1
|
Zhao X, Zhu W, Bu Y, Li J, Hao Y, Bi Y. Effects of 6-week olanzapine treatment on serum IL-2, IL-4, IL-8, IL-10, and TNF-α levels in drug-naive individuals with first-episode schizophrenia. BMC Psychiatry 2024; 24:703. [PMID: 39425118 PMCID: PMC11490170 DOI: 10.1186/s12888-024-06163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Schizophrenia is a complex neuropsychiatric disorder. Growing evidence indicates that the activation of the inflammatory response system with interleukin (IL)-2, IL-4, IL-8, IL-10, and tumor necrosis factor-alpha (TNF-α) plays an important role in the pathogenesis of schizophrenia,. However, clinical data on cytokine levels in patients with schizophrenia treated with antipsychotics are inconsistent or inconclusive. In this study, we have examined inflammatory factors' alterations and their relationship to changes in clinical symptoms before and after olanzapine treatment of drug-naive patients with first-episode schizophrenia. METHODS We recruited 142 hospitalized patients with first-episode schizophrenia as a study group; blood samples were collected, and the patients were assessed for clinical symptoms at baseline and after 6 weeks of olanzapine treatment. One hundred individuals with no history of mental illness were also recruited as healthy controls. Blood samples were collected, and the serum levels of IL-2, IL-4, IL-8, IL-10, and TNF-α were determined using an enzyme cycling assay. The severity of clinical symptoms was assessed according to the Positive and Negative Syndrome Scale (PANSS). RESULTS Individuals with schizophrenia had lower IL-8 levels and higher IL-10 levels than healthy controls (P < 0.001). Positive correlations were detected between serum IL-2 and IL-10 concentrations and each subscale of the PANSS (all P < 0.05). Moreover, a negative correlation existed between the serum IL-8 concentration and the PANSS negative score (r = - 0.172, P = 0.040). After 6 weeks of treatment, serum IL-8 levels in the patient group were lower than at baseline (P < 0.001), whereas serum IL-10 and TNF-α levels were higher than at baseline (all P < 0.05). Therefore, serum IL-10 can be determined as an independent risk factor for outcome in patients with first-episode schizophrenia (P = 0.02, OR = 2.327). Furthermore, serum IL-2, IL-10, and TNF-α levels were significantly lower, whereas the serum IL-8 level was significantly higher (P < 0.001) in the healthy control group than in the "response" and "no-response" treatment groups respectively. CONCLUSIONS Our results indicate that serum IL-2, IL-8, IL-10, and TNF-α levels may be involved in the pathophysiological mechanisms of schizophrenia and correlate with the effects of olanzapine.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, PR China.
| | - Wenli Zhu
- Department of Psychiatry, the Fourth Hospital of Wuhu City, Wuxiashan East Road, Wuhu City, 241000, Anhui Province, PR China.
| | - Yangying Bu
- Department of Psychiatry, the Fourth Hospital of Wuhu City, Wuxiashan East Road, Wuhu City, 241000, Anhui Province, PR China
| | - Junwei Li
- Department of Psychiatry, the Fourth Hospital of Wuhu City, Wuxiashan East Road, Wuhu City, 241000, Anhui Province, PR China
| | - Yihui Hao
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, PR China
| | - Yuxiao Bi
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, PR China
| |
Collapse
|
2
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
5
|
Liu X, Shi X, Zhao H, Hou J, Zhao W, Ding W. Association of gut microbiota with depression post-myocardial infarction: A systematic evaluation and meta-analysis protocol. PLoS One 2024; 19:e0305428. [PMID: 39121108 PMCID: PMC11315350 DOI: 10.1371/journal.pone.0305428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/29/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Depression post-myocardial infarction (MI) is becoming more prevalent. The gut-brain axis (GBA), influenced by the gut microbiota, is a critical component in understanding depression post-MI. Despite the well-established connection between gut microbiota and depression post-MI, this relationship remains incompletely understood. METHODS AND ANALYSIS This protocol will follow the Preferred Reporting Items for Systematic Review and Meta-analysis Protocol (PRISMA-P) 2020 statement. Beginning from inception to October 2023, a systematic search will be conducted across eight electronic databases, including PubMed, MEDLINE, Scopus, Embase, Cochrane Clinical Trials Database, Web of Science, China National Knowledge Infrastructure, and China Biomedical Literature Database. Pre-selected studies will be independently assessed by two researchers following a standard inclusion, data extraction and quality assessment protocol. The primary outcome measures are differences in the profile of gut microbiota and rating scale scores for depression. Fixed-effects models will be used when both clinical heterogeneity and statistical heterogeneity are low, otherwise random-effects models will be used. Furthermore, subgroup analyses will be conducted on the depression severity of the participants using the same psychiatric scales employed, study type and geographic region. Random forest plot runs and research-related statistical analyses will be carried out using Rev Man V.5.3 software. EXPECTED RESULTS This study will identify the association between the gut microbiota and the onset of depression post-MI, and provide evidence for the use of probiotics as an adjunctive treatment for depression post-MI. TRIAL REGISTRATION Prospero registration number: CRD42023444026.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jiqiu Hou
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Weizhe Zhao
- Beijing University of Chinese Medicine, Beijing, China
| | - Wanli Ding
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10326-z. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
7
|
Mincic AM, Antal M, Filip L, Miere D. Modulation of gut microbiome in the treatment of neurodegenerative diseases: A systematic review. Clin Nutr 2024; 43:1832-1849. [PMID: 38878554 DOI: 10.1016/j.clnu.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS Microbiota plays an essential role in maintaining body health, through positive influences on metabolic, defensive, and trophic processes and on intercellular communication. Imbalance in intestinal flora, with the proliferation of harmful bacterial species (dysbiosis) is consistently reported in chronic illnesses, including neurodegenerative diseases (ND). Correcting dysbiosis can have a beneficial impact on the symptoms and evolution of ND. This review examines the effects of microbiota modulation through administration of probiotics, prebiotics, symbiotics, or prebiotics' metabolites (postbiotics) in patients with ND like multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). METHODS PubMed, Web of Science, Medline databases and ClinicalTrials.gov registry searches were performed using pre-/pro-/postbiotics and ND-related terms. Further references were obtained by checking relevant articles. RESULTS Although few compared to animal studies, the human studies generally show positive effects on disease-specific symptoms, overall health, metabolic parameters, on oxidative stress and immunological markers. Therapy with probiotics in various forms (mixtures of bacterial strains, fecal microbiota transplant, diets rich in fermented foods) exert favorable effects on patients' mental health, cognition, and quality of life, targeting pathogenetic ND mechanisms and inducing reparatory mechanisms at the cellular level. More encouraging results have been observed in prebiotic/postbiotic therapy in some ND. CONCLUSIONS The effects of probiotic-related interventions depend on the patients' ND stage and pre-existing allopathic medication. Further studies on larger cohorts and long term comprehensive neuropsychiatric, metabolic, biochemical testing, and neuroimaging monitoring are necessary to optimize therapeutic protocols in ND.
Collapse
Affiliation(s)
- Adina M Mincic
- Center for Systems Neuroscience, University of Oradea, Oradea, Romania; Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.
| | - Miklos Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lorena Filip
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Doina Miere
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
8
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
9
|
Rondepierre F, Meynier M, Gagniere J, Deneuvy V, Deneuvy A, Roche G, Baudu E, Pereira B, Bonnet R, Barnich N, Carvalho FA, Pezet D, Bonnet M, Jalenques I. Preclinical and clinical evidence of the association of colibactin-producing Escherichia coli with anxiety and depression in colon cancer. World J Gastroenterol 2024; 30:2817-2826. [PMID: 38899326 PMCID: PMC11185296 DOI: 10.3748/wjg.v30.i21.2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent. The gut microbiota contributes to colorectal carcinogenesis (CRC), as demonstrated with colibactin-producing Escherichia coli (CoPEC). AIM To evaluate the association between CoPEC prevalence and anxiety- and depressive-like behaviors with both preclinical and clinical approaches. METHODS Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview. Results were compared according to the CoPEC colonization. In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain. Their behavior was assessed using the Elevated Plus Maze test, the Forced Swimming Test and the Behavior recognition system PhenoTyper®. RESULTS In a limited cohort, all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis, whereas only one patient (17%) without CoPEC did. This result was confirmed in C57BL6/J wild-type mice and in a CRC susceptibility mouse model (adenomatous polyposis colimultiple intestinal neoplasia/+). Mice exhibited a significant increase in anxiety- and depressive-like behaviors after chronic infection with a CoPEC strain. CONCLUSION This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.
Collapse
Affiliation(s)
- Fabien Rondepierre
- Service de Psychiatrie de l’Adulte A et Psychologie Médicale, CHU Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Maëva Meynier
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
- NeuroDol, UMR 1107, INSERM, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Johan Gagniere
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
- Department of Digestive Surgery, CHU de Clermont-Ferrand, Clermont-Ferrand 63001, France
| | - Vincent Deneuvy
- Service de Psychiatrie de l’Adulte A et Psychologie Médicale, CHU Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Anissa Deneuvy
- Department of Digestive Surgery, CHU de Clermont-Ferrand, Clermont-Ferrand 63001, France
| | - Gwenaelle Roche
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
| | - Elodie Baudu
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
- NeuroDol, UMR 1107, INSERM, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research and Innovation, CHU Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Richard Bonnet
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
- Department of Bacteriology, CHU de Clermont-Ferrand, Clermont-Ferrand 63001, France
| | - Nicolas Barnich
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
| | | | - Denis Pezet
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
- Department of Digestive Surgery, CHU de Clermont-Ferrand, Clermont-Ferrand 63001, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071, INSERM, University of Clermont Auvergne, INRAE USC 1382, Clermont-Ferrand 63001, France
| | - Isabelle Jalenques
- Service de Psychiatrie de l’Adulte A et Psychologie Médicale, CHU Clermont-Ferrand, Clermont-Ferrand 63000, France
- Université Clermont Auvergne, INP, CNRS, Clermont Auvergne Institut Pascal, Clermont-Ferrand 63000, France
| |
Collapse
|
10
|
Xu M, Kiss AJ, Jones JA, McMurray MS, Shi H. Effect of oral tryptamines on the gut microbiome of rats-a preliminary study. PeerJ 2024; 12:e17517. [PMID: 38846751 PMCID: PMC11155674 DOI: 10.7717/peerj.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Background Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.
Collapse
Affiliation(s)
- Mengyang Xu
- Biology, Miami University, Oxford, OH, United States
| | - Andor J. Kiss
- Center for Bioinformatics and Functional Genomics, Miami University, Oxford, OH, United States
| | - J. Andrew Jones
- Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, United States
| | | | - Haifei Shi
- Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
11
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
12
|
Borgiani G, Possidente C, Fabbri C, Oliva V, Bloemendaal M, Arias Vasquez A, Dinan TG, Vieta E, Menchetti M, De Ronchi D, Serretti A, Fanelli G. The bidirectional interaction between antidepressants and the gut microbiota: are there implications for treatment response? Int Clin Psychopharmacol 2024:00004850-990000000-00121. [PMID: 38991101 DOI: 10.1097/yic.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This review synthesizes the evidence on associations between antidepressant use and gut microbiota composition and function, exploring the microbiota's possible role in modulating antidepressant treatment outcomes. Antidepressants exert an influence on measures of gut microbial diversity. The most consistently reported differences were in β-diversity between those exposed to antidepressants and those not exposed, with longitudinal studies supporting a potential causal association. Compositional alterations in antidepressant users include an increase in the Bacteroidetes phylum, Christensenellaceae family, and Bacteroides and Clostridium genera, while a decrease was found in the Firmicutes phylum, Ruminococcaceae family, and Ruminococcus genus. In addition, antidepressants attenuate gut microbial differences between depressed and healthy individuals, modulate microbial serotonin transport, and influence microbiota's metabolic functions. These include lyxose degradation, peptidoglycan maturation, membrane transport, and methylerythritol phosphate pathways, alongside gamma-aminobutyric acid metabolism. Importantly, baseline increased α-diversity and abundance of the Roseburia and Faecalibacterium genera, in the Firmicutes phylum, are associated with antidepressant response, emerging as promising biomarkers. This review highlights the potential for gut microbiota as a predictor of treatment response and emphasizes the need for further research to elucidate the mechanisms underlying antidepressant-microbiota interactions. More homogeneous studies and standardized techniques are required to confirm these initial findings.
Collapse
Affiliation(s)
- Gianluca Borgiani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincenzo Oliva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ted G Dinan
- APC Microbiome Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Eduard Vieta
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Medicine and Surgery, Kore University of Enna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Carpena MX, Barros AJ, Comelli EM, López-Domínguez L, Alves ED, Wendt A, Crochemore-Silva I, Bandsma RH, Santos IS, Matijasevich A, Borges MC, Tovo-Rodrigues L. Accelerometer-based sleep metrics and gut microbiota during adolescence: Association findings from a Brazilian population-based birth cohort. Sleep Med 2024; 114:203-209. [PMID: 38219656 DOI: 10.1016/j.sleep.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Sleep and gut microbiota are emerging putative risk factors for several physical, mental, and cognitive conditions. Sleep deprivation has been shown to be linked with unhealthy microbiome environments in animal studies. However, in humans, the results are mixed. Epidemiological studies evaluating the effect of accelerometer-based sleep measures on gut microbiome are scarce. This study aims to explore the relationship between sleep duration and efficiency with the gut microbiota in adolescence. METHODS A subsample of 352 participants from the 2004 Pelotas (Brazil) Birth Cohort Study with sleep and fecal microbiota data available were included in the study. Sleep duration and sleep efficiency were obtained from actigraphy information at 11 years old whereas microbiota information from fecal samples was collected at 12 years. The fecal microbiota was analyzed via Illumina MiSeq (16S rRNA V3-V4 region) and the UNOISE pipeline. Alpha was assessed in QIIME2. Association measures for sleep variables and microbial α-diversity, and bacterial relative abundance were assessed through generalized models (linear and logistic regression), adjusting for maternal and child variables confounders. RESULTS Adjusted models showed that sleep duration was positively associated with Simpson index of α-diversity (β = 0.003; CI95 %: 0.00004; 0.01). Both sleep duration (OR = 0.43; CI95 % 0.25; 0.74) and efficiency (OR = 0.55; CI95 % 0.38; 0.78) were associated with lower Bacteroidetes abundance. CONCLUSION Our results suggest that sleep duration and efficiency are linked to gut microbiota diversity and composition even with 1-2 years gap from exposure to outcome. The findings support the role of sleep in the gut-brain axis as well as provide insights on how to improve microbiota health.
Collapse
Affiliation(s)
| | - Aluisio Jd Barros
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil.
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, ON, Canada.
| | - Lorena López-Domínguez
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada; Translational Medicine Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Etiene Dias Alves
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil.
| | - Andrea Wendt
- Programa de Pós-Graduação Em Tecnologia Em Saúde, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil.
| | - Inacio Crochemore-Silva
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil; Postgraduate Program in Physical Education, Federal University of Pelotas, RS, Brazil.
| | - Robert Hj Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada; Translational Medicine Program, Hospital for Sick Children, Toronto, ON, Canada.
| | - Ina S Santos
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil.
| | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | | |
Collapse
|
14
|
Liang SC, Sun CK, Chang CH, Cheng YS, Tzang RF, Chiu HJ, Wang MY, Cheng YC, Hung KC. Therapeutic efficacy of probiotics for symptoms of attention-deficit hyperactivity disorder in children and adolescents: meta-analysis. BJPsych Open 2024; 10:e36. [PMID: 38268113 PMCID: PMC10897698 DOI: 10.1192/bjo.2023.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The efficacy of probiotics as a therapeutic alternative for attention-deficit hyperactivity disorder (ADHD) remain unclear. AIMS To investigate the effectiveness of probiotics for symptoms of ADHD and identify possible factors affecting their efficacy. METHOD Randomised placebo-controlled trials were identified through searching major databases from inception to April 2023, using the main keywords 'probiotics' and 'ADHD' without limitation on languages or geographic locations. The outcome of interest included improvement in total symptoms of ADHD, symptoms of inattention and hyperactivity/impulsivity, and drop-out rate. Continuous and categorical data were expressed as effect sizes based on standardised mean differences (SMDs) and odds ratios, respectively, with 95% confidence intervals. RESULTS Meta-analysis of seven trials involving 379 participants (mean age 10.37 years, range 4-18 years) showed no significant improvement in total symptoms of ADHD (SMD = 0.25; P = 0.12), symptoms of inattention (SMD = 0.14; P = 0.3) or hyperactivity/impulsivity (SMD = 0.08; P = 0.54) between the probiotic and placebo groups. Despite non-significance on subgroup analyses, there was a large difference in effect size between studies using probiotics as an adjunct to methylphenidate and those using probiotics as supplementation (SMD = 0.84 v. 0.07; P = 0.16), and a moderate difference in effect size between studies using multiple strains of probiotics and those using single-strain regimens (SMD = 0.45 v. 0.03; P = 0.19). CONCLUSIONS Current evidence shows no significant difference in therapeutic efficacy between probiotics and placebos for treatment of ADHD symptoms. However, albeit statistically non-significant, higher therapeutic efficacies associated with multiple-strain probiotics or combining probiotics with methylphenidate may provide direction for further research.
Collapse
Affiliation(s)
- Shun-Chin Liang
- Department of Management Center, Jianan Psychiatric Center, Ministry Of Health and Welfare, Taiwan; Department of Center for General Education, University of Kun Shan, Taiwan; and Department of Optometry, University of Chung Hwa of Medical Technology, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Taiwan; and School of Medicine for International Students, College of Medicine, I-Shou University, Taiwan
| | - Chih-Hua Chang
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan
| | - Ruu-Fen Tzang
- Department of Psychiatry, Mackay Memorial Hospital, Taiwan
| | - Hsien-Jane Chiu
- Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taiwan; and Institute of Hospital and Health Care Administration, National Yang-Ming University, Taiwan
| | - Ming Yu Wang
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Taiwan; and Department of Health Services Administration, China Medical University, Taiwan
| | - Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; and Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Taiwan
| |
Collapse
|
15
|
Meynier M, Daugey V, Mallaret G, Gervason S, Meleine M, Barbier J, Aissouni Y, Lolignier S, Bonnet M, Ardid D, De Vos WM, Van Hul M, Suenaert P, Brochot A, Cani PD, Carvalho FA. Pasteurized akkermansia muciniphila improves irritable bowel syndrome-like symptoms and related behavioral disorders in mice. Gut Microbes 2024; 16:2298026. [PMID: 38170633 PMCID: PMC10766393 DOI: 10.1080/19490976.2023.2298026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.
Collapse
Affiliation(s)
- Maëva Meynier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Mallaret
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Sandie Gervason
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Meleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Barbier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Youssef Aissouni
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphane Lolignier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Willem M. De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- The Akkermansia Company™, Mont-Saint-Guibert, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | | | - Patrice D. Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric A. Carvalho
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
16
|
Landini L, Dadson P, Gallo F, Honka MJ, Cena H. Microbiota in anorexia nervosa: potential for treatment. Nutr Res Rev 2023; 36:372-391. [PMID: 35875979 DOI: 10.1017/s0954422422000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anorexia nervosa (AN) is characterised by the restriction of energy intake in relation to energy needs and a significantly lowered body weight than normally expected, coupled with an intense fear of gaining weight. Treatment of AN is currently based on psychological and refeeding approaches, but their efficacy remains limited since 40% of patients after 10 years of medical care still present symptoms of AN. The intestine hosts a large community of microorganisms, called the "microbiota", which live in symbiosis with the human host. The gut microbiota of a healthy human is dominated by bacteria from two phyla: Firmicutes and, majorly, Bacteroidetes. However, the proportion in their representation differs on an individual basis and depends on many external factors including medical treatment, geographical location and hereditary, immunological and lifestyle factors. Drastic changes in dietary intake may profoundly impact the composition of the gut microbiota, and the resulting dysbiosis may play a part in the onset and/or maintenance of comorbidities associated with AN, such as gastrointestinal disorders, anxiety and depression, as well as appetite dysregulation. Furthermore, studies have reported the presence of atypical intestinal microbial composition in patients with AN compared with healthy normal-weight controls. This review addresses the current knowledge about the role of the gut microbiota in the pathogenesis and treatment of AN. The review also focuses on the bidirectional interaction between the gastrointestinal tract and the central nervous system (microbiota-gut-brain axis), considering the potential use of the gut microbiota manipulation in the prevention and treatment of AN.
Collapse
Affiliation(s)
- Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
| | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | - Fabrizio Gallo
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
| | | | - Hellas Cena
- Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
17
|
Kim JE, Kwon KC, Jin YJ, Seol A, Song HJ, Roh YJ, Kim TR, Park ES, Park GH, Park JW, Jung YS, Cho JY, Hwang DY. Compositional changes in fecal microbiota in a new Parkinson's disease model: C57BL/6-Tg(NSE-haSyn) mice. Lab Anim Res 2023; 39:30. [PMID: 37968765 PMCID: PMC10647134 DOI: 10.1186/s42826-023-00181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The gut-brain axis (GBA) in Parkinson's disease (PD) has only been investigated in limited mice models despite dysbiosis of the gut microbiota being considered one of the major treatment targets for neurodegenerative disease. Therefore, this study examined the compositional changes of fecal microbiota in novel transgenic (Tg) mice overexpressing human α-synuclein (hαSyn) proteins under the neuron-specific enolase (NSE) to analyze the potential as GBA model. RESULTS The expression level of the αSyn proteins was significantly higher in the substantia nigra and striatum of NSE-hαSyn Tg mice than the Non-Tg mice, while those of tyrosine hydroxylase (TH) were decreased in the same group. In addition, a decrease of 72.7% in the fall times and a 3.8-fold increase in the fall number was detected in NSE-hαSyn Tg mice. The villus thickness and crypt length on the histological structure of the gastrointestinal (GI) tract decreased in NSE-hαSyn Tg mice. Furthermore, the NSE-hαSyn Tg mice exhibited a significant increase in 11 genera, including Scatolibacter, Clostridium, Feifania, Lachnoclostridium, and Acetatifactor population, and a decrease in only two genera in Ligilactobacillus and Sangeribacter population during enhancement of microbiota richness and diversity. CONCLUSIONS The motor coordination and balance dysfunction of NSE-hαSyn Tg mice may be associated with compositional changes in gut microbiota. In addition, these mice have potential as a GBA model.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Ki Chun Kwon
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, South Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Gi Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Joon Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea.
| |
Collapse
|
18
|
Kandsperger S, Brunner R, Rupprecht R, Baghai TC. [Depressive Disorders in Adolescence: Current State of Studies Concerning the Microbiota-Gut-Brain Axis]. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2023; 51:419-428. [PMID: 36752092 DOI: 10.1024/1422-4917/a000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Depressive Disorders in Adolescence: Current State of Studies Concerning the Microbiota-Gut-Brain Axis Abstract. Depressive disorders increase during adolescence and often lead to significant impairment in affected individuals - despite treatment. Current research efforts aim to further investigate the pathophysiology of depression, considering the influence of gut microbiota on the gut-brain axis. The present narrative review outlines the current state of studies of the microbiota-gut-brain axis in depressive disorders as well as the direct and indirect interactions in adolescence. Besides providing promising results from animal studies, studies on the microbiota-gut-brain axis in adults suffering from depressive disorders are growing steadily. In depressed adolescents, however, the study situation is still marginal, making a recommendation for the supplementation of probiotics and prebiotics in depressed children and adolescents impossible according to the current state of research. Against the background of a very limited number of studies involving adolescents with depressive disorders, the interactive role of the microbiota-gut-brain axis in adolescent development should receive special attention in future research projects.
Collapse
Affiliation(s)
- Stephanie Kandsperger
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| | - Romuald Brunner
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| | - Rainer Rupprecht
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| | - Thomas C Baghai
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| |
Collapse
|
19
|
West ML, Hart S, Loughman A, Jacka FN, Staudacher HM, Abbaspour A, Phillipou A, Ruusunen A, Rocks T. Challenges and priorities for researching the gut microbiota in individuