenon that we refer to as a "wave of death." We hypothesize that necroptosis might initiate cell death propagation through ferroptosis. The remaining necrotic debris requires effective removal processes to prevent a secondary inflammatory response, referred to as necroinflammation. Open questions include the differences in the immunogenicity of ferroptosis and necroptosis, and the specificity of necrostatins and ferrostatins to therapeutically target these processes to prevent AKI-to-CKD progression and end-stage renal disease.
Collapse
|
13
|
Crosstalk Between Lung and Extrapulmonary Organs in Infection and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:333-350. [PMID: 33788201 DOI: 10.1007/978-3-030-63046-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute and chronic lung inflammation is a risk factor for various diseases involving lungs and extrapulmonary organs. Intercellular and interorgan networks, including crosstalk between lung and brain, intestine, heart, liver, and kidney, coordinate host immunity against infection, protect tissue, and maintain homeostasis. However, this interaction may be counterproductive and cause acute or chronic comorbidities due to dysregulated inflammation in the lung. In this chapter, we review the relationship of the lung with other key organs during normal cell processes and disease development. We focus on how pneumonia may lead to a systemic pathophysiological response to acute lung injury and chronic lung disease through organ interactions, which can facilitate the development of undesirable and even deleterious extrapulmonary sequelae.
Collapse
|
14
|
Lim JKB, Qadri SK, Toh TSW, Lin CB, Mok YH, Lee JH. Extracorporeal Membrane Oxygenation for Severe Respiratory Failure During Respiratory Epidemics and Pandemics: A Narrative Review. ANNALS ACADEMY OF MEDICINE SINGAPORE 2020. [DOI: 10.47102/annals-acadmed.sg.202046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Epidemics and pandemics from zoonotic respiratory viruses, such as the 2019 novel coronavirus, can lead to significant global intensive care burden as patients progress to acute respiratory distress syndrome (ARDS). A subset of these patients develops refractory hypoxaemia despite maximal conventional mechanical ventilation and require extracorporeal membrane oxygenation (ECMO). This review focuses on considerations for ventilatory strategies, infection control and patient selection related to ECMO for ARDS in a pandemic. We also summarise the experiences with ECMO in previous respiratory pandemics. Materials and Methods: A review of pertinent studies was conducted via a search using MEDLINE, EMBASE and Google Scholar. References of articles were also examined to identify other relevant publications. Results: Since the H1N1 Influenza pandemic in 2009, the use of ECMO for ARDS continues to grow despite limitations in evidence for survival benefit. There is emerging evidence to suggest that lung protective ventilation for ARDS can be further optimised while receiving ECMO so as to minimise ventilator-induced lung injury and subsequent contributions to multi-organ failure. Efforts to improve outcomes should also encompass appropriate infection control measures to reduce co-infections and prevent nosocomial transmission of novel respiratory viruses. Patient selection for ECMO in a pandemic can be challenging. We discuss important ethical considerations and predictive scoring systems that may assist clinical decision-making to optimise resource allocation. Conclusion: The role of ECMO in managing ARDS during respiratory pandemics continues to grow. This is supported by efforts to redefine optimal ventilatory strategies, reinforce infection control measures and enhance patient selection. Ann Acad Med Singapore 2020;49:199–214 Key words: Acute Respiratory Distress Syndrome, Coronavirus disease 2019, ECMO, Infection control, Mechanical ventilation
Collapse
Affiliation(s)
- Joel KB Lim
- KK Women’s and Children’s Hospital, Singapore
| | | | | | | | - Yee Hui Mok
- KK Women’s and Children’s Hospital, Singapore
| | - Jan Hau Lee
- KK Women’s and Children’s Hospital, Singapore
| |
Collapse
|
15
|
Kuvat N, Tanriverdi H, Armutcu F. The relationship between obstructive sleep apnea syndrome and obesity: A new perspective on the pathogenesis in terms of organ crosstalk. CLINICAL RESPIRATORY JOURNAL 2020; 14:595-604. [PMID: 32112481 DOI: 10.1111/crj.13175] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Obstructive sleep apnea syndrome (OSAS) is a common disorder that has a major impact on public health. The connection between OSAS and obesity is very complex and likely represents an interaction between biological and lifestyle factors. Oxidative stress, inflammation and metabolic dysregulation are both actors involved in the pathogenesis of OSAS and obesity. Also, the current evidence suggests that gut microbiota plays a significant role in the emergence and progression of some metabolic disorders. When the relationship between OSAS and obesity is evaluated extensively, it is understood that they show mutual causality with each other, and that metabolic challenges such as impaired microbiota affect this bidirectional organ interaction, and by ensuing organ injury. OBJECTIVES The aim of this study is to investigate the association between OSAS and obesity, and the effect of "organ crosstalk" on the pathogenesis of the relationship and to contribute to the diagnosis and treatment options in the light of current data. DATA SOURCE We performed an electronic database search including PubMed, EMBASE and Web of Science. We used the following search terms: OSAS, obesity, inflammation, metabolic dysregulation and gut microbiota. CONCLUSION Obesity and OSAS adversely affect many organs and systems. Besides the factors affecting the diagnosis of the OSAS-obesity relationship, mutual organ interactions among the respiratory system, adipose tissue and intestines should not be ignored for prevention and treatment of OSAS and obesity. Comprehensive clinical trials addressing the efficacy and efficiency of current or potential treatments on therapeutic applications in the OSAS-obesity relationship are needed.
Collapse
Affiliation(s)
- Nuray Kuvat
- Infectious Diseases and Clinical Microbiology, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Hakan Tanriverdi
- Department of Chest Diseases, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Ferah Armutcu
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Chen H, Zhou J, Lin YQ, Zhou JX, Yu RG. Intracranial pressure responsiveness to positive end-expiratory pressure in different respiratory mechanics: a preliminary experimental study in pigs. BMC Neurol 2018; 18:183. [PMID: 30396336 PMCID: PMC6217765 DOI: 10.1186/s12883-018-1191-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background Respiratory mechanics affects the effect of positive end-expiratory pressure (PEEP) on intracranial pressure (ICP). Respiratory mechanics of the lung and the chest wall was not differentiated in previous studies. In the present study, we investigated the influence of the following possible determinants of ICP responsiveness to PEEP: chest wall elastance (ECW), lung elastance (EL), and baseline ICP. Methods Eight healthy Bama miniature pigs were studied. The increase of EL was induced by instillation of hydrochloride, and the increase of ECW was induced by strapping the animals’ chest wall and abdomen. A balloon-tipped catheter was placed intracranially for inducing intracranial hypertension. Six experimental conditions were investigated in sequence: 1) Normal; 2) Stiff Chest Wall; 3) Lung Injury; 4) Lung Injury + Stiff Chest Wall; 5) Lung Injury + Stiff Chest Wall + Intracranial Hypertension and 6) Lung Injury + Intracranial Hypertension. PEEP was gradually increased in a 5 cm H2O interval from 5 to 25 cm H2O in each condition. Blood pressure, central venous pressure, ICP, airway pressure and esophageal pressure were measured. Results Hydrochloride instillation significantly increased EL in conditions with lung injury. ECW significantly increased in the conditions with chest wall and abdomen strapping (all p < 0.05). ICP significantly increased with increments of PEEP in all non-intracranial hypertension conditions (p < 0.001). The greatest cumulative increase in ICP was observed in the Stiff Chest Wall condition (6 [5.3, 6.8] mm Hg), while the lowest cumulative increase in ICP was observed in the Lung Injury condition (2 [1.3, 3.8] mm Hg). ICP significantly decreased when PEEP was increased in the intracranial hypertension conditions (p < 0.001). There was no significant difference in cumulative ICP change between the two intracranial hypertension conditions (p = 0.924). Conclusions Different respiratory mechanics models can be established via hydrochloride induced lung injury and chest wall and abdominal strapping. The effect of PEEP on ICP is determined by respiratory mechanics in pigs with normal ICP. However, the responsiveness of ICP to PEEP is independent of respiratory mechanics when there is intracranial hypertension.
Collapse
Affiliation(s)
- Han Chen
- Surgical Intensive Care Unit, Fujian Provincial Clinical College, Fujian Medical University, No 134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China.
| | - Jing Zhou
- Surgical Intensive Care Unit, Fujian Provincial Clinical College, Fujian Medical University, No 134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yi-Qin Lin
- Surgical Intensive Care Unit, Fujian Provincial Clinical College, Fujian Medical University, No 134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong-Guo Yu
- Surgical Intensive Care Unit, Fujian Provincial Clinical College, Fujian Medical University, No 134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| |
Collapse
|
17
|
The clinical relevance of necroinflammation-highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ 2018; 26:68-82. [PMID: 30224638 DOI: 10.1038/s41418-018-0193-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
Necroinflammation is defined as the inflammatory response to necrotic cell death. Different necrotic cell death pathways exhibit different immune reponses, despite a comparable level of intracellular content release (referred to as damage associated molecular patterns or DAMPs). In addition to DAMP release, which is inevitably associated with necrotic cell death, the active production of pro/anti-inflammatory cytokines characterizes certain necrotic pathways. Necroptosis, ferroptosis and pyroptosis, therefore, are immunogenic to a different extent. In this review, we discuss the clinical relevance of necroinflammation highlighting potential human serum markers. We focus on the role of the adrenal glands and the lungs as central organs affected by systemic and/or local DAMP release and underline their role in intensive care medicine. In addition, data from models of acute kidney injury (AKI) and kidney transplantation have significantly shaped the field of necroinflammation and may be helpful for the understanding of the potential role of dialysis and plasma exchange to treat ongoing necroinflammation upon intensive care unit (ICU) conditions. In conclusion, we are only beginning to understand the importance of necroinflammation in diseases and transplantation, including xenotransplantation. However, given the existing efforts to develop inhibitors of necrotic cell death (ferrostatins, necrostatins, etc), we consider it likely that interference with necroinflammation reaches clinical routine in the near future.
Collapse
|
18
|
Chiang SR, Lai CC, Ho CH, Chen CM, Chao CM, Wang JJ, Cheng KC. Prolonged Mechanical Ventilation Assistance Interacts Synergistically with Carbapenem for Clostridium difficile Infection in Critically Ill Patients. J Clin Med 2018; 7:jcm7080224. [PMID: 30127264 PMCID: PMC6111739 DOI: 10.3390/jcm7080224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives: Interactions between mechanical ventilation (MV) and carbapenem interventions were investigated for the risk of Clostridium difficile infection (CDI) in critically ill patients undergoing concurrent carbapenem therapy. Methods: Taiwan’s National Intensive Care Unit Database (NICUD) was used in this analytical, observational, and retrospective study. We analyzed 267,871 intubated patients in subgroups based on the duration of MV support: 7–14 days (n = 97,525), 15–21 days (n = 52,068), 22–28 days (n = 35,264), and 29–60 days (n = 70,021). The primary outcome was CDI. Results: Age (>75 years old), prolonged MV assistance (>21 days), carbapenem therapy (>15 days), and high comorbidity scores were identified as independent risk factors for developing CDI. CDI risk increased with longer MV support. The highest rate of CDI was in the MV 29–60 days subgroup (adjusted hazard ratio (AHR) = 2.85; 95% confidence interval (CI) = 1.46–5.58; p < 0.02). Moreover, higher CDI rates correlated with the interaction between MV and carbapenem interventions; these CDI risks were increased in the MV 15–21 days (AHR = 2.58; 95% CI = 1.12–5.91) and MV 29–60 days (AHR = 4.63; 95% CI = 1.14–10.03) subgroups than in the non-MV and non-carbapenem subgroups. Conclusions: Both MV support and carbapenem interventions significantly increase the risk that critically ill patients will develop CDI. Moreover, prolonged MV support and carbapenem therapy synergistically induce CDI. These findings provide new insights into the role of MV support in the development of CDI.
Collapse
Affiliation(s)
- Shyh-Ren Chiang
- Department of Internal Medicine, Chi Mei Medical Center, 71004 Tainan, Taiwan.
- Department of General Education, Chia Nan University of Pharmacy and Science, 71710 Tainan, Taiwan.
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, 73657 Liouying, Taiwan.
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, 71004 Tainan, Taiwan.
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, 71710 Tainan, Taiwan.
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, 71004 Tainan, Taiwan.
- Departments of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, 71710 Tainan, Taiwan.
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, 73657 Liouying, Taiwan.
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, 71004 Tainan, Taiwan.
| | - Kuo-Chen Cheng
- Department of Internal Medicine, Chi Mei Medical Center, 71004 Tainan, Taiwan.
- Department of Safety, Health, and Environmental Engineering, Chung Hwa University of Medical Technology, 71703 Tainan, Taiwan.
| |
Collapse
|
19
|
Wang X, An X, Wang X, Bao C, Li J, Yang D, Bai C. Curcumin ameliorated ventilator-induced lung injury in rats. Biomed Pharmacother 2018; 98:754-761. [DOI: 10.1016/j.biopha.2017.12.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022] Open
|
20
|
Turon M, Fernández-Gonzalo S, de Haro C, Magrans R, López-Aguilar J, Blanch L. Mechanisms involved in brain dysfunction in mechanically ventilated critically ill patients: implications and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:30. [PMID: 29430447 DOI: 10.21037/atm.2017.12.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Critical illness may lead to significant long-term neurological morbidity and patients frequently develop neuropsychological disturbances including acute delirium or memory impairment after intensive care unit (ICU) discharge. Mechanical ventilation (MV) is a risk factor to the development of adverse neurocognitive outcomes. Patients undergoing MV for long periods present neurologic impairment with memory and cognitive alteration. Delirium is considered an acute form of brain dysfunction and its prevalence rises in mechanically ventilated patients. Delirium duration is an independent predictor of mortality, ventilation time, ICU length of stay and short- and long-term cognitive impairment in the ICU survivors. Although, neurocognitive sequelae tend to improve after hospital discharge, residual deficits persist even 6 years after ICU stay. ICU-related neurocognitive impairments occurred in many cognitive domains and are particularly pronounced with regard to memory, executive functions, attentional functions, and processing speed. These sequelae have an important impact on patients' lives and ICU survivors often require institutionalization and hospitalization. Experimental studies have served to explore the possible mechanisms or pathways involved in this lung to brain interaction. This communication can be mediated via a complex web of signaling events involving neural, inflammatory, immunologic and neuroendocrine pathways. MV can affect respiratory networks and the application of protective ventilation strategies is mandatory in order to prevent adverse effects. Therefore, strategies focused to minimize lung stretch may improve outcomes, avoiding failure of distal organ, including the brain. Long-term neurocognitive impairments experienced by critically ill survivors may be mitigated by early interventions, combining cognitive and physical therapies. Inpatient rehabilitation interventions in ICU promise to improve outcomes in critically ill patients. The cross-talk between lung and brain, involving specific pathways during critical illness deserves further efforts to evaluate, prevent and improve cognitive alterations after ICU admission, and highlights the crucial importance of tailoring MV to prevent adverse outcomes.
Collapse
Affiliation(s)
- Marc Turon
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Sol Fernández-Gonzalo
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria de Haro
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Rudys Magrans
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina López-Aguilar
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Blanch
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Onal EM, Sag AA, Sal O, Yerlikaya A, Afsar B, Kanbay M. Erythropoietin mediates brain-vascular-kidney crosstalk and may be a treatment target for pulmonary and resistant essential hypertension. Clin Exp Hypertens 2017; 39:197-209. [PMID: 28448184 DOI: 10.1080/10641963.2016.1246565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organ crosstalk pathways represent the next frontier for target-mining in molecular medicine for existing syndromes. Pulmonary hypertension and resistant essential hypertension are syndromes that have been proven elusive in etiology, and frequently refractory to first-line management. Underlying crosstalk mechanisms, not yet considered in these treatments, may hinder outcomes or unlock novel treatments. This review focuses systematically on erythropoietin, a synthesizable molecule, as a mediator of brain-kidney crosstalk. Insights gained from this review will be applied to cardiovascular diseases in a clinician-directed fashion.
Collapse
Affiliation(s)
| | - Alan Alper Sag
- b Division of Interventional Radiology, Department of Radiology , Koç University School of Medicine , Istanbul , Turkey
| | - Oguzhan Sal
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Baris Afsar
- c Suleyman Demirel University, Faculty of Medicine, Department of Internal Medicine , Section of Nephrology , Isparta , Turkey
| | - Mehmet Kanbay
- d Division of Nephrology, Department of Internal Medicine , Koç University School of Medicine , Istanbul , Turkey
| |
Collapse
|
22
|
The Effect of Mechanical Ventilation on TASK-1 Expression in the Brain in a Rat Model. Can Respir J 2017; 2017:8530352. [PMID: 29093631 PMCID: PMC5637865 DOI: 10.1155/2017/8530352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/05/2017] [Accepted: 08/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background and Objective TWIK-related acid-sensitive potassium channel 1 (TASK-1) is closely related to respiratory central control and neuronal injury. We investigated the effect of MV on TASK-1's functions and explored the mechanism using a rat model. Methods Male Sprague-Dawley rats were randomized to three groups: (1) high tidal volume (HVt): MV for four hours with Vt at 10 mL/kg; (2) low Vt (LVt): MV for four hours with Vt at 5 mL/kg; (3) basal (BAS): anesthetized and unventilated animals. We measured lung histology and plasma and brain levels of proteins (IL-6, TNF-α, and S-100B) and determined TASK-1 levels in rat brainstems as a marker of respiratory centre activity. Results The LISs (lung injury scores) were significantly higher in the HVt group. Brain inflammatory cytokines levels were different to those in serum. TASK-1 levels were significantly lower in the MV groups (P = 0.002) and the HVt group tended to have a lower level of TASK-1 than the LVt group. Conclusion MV causes not only lung injury, but also brain injury. MV affects the regulation of the respiratory centre, perhaps causing damage to it. Inflammation is probably not the main mechanism of ventilator-related brain injury.
Collapse
|
23
|
Ding Q, Liu G, Zeng Y, Zhu J, Liu Z, Jiang J, Huang J. Glycogen synthase kinase‑3β inhibitor reduces LPS‑induced acute lung injury in mice. Mol Med Rep 2017; 16:6715-6721. [PMID: 28901469 PMCID: PMC5865788 DOI: 10.3892/mmr.2017.7469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 05/08/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to examine the role of Wnt signaling in lipopolysaccharide (LPS)‑induced acute respiratory distress syndrome (ARDS). ARDS was induced by LPS and compared in mice treated with either glycogen synthase kinase‑3β inhibitor (GSKI) or PBS. The protein expression levels of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, IL‑17, IL‑18 and IL‑1β in the bronchoalveolar lavage fluid (BALF) were examined using murine cytokine‑specific enzyme‑linked immunosorbent assays. The accumulation of neutrophils and macrophages in the BALF were detected using flow cytometry. The extent of pathological lesions was evaluated using an immunohistochemical assay. The differentiation of mesenchymal stem cells (MSCs) into type II alveolar (ATII) epithelial cells was analyzed using immunofluorescence staining. Treatment with GSKI led to maintained body weights and survival in mice with LPS‑induced ARDS. Treatment with GSKI effectively reduced the levels of total protein, albumin, IgM and keratinocyte growth factor in the BALF. Smith scores showed that GSKI significantly alleviated LPS‑induced lung injury. GSKI also functioned to reduce inflammatory cell accumulation and pro‑inflammatory cytokine secretion. Finally, it was found that GSKI promoted the differentiation of MSCs into ATII epithelial cells in vivo. Taken together, the GSKI‑treated mice exhibited reduced acute lung injury through inhibited intra‑fluid inflammatory cell infiltration and decreased expression of pro‑inflammatory cytokines, and GSKI increased the differentiation of MSCs into ATII epithelial cells.
Collapse
Affiliation(s)
- Qi Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| |
Collapse
|
24
|
Turon M, Fernandez-Gonzalo S, Jodar M, Gomà G, Montanya J, Hernando D, Bailón R, de Haro C, Gomez-Simon V, Lopez-Aguilar J, Magrans R, Martinez-Perez M, Oliva JC, Blanch L. Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients. Ann Intensive Care 2017; 7:81. [PMID: 28770543 PMCID: PMC5540744 DOI: 10.1186/s13613-017-0303-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Growing evidence suggests that critical illness often results in significant long-term neurocognitive impairments in one-third of survivors. Although these neurocognitive impairments are long-lasting and devastating for survivors, rehabilitation rarely occurs during or after critical illness. Our aim is to describe an early neurocognitive stimulation intervention based on virtual reality for patients who are critically ill and to present the results of a proof-of-concept study testing the feasibility, safety, and suitability of this intervention. Methods Twenty critically ill adult patients undergoing or having undergone mechanical ventilation for ≥24 h received daily 20-min neurocognitive stimulation sessions when awake and alert during their ICU stay. The difficulty of the exercises included in the sessions progressively increased over successive sessions. Physiological data were recorded before, during, and after each session. Safety was assessed through heart rate, peripheral oxygen saturation, and respiratory rate. Heart rate variability analysis, an indirect measure of autonomic activity sensitive to cognitive demands, was used to assess the efficacy of the exercises in stimulating attention and working memory. Results Patients successfully completed the sessions on most days. No sessions were stopped early for safety concerns, and no adverse events occurred. Heart rate variability analysis showed that the exercises stimulated attention and working memory. Critically ill patients considered the sessions enjoyable and relaxing without being overly fatiguing. Conclusions The results in this proof-of-concept study suggest that a virtual-reality-based neurocognitive intervention is feasible, safe, and tolerable, stimulating cognitive functions and satisfying critically ill patients. Future studies will evaluate the impact of interventions on neurocognitive outcomes. Trial registration Clinical trials.gov identifier: NCT02078206 Electronic supplementary material The online version of this article (doi:10.1186/s13613-017-0303-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc Turon
- Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. .,Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain. .,Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, International Excellence Campus, Bellaterra, Spain.
| | - Sol Fernandez-Gonzalo
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain.,Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Jodar
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, International Excellence Campus, Bellaterra, Spain.,Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Neurology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Gemma Gomà
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain.,Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jaume Montanya
- Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - David Hernando
- BSICOS Group, 13A, Universidad de Zaragoza&CIBER-BBN, Saragossa, Spain
| | - Raquel Bailón
- BSICOS Group, 13A, Universidad de Zaragoza&CIBER-BBN, Saragossa, Spain
| | - Candelaria de Haro
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Victor Gomez-Simon
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Josefina Lopez-Aguilar
- Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain
| | - Rudys Magrans
- Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain
| | - Melcior Martinez-Perez
- Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Joan Carles Oliva
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain
| | - Lluís Blanch
- Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Fundació Parc Taulí, Sabadell, Spain.,Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
25
|
Cyclic PaO 2 oscillations assessed in the renal microcirculation: correlation with tidal volume in a porcine model of lung lavage. BMC Anesthesiol 2017; 17:92. [PMID: 28693425 PMCID: PMC5504855 DOI: 10.1186/s12871-017-0382-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
Background Oscillations of the arterial partial pressure of oxygen induced by varying shunt fractions occur during cyclic alveolar recruitment within the injured lung. Recently, these were proposed as a pathomechanism that may be relevant for remote organ injury following acute respiratory distress syndrome. This study examines the transmission of oxygen oscillations to the renal tissue and their tidal volume dependency. Methods Lung injury was induced by repetitive bronchoalveolar lavage in eight anaesthetized pigs. Cyclic alveolar recruitment was provoked by high tidal volume ventilation. Oscillations of the arterial partial pressure of oxygen were measured in real-time in the macrocirculation by multi-frequency phase fluorimetry and in the renal microcirculation by combined white-light spectrometry and laser-Doppler flowmetry during tidal volume down-titration. Results Significant respiratory-dependent oxygen oscillations were detected in the macrocirculation and transmitted to the renal microcirculation in a substantial extent. The amplitudes of these oscillations significantly correlate to the applied tidal volume and are minimized during down-titration. Conclusions In a porcine model oscillations of the arterial partial pressure of oxygen are induced by cyclic alveolar recruitment and transmitted to the renal microcirculation in a tidal volume-dependent fashion. They might play a role in organ crosstalk and remote organ damage following lung injury.
Collapse
|
26
|
Abstract
Neuropulmonology refers to the complex interconnection between the central nervous system and the respiratory system. Neurologic injury includes traumatic brain injury, hemorrhage, stroke, and seizures, and in each there are far-reaching effects that can result in pulmonary dysfunction. Systemic changes can induce impairment of pulmonary function due to changes in the core structure and function of the lung. The conditions and disorders that often occur in these patients include aspiration pneumonia, neurogenic pulmonary edema, and acute respiratory distress syndrome, but also several abnormal respiratory patterns and sleep-disordered breathing. Lung infections, pulmonary edema - neurogenic or cardiogenic - and pulmonary embolus all are a serious barrier to recovery and can have significant effects on outcomes such as hospital course, prognosis, and mortality. This review presents the spectrum of pulmonary abnormalities seen in neurocritical care.
Collapse
|
27
|
Chen H, Xu M, Yang YL, Chen K, Xu JQ, Zhang YR, Yu RG, Zhou JX. Effects of increased positive end-expiratory pressure on intracranial pressure in acute respiratory distress syndrome: a protocol of a prospective physiological study. BMJ Open 2016; 6:e012477. [PMID: 27852713 PMCID: PMC5128838 DOI: 10.1136/bmjopen-2016-012477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION There are concerns that the use of positive end-expiratory pressure (PEEP) in patients with brain injury may potentially elevate intracranial pressure (ICP). However, the transmission of PEEP into the thoracic cavity depends on the properties of the lungs and the chest wall. When chest wall elastance is high, PEEP can significantly increase pleural pressure. In the present study, we investigate the different effects of PEEP on the pleural pressure and ICP in different respiratory mechanics. METHODS AND ANALYSIS This study is a prospective, single-centre, physiological study in patients with severe brain injury. Patients with acute respiratory distress syndrome with ventricular drainage will be enrolled. An oesophageal balloon catheter will be inserted to measure oesophageal pressure. Patients will be sedated and paralysed; airway pressure and oesophageal pressure will be measured during end-inspiratory occlusion and end-expiratory occlusion. Elastance of the chest wall, the lungs and the respiratory system will be calculated at PEEP levels of 5, 10 and 15 cm H2O. We will classify each patient based on the maximal ΔICP/ΔPEEP being above or below the median for the study population. 2 groups will thus be compared. ETHICS AND DISSEMINATION The study protocol and consent forms were approved by the Institutional Review Board of Fujian Provincial Hospital. Study findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT02670733; pre-results.
Collapse
Affiliation(s)
- Han Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Surgical Intensive Care Unit, Fujian Provincial Clinical College Hospital, Fujian Medical University, Fuzhou, China
| | - Ming Xu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Intensive Care Unit, Beijing Electric Power Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Surgical Intensive Care Unit, Fujian Provincial Clinical College Hospital, Fujian Medical University, Fuzhou, China
| | - Jing-Qing Xu
- Surgical Intensive Care Unit, Fujian Provincial Clinical College Hospital, Fujian Medical University, Fuzhou, China
| | - Ying-Rui Zhang
- Surgical Intensive Care Unit, Fujian Provincial Clinical College Hospital, Fujian Medical University, Fuzhou, China
| | - Rong-Guo Yu
- Surgical Intensive Care Unit, Fujian Provincial Clinical College Hospital, Fujian Medical University, Fuzhou, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Moderate Peep After Tracheal Lipopolysaccharide Instillation Prevents Inflammation and Modifies the Pattern of Brain Neuronal Activation. Shock 2016; 44:601-8. [PMID: 26398809 PMCID: PMC4851224 DOI: 10.1097/shk.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Ventilatory strategy and specifically positive end-expiratory pressure (PEEP) can modulate the inflammatory response and pulmonary-to-systemic translocation of lipopolysaccharide (LPS). Both inflammation and ventilatory pattern may modify brain activation, possibly worsening the patient's outcome and resulting in cognitive sequelae. Methods: We prospectively studied Sprague–Dawley rats randomly assigned to undergo 3 h mechanical ventilation with 7 mL/kg tidal ventilation and either 2 cmH2O or 7 cmH2O PEEP after intratracheal instillation of LPS or saline. Healthy nonventilated rats served as baseline. We analyzed lung mechanics, gas exchange, lung and plasma cytokine levels, lung apoptotic cells, and lung neutrophil infiltration. To evaluate brain neuronal activation, we counted c-Fos immunopositive cells in the retrosplenial cortex (RS), thalamus, supraoptic nucleus (SON), nucleus of the solitary tract (NTS), paraventricular nucleus (PVN), and central amygdala (CeA). Results: LPS increased lung neutrophilic infiltration, lung and systemic MCP-1 levels, and neuronal activation in the CeA and NTS. LPS-instilled rats receiving 7 cmH2O PEEP had less lung and systemic inflammation and more c-Fos-immunopositive cells in the RS, SON, and thalamus than those receiving 2 cmH2O PEEP. Applying 7 cmH2O PEEP increased neuronal activation in the CeA and NTS in saline-instilled rats, but not in LPS-instilled rats. Conclusions: Moderate PEEP prevented lung and systemic inflammation secondary to intratracheal LPS instillation. PEEP also modified the neuronal activation pattern in the RS, SON, and thalamus. The relevance of these differential brain c-Fos expression patterns in neurocognitive outcomes should be explored.
Collapse
|
29
|
Abstract
OBJECTIVE Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN Controlled animal study. SETTING University research laboratory. SUBJECTS Adult anesthetized pigs. INTERVENTIONS Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.
Collapse
|
30
|
Godoy DA, Rubiano A, Rabinstein AA, Bullock R, Sahuquillo J. Moderate Traumatic Brain Injury: The Grey Zone of Neurotrauma. Neurocrit Care 2016; 25:306-19. [DOI: 10.1007/s12028-016-0253-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Aversa S, Marseglia L, Manti S, D'Angelo G, Cuppari C, David A, Chirico G, Gitto E. Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: an update. Paediatr Respir Rev 2016; 17:71-9. [PMID: 26572937 DOI: 10.1016/j.prrv.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 10/22/2022]
Abstract
Reactive oxygen and nitrogen species are produced by several inflammatory and structural cells of the airways. The lungs of preterm newborns are susceptible to oxidative injury induced by both reactive oxygen and nitrogen species. Increased oxidative stress and imbalance in antioxidant enzymes may play a role in the pathogenesis of inflammatory pulmonary diseases. Preterm infants are frequently exposed to high oxygen concentrations, infections or inflammation; they have reduced antioxidant defense and high free iron levels which enhance toxic radical generation. Multiple ventilation strategies have been studied to reduce injury and improve outcomes in preterm infants. Using lung protective strategies, there is the need to reach a compromise between satisfaction of gas exchange and potential toxicities related to over-distension, derecruitment of lung units and high oxygen concentrations. In this review, the authors summarize scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the strategies of ventilation.
Collapse
Affiliation(s)
- Salvatore Aversa
- Neonatal Intensive Care Unit, Children Hospital, Spedali Civili of Brescia, Brescia, Italy, PhD course in Intensive Care, University of Messina, Messina, Italy
| | - Lucia Marseglia
- Department of Pediatrics, University of Messina, Messina, Italy.
| | - Sara Manti
- Department of Pediatrics, University of Messina, Messina, Italy
| | | | | | - Antonio David
- Department of Neurosciences, Psychiatric and Anesthesiological Sciences, University of Messina, Messina, Italy
| | - Gaetano Chirico
- Neonatal Intensive Care Unit, Children Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Eloisa Gitto
- Department of Pediatrics, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Lopez-Aguilar J, Blanch L. Brain injury requires lung protection. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S5. [PMID: 26046092 DOI: 10.3978/j.issn.2305-5839.2015.02.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Abstract
The paper entitled "The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation" published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is one of the organs most vulnerable to the inflammatory cascade triggered by TBI. HMGB1 is an alarm in that can be released from activated immune cells in response to tissue injury. Increased systemic HMGB1 concentration correlates with poor lung function before and after lung transplant, confirming its role in acute ALI after TBI. HMGB1 exerts its influence by interacting with several receptors, including the RAGE receptor. RAGE also plays an important role in the onset of innate immune inflammatory responses, and systemic levels of RAGE are strongly associated with ALI and clinical outcomes in ventilator-induced lung injury. RAGE ligation to HMGB1 triggers the amplification of the inflammatory cascade involving nuclear factor-κB (NF-κB) activation. Identifying early biomarkers that mediate pulmonary dysfunction will improve outcomes not only in lung transplantation, but also in other scenarios. These novel findings show that upregulation of the HMGB1-RAGE axis plays an important role in brain-lung crosstalk.
Collapse
Affiliation(s)
- Josefina Lopez-Aguilar
- 1 Critical Care Center, Hospital de Sabadell and Fundació Parc Taulí, Corporació Sanitaria Universitària Parc Taulí, Sabadell, Spain ; 2 Universitat Autònoma de Barcelona, Campus d'Excelència Internacional 08193, Bellaterra, Spain ; 3 CIBER Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Lluis Blanch
- 1 Critical Care Center, Hospital de Sabadell and Fundació Parc Taulí, Corporació Sanitaria Universitària Parc Taulí, Sabadell, Spain ; 2 Universitat Autònoma de Barcelona, Campus d'Excelència Internacional 08193, Bellaterra, Spain ; 3 CIBER Enfermedades Respiratorias, ISCIII, Madrid, Spain
| |
Collapse
|
33
|
Karsten J, Heinze H. [Ventilation as a trigger for organ dysfunction and sepsis]. Med Klin Intensivmed Notfmed 2015; 111:98-106. [PMID: 25971366 DOI: 10.1007/s00063-015-0030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 12/21/2014] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
Both in the intensive care setting and during surgery, mechanical ventilation plays an important role in the treatment of critically ill patients with lung injury, but also in lung healthy patients. Mechanical ventilation is noncurative and is accompanied by various severe side effects. It is hypothesized that multiorgan failure can be induced by mechanical ventilation. Furthermore, there is evidence to suggest cross-talk between lungs and other organs. In particular, the activation of specific cells and cell programs in peripheral organs is an important step on the way to multiorgan failure. In addition to bidirectional connection between the lung and brain, nonprotective ventilation leads to cell apoptosis in the kidney and intestine and leads to an increase of biomarkers for organ dysfunction. It is believed that both inflammation mediators and pro-apoptotic factors are responsible for organ dysfunction.
Collapse
Affiliation(s)
- J Karsten
- Klinik für Anästhesiologie und Intensivmedizin, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Heinze
- Klinik für Anästhesiologie und Intensivmedizin, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| |
Collapse
|
34
|
Chen C, Zhang Z, Chen T, Peng M, Xu X, Wang Y. Prolonged mechanical ventilation-induced neuroinflammation affects postoperative memory dysfunction in surgical mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:159. [PMID: 25887955 PMCID: PMC4423516 DOI: 10.1186/s13054-015-0882-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/13/2015] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Patients undergoing surgery frequently develop neuropsychological disturbances, including cognitive decline or memory impairment, and routine clinical procedures such as mechanical ventilation (MV) may affect acute-phase brain outcome. We aimed to investigate the effect of the prolonged MV on postoperative memory dysfunction in surgical mice. METHODS Male C57BL/6 mice were randomly divided into the following three groups: (1) The control group (group C) comprised anesthetized, unventilated animals; (2) the surgery group (subgroups S1h, S3h and S6h) was unventilated animals that underwent surgery under general anesthesia; and (3) the MV group (subgroups MV1h, MV3h and MV6h) was made up of animals under MV for 1 hour, 3 hours or 6 hours after surgery. Separate cohorts of animals were tested for memory function with fear conditioning tests or were killed at 6 hours, 1 day or 3 days postsurgery or post-MV to examine levels systemic and hippocampal interleukin (IL)-1β, IL-6 and tumor necrosis factor α (TNFα), and assessed synaptic structure and microglial activation. Nuclear factor κB (NF-κB) p65, cytochrome c, cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) activation were analyzed by Western blotting. RESULTS The MV6h group showed increased CD11b-immunopositive cells, synapse degeneration, cytochrome c release, cleaved caspase-3 and cleaved PARP-1 activation after surgery, as well as a decrease in freezing time after surgery. At 6 hours and 1 day post-MV, MV6h increased NF-κB activation and levels of systemic and hippocampal IL-1β, IL-6 and TNFα after surgery. CONCLUSIONS Prolonged MV after surgery further aggravates cognitive decline that may stem from upregulation of hippocampal IL-1β, IL-6 and TNFα, partially via activation of gliocytes in the surgical mouse hippocampus.
Collapse
Affiliation(s)
- Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Xing Xu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
35
|
López-Aguilar J, Bassi GL, Quílez ME, Martí JD, Rigol M, Tavares-Ranzani O, Aguilera E, Ferrer I, Blanch L, Torres A. 0468. Cerebral effects of lateral trendelenburg vs semirecumbent position in an experimental model of ventilator-associated pneumonia. Intensive Care Med Exp 2014. [PMCID: PMC4796195 DOI: 10.1186/2197-425x-2-s1-o14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
36
|
Wu MY, Lin PJ, Tseng YH, Kao KC, Hsiao HL, Huang CC. Venovenous extracorporeal life support for posttraumatic respiratory distress syndrome in adults: the risk of major hemorrhages. Scand J Trauma Resusc Emerg Med 2014; 22:56. [PMID: 25273618 PMCID: PMC4189614 DOI: 10.1186/s13049-014-0056-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 09/07/2014] [Indexed: 02/05/2023] Open
Abstract
Background The aim of this retrospective study is to investigate the therapeutic benefits and the bleeding risks of venovenous extracorporeal life support (VV-ECLS) when used for adult posttraumatic respiratory distress syndrome (posttraumatic ARDS). Materials and methods Twenty adult trauma patients (median age: 38 years, median injury severity score: 35) treated with VV-ECLS in a level I trauma center between January 2004 and June 2013 were enrolled in this study. The indication of VV-ECLS for posttraumatic ARDS was refractory hypoxemia (PaO2/FiO2 ratio ≤ 70 mmHg) under advanced mechanical ventilation. To minimize potential complications, a protocol-guided VV-ECLS was adopted. Results Sixteen patients were weaned off VV-ECLS, and of these patients fourteen survived. Medians of the trauma-to-ECLS time, the pre-ECLS mechanical ventilation, and the ECLS duration in all patients were 64, 45, and 144 hours respectively. The median PaO2/FiO2 ratio was improved significantly soon after VV-ECLS, from 56 to 106 mmHg (p < 0.001). However, seven major hemorrhages occurred during VV-ECLS, of which three were lethal. The multivariate analysis revealed that the occurrence of major hemorrhages during VV-ECLS was independently related to the trauma-to-ECLS time < 24 hours (OR: 20; p = 0.02; 95% CI: 2–239; c-index: 0.81). Conclusions Despite an effective respiratory support, VV-ECLS should be cautiously administered to patients who develop advanced ARDS soon after major trauma. Electronic supplementary material The online version of this article (doi:10.1186/s13049-014-0056-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Chung-Chi Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5, Fushing Street, Gueishan Shiang, Taoyuan 333, Taiwan.
| |
Collapse
|
37
|
Sanfilippo F, Santonocito C, Veenith T, Astuto M, Maybauer MO. The Role of Neuromuscular Blockade in Patients with Traumatic Brain Injury: A Systematic Review. Neurocrit Care 2014; 22:325-34. [DOI: 10.1007/s12028-014-0061-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Rodríguez-González R, Ramos-Nuez Á, Martín-Barrasa JL, López-Aguilar J, Baluja A, Álvarez J, Rocco PRM, Pelosi P, Villar J. Endotoxin-induced lung alveolar cell injury causes brain cell damage. Exp Biol Med (Maywood) 2014; 240:135-42. [PMID: 25135986 DOI: 10.1177/1535370214547156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Ángela Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - José Luis Martín-Barrasa
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain Animal Facility Service, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Josefina López-Aguilar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Critical Care Center, Corporació Sanitaria Parc Taulí, Sabadell, 08208 Barcelona, Spain
| | - Aurora Baluja
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Julián Álvarez
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16126 Genoa, Italy
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
39
|
Plovsing RR, Berg RMG, Evans KA, Konge L, Iversen M, Garred P, Møller K. Transcompartmental inflammatory responses in humans: IV versus endobronchial administration of endotoxin*. Crit Care Med 2014; 42:1658-65. [PMID: 24732241 DOI: 10.1097/ccm.0000000000000320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Transcompartmental signaling during early inflammation may lead to propagation of disease to other organs. The time course and the mechanisms involved are still poorly understood. We aimed at comparing acute transcompartmental inflammatory responses in humans following lipopolysaccharide-induced pulmonary and systemic inflammation. DESIGN Randomized, double-blind, placebo-controlled, crossover study. SETTING ICU SUBJECTS Healthy male volunteers. INTERVENTIONS Fifteen volunteers (mean age, 23; SD, 2 yr) received Escherichia coli endotoxin (lipopolysaccharide, 4 ng/kg) IV or endobronchially on two different study days. Groups were evaluated by bronchoalveolar lavage at baseline (0 hr) and 2, 4, 6, 8, or 24 hours postchallenge. Cardiorespiratory variables were continuously recorded throughout the study day, and plasma and bronchoalveolar lavage fluid markers of inflammation were measured. MEASUREMENTS AND MAIN RESULTS IV endotoxin elicited a systemic inflammatory response with a time-dependent increase and peak in tumor necrosis factor-α, interleukin-6, and leukocyte counts (all p < 0.001). Furthermore, a delayed (6-8 hr) increase in bronchoalveolar lavage fluid interleukin-6 concentration (p < 0.001) and alveolar leukocyte count (p = 0.03) and a minor increase in bronchoalveolar lavage fluid tumor necrosis factor-α were observed (p = 0.06). Endobronchial endotoxin was followed by progressive alveolar neutrocytosis and increased bronchoalveolar lavage fluid tumor necrosis factor-α, interleukin-6, and albumin (all p < 0.001); a systemic inflammatory response was observed after 2-4 hours, with no change in plasma tumor necrosis factor-α. CONCLUSIONS Acute lung or systemic inflammation in humans is followed by a transcompartmental proinflammatory response, the degree and differential kinetics of which suggests that the propagation of inflammation may depend on the primary site of injury.
Collapse
Affiliation(s)
- Ronni R Plovsing
- 1Department of Intensive Care, University Hospital Rigshospitalet, Copenhagen Ø, Denmark. 2Centre of Inflammation and Metabolism, Department of Infectious Diseases M7641, University Hospital Rigshospitalet, Copenhagen Ø, Denmark. 3Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, South Wales, United Kingdom. 4Centre for Clinical Education, University of Copenhagen and the Capital Region of Denmark, Copenhagen, Denmark. 5The Heart Centre, Department of Lung Transplantation, University Hospital Rigshospitalet, Copenhagen Ø, Denmark. 6Laboratory of Molecular Medicine, Department of Clinical Immunology M7631, University Hospital Rigshospitalet, Copenhagen Ø, Denmark. 7Neurointensive Care Unit 2093, Department of Neuroanesthesiology, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Polglase GR, Miller SL, Barton SK, Kluckow M, Gill AW, Hooper SB, Tolcos M. Respiratory support for premature neonates in the delivery room: effects on cardiovascular function and the development of brain injury. Pediatr Res 2014; 75:682-8. [PMID: 24614803 DOI: 10.1038/pr.2014.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/16/2013] [Indexed: 02/02/2023]
Abstract
The transition to newborn life in preterm infants is complicated by immature cardiovascular and respiratory systems. Consequently, preterm infants often require respiratory support immediately after birth. Although aeration of the lung underpins the circulatory transition at birth, positive pressure ventilation can adversely affect cardiorespiratory function during this vulnerable period, reducing pulmonary blood flow and left ventricular output. Furthermore, pulmonary volutrauma is known to initiate pulmonary inflammatory responses, resulting in remote systemic involvement. This review focuses on the downstream consequences of positive pressure ventilation, in particular, interactions between cardiovascular output and the initiation of a systemic inflammatory cascade, on the immature brain. Recent studies have highlighted that positive pressure ventilation strategies are precursors of cerebral injury, probably mediated through cerebral blood flow instability. The presence of, or initiation of, an inflammatory cascade accentuates adverse cerebral blood flow, in addition to being a direct source of brain injury. Importantly, the degree of brain injury is dependent on the nature of the initial ventilation strategy used.
Collapse
Affiliation(s)
- Graeme R Polglase
- 1] The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia [2] Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Samantha K Barton
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Martin Kluckow
- Department of Neonatalogy, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew W Gill
- Centre for Neonatal Research and Education, The University of Western Australia, Western Australia, Australia
| | - Stuart B Hooper
- 1] The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia [2] Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Mary Tolcos
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
41
|
Summers C, Singh NR, White JF, Mackenzie IM, Johnston A, Solanki C, Balan KK, Peters AM, Chilvers ER. Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax 2014; 69:623-9. [PMID: 24706039 PMCID: PMC4055272 DOI: 10.1136/thoraxjnl-2013-204742] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rationale Acute respiratory distress syndrome (ARDS) affects over 200 000 people annually in the USA. Despite causing severe, and often refractory, hypoxaemia, the high mortality and long-term morbidity of ARDS results mainly from extra-pulmonary organ failure; however the mechanism for this organ crosstalk has not been determined. Methods Using autologous radiolabelled neutrophils we investigated the pulmonary transit of primed and unprimed neutrophils in humans. Flow cytometry of whole blood samples was used to assess transpulmonary neutrophil priming gradients in patients with ARDS, sepsis and perioperative controls. Main results Unprimed neutrophils passed through the lungs with a transit time of 14.2 s, only 2.3 s slower than erythrocytes, and with <5% first-pass retention. Over 97% of neutrophils primed ex vivo with granulocyte macrophage colony-stimulating factor were retained on first pass, with 48% still remaining in the lungs at 40 min. Neutrophils exposed to platelet-activating factor were initially retained but subsequently released such that only 14% remained in the lungs at 40 min. Significant transpulmonary gradients of neutrophil CD62L cell surface expression were observed in ARDS compared with perioperative controls and patients with sepsis. Conclusions We demonstrated minimal delay and retention of unprimed neutrophils transiting the healthy human pulmonary vasculature, but marked retention of primed neutrophils; these latter cells then ‘deprime’ and are re-released into the systemic circulation. Further, we show that this physiological depriming mechanism may fail in patients with ARDS, resulting in increased numbers of primed neutrophils within the systemic circulation. This identifies a potential mechanism for the remote organ damage observed in patients with ARDS.
Collapse
Affiliation(s)
- Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nanak R Singh
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jessica F White
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Iain M Mackenzie
- Department of Anaesthesia, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew Johnston
- Department of Anaesthesia, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chandra Solanki
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - K K Balan
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A Michael Peters
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
42
|
Mazzeo AT, Micalizzi A, Mascia L, Scicolone A, Siracusano L. Brain-heart crosstalk: the many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br J Anaesth 2014; 112:803-15. [PMID: 24638232 DOI: 10.1093/bja/aeu046] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neurogenic stress cardiomyopathy (NSC) is a well-known syndrome complicating the early phase after an acute brain injury, potentially affecting outcomes. This article is a review of recent data on the putative role of localization and lateralization of brain lesions in NSC, cardiac innervation abnormalities, and new polymorphisms and other genetic causes of the sympathetic nervous system over-activity. Concerns regarding the management of stress-related cardiomyopathy syndromes during the perioperative period are also discussed. Future clinical research should explore whether specific factors explain different patient susceptibilities to the disease and should be directed towards early identification and stratification of patients at risk, so that such patients can be more carefully monitored and appropriately managed in critical care and during the perioperative period.
Collapse
Affiliation(s)
- A T Mazzeo
- Department of Anaesthesia and Intensive Care, University of Torino, Azienda Ospedaliera Citta' della Salute e della Scienza di Torino, Presidio Molinette, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | |
Collapse
|
43
|
Polglase GR, Barton SK, Melville JM, Zahra V, Wallace MJ, Siew ML, Tolcos M, Moss TJM. Prophylactic erythropoietin exacerbates ventilation-induced lung inflammation and injury in preterm lambs. J Physiol 2014; 592:1993-2002. [PMID: 24591575 DOI: 10.1113/jphysiol.2013.270348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ventilation-induced lung injury (VILI) of preterm neonates probably contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Erythropoietin (EPO) has been suggested as a therapy for BPD. The aim of this study was to determine whether prophylactic administration of EPO reduces VILI in preterm newborn lambs. Lambs at 126 days of gestation (term is 147 days) were delivered and ventilated with a high tidal volume strategy for 15 min to cause lung injury, then received gentle ventilation until 2 h of age. Lambs were randomized to receive intravenous EPO (5000 IU kg(-1): Vent+EPO; n = 6) or phosphate-buffered saline (Vent; n = 7) soon after birth: unventilated controls (UVC; n = 8) did not receive ventilation or any treatment. Physiological parameters were recorded throughout the experimental procedure. Samples of lung were collected for histological and molecular assessment of inflammation and injury. Samples of liver were collected to assess the systemic acute phase response. Vent+EPO lambs received higher F IO 2, P aO 2 and oxygenation during the first 10 min than Vent lambs. There were no differences in physiological indices beyond this time. Total lung injury score, airway wall thickness, inflammation and haemorrhage were higher in Vent+EPO lambs than in Vent lambs. Lung inflammation and early markers of lung and systemic injury were elevated in ventilated lambs relative to unventilated lambs; EPO administration further increased lung inflammation and markers of lung and systemic injury. Prophylactic EPO exacerbates VILI, which may increase the incidence and severity of long-term respiratory disease. More studies are required before EPO can be used for lung protection in preterm infants.
Collapse
Affiliation(s)
- Graeme R Polglase
- Ritchie Centre, Monash Institute of Medical Research, PO Box 5418, Clayton, Victoria, 3168, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sperber J, Lipcsey M, Larsson A, Larsson A, Sjölin J, Castegren M. Lung protective ventilation induces immunotolerance and nitric oxide metabolites in porcine experimental postoperative sepsis. PLoS One 2013; 8:e83182. [PMID: 24349457 PMCID: PMC3861481 DOI: 10.1371/journal.pone.0083182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/22/2013] [Indexed: 01/16/2023] Open
Abstract
Low tidal volume ventilation is beneficial in patients with severe pulmonary dysfunction and would, in theory, reduce postoperative complications if implemented during routine surgery. The study aimed to investigate whether low tidal volume ventilation and high positive end-expiratory pressure (PEEP) in a large animal model of postoperative sepsis would attenuate the systemic inflammatory response and organ dysfunction. Thirty healthy pigs were randomized to three groups: Group Prot-7h, i.e. protective ventilation for 7 h, was ventilated with a tidal volume of 6 mL x kg-1 for 7 h; group Prot-5h, i.e. protective ventilation for 5 h, was ventilated with a tidal volume of 10 mL x kg-1 for 2 h, after which the group was ventilated with a tidal volume of 6 mL x kg-1; and a control group that was ventilated with a tidal volume of 10 mL x kg-1 for 7 h. In groups Prot-7h and Prot-5h PEEP was 5 cmH2O for 2 h and 10 cmH2O for 5 h. In the control group PEEP was 5 cmH2O for the entire experiment. After surgery for 2 h, postoperative sepsis was simulated with an endotoxin infusion for 5 h. Low tidal volume ventilation combined with higher PEEP led to lower levels of interleukin 6 and 10 in plasma, higher PaO2/FiO2, better preserved functional residual capacity and lower plasma troponin I as compared with animals ventilated with a medium high tidal volume and lower PEEP. The beneficial effects of protective ventilation were seen despite greater reductions in cardiac index and oxygen delivery index. In the immediate postoperative phase low VT ventilation with higher PEEP was associated with reduced ex vivo plasma capacity to produce TNF-α upon endotoxin stimulation and higher nitrite levels in urine. These findings might represent mechanistic explanations for the attenuation of systemic inflammation and inflammatory-induced organ dysfunction.
Collapse
Affiliation(s)
- Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Biochemical Structure and Function, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Ji R, Wang D, Shen H, Pan Y, Liu G, Wang P, Wang Y, Li H, Wang Y. Interrelationship among common medical complications after acute stroke: pneumonia plays an important role. Stroke 2013; 44:3436-44. [PMID: 24178914 DOI: 10.1161/strokeaha.113.001931] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Medical complications are common among patients with stroke. However, little is known about the potential interrelationship among them. In the present study, we aimed to investigate the association between common in-hospital medical complications after acute ischemic stroke (AIS) and spontaneous intracerebral hemorrhage (ICH). METHODS We analyzed patients enrolled in the China National Stroke Registry from 2007 to 2008. The occurrence of 11 common stroke-associated medical complications during acute hospitalization was prospectively registered. Multivariable analysis using generalized estimation equation was performed to assess association between medical complications in AIS and ICH cohort, respectively. RESULTS A total of 14 702 patients with AIS and 5221 patients with ICH were enrolled. The median age was 65 years (interquartile range, 55-74 years), and 38.1% were female. The median length of hospital stay was 14 days (interquartile range, 10-20 days) for AIS and 18 days (interquartile range, 11-26 days) for ICH. Pneumonia was the most common medical complication after AIS (11.4%) and ICH (16.8%). In the AIS cohort, after adjusting for potential confounders, pneumonia was significantly associated with development of gastrointestinal bleeding (adjusted odds ratio [OR], 8.35; 95% confidence interval [CI], 6.27-11.1; P<0.001), decubitus ulcer (adjusted OR, 5.31; 95% CI, 3.39-8.31; P<0.001), deep vein thrombosis (adjusted OR, 4.27; 95% CI, 2.41-7.59; P<0.001), epileptic seizure (adjusted OR, 3.96; 95% CI, 2.67-5.88; P<0.001), urinary tract infection (adjusted OR, 3.34; 95% CI, 2.73-4.10; P<0.001), atrial fibrillation/flutter (adjusted OR, 3.17; 95% CI, 2.58-3.90; P<0.001), and recurrent stroke (adjusted OR, 2.65; 95% CI, 2.07-3.40; P<0.001). Similar significant association between pneumonia and development of several nonpneumonia medical complications was verified in ICH cohort as well. CONCLUSIONS Pneumonia is closely associated with the development of several nonpneumonia medical complications after AIS and ICH.
Collapse
Affiliation(s)
- Ruijun Ji
- From the Department of Neurology, Tiantan Comprehensive Stroke Center, Tiantan Hospital, Capital Medical University, Beijing, China (R.J., Y.P., G.L., P.W., Yilong Wang, H.L., Yongjun Wang); Department of Neurology, Illinois Neurological Institute, Peoria (D.W.); and Department of Statistics and Operation Research, University of North Carolina at Chapel Hill (H.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
López-Aguilar J, Fernández-Gonzalo MS, Turon M, Quílez ME, Gómez-Simón V, Jódar MM, Blanch L. [Lung-brain interaction in the mechanically ventilated patient]. Med Intensiva 2012; 37:485-92. [PMID: 23260265 DOI: 10.1016/j.medin.2012.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 01/08/2023]
Abstract
Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term.
Collapse
Affiliation(s)
- J López-Aguilar
- Fundació Parc Taulí, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España; Institut Universitari Parc Taulí, Universitat Autònoma de Barcelona, Campus d' Excelència Internacional, Bellaterra, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Intensiva, Hospital de Sabadell, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
47
|
López-Aguilar J, Fernández-Gonzalo MS, Turon M, Quílez ME, Gómez-Simón V, Jódar MM, Blanch L. [Lung-brain interaction in the mechanically ventilated patient]. Med Intensiva 2012. [PMID: 23260265 DOI: 10.1016/j.medine.2012.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term.
Collapse
Affiliation(s)
- J López-Aguilar
- Fundació Parc Taulí, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España; Institut Universitari Parc Taulí, Universitat Autònoma de Barcelona, Campus d' Excelència Internacional, Bellaterra, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Intensiva, Hospital de Sabadell, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|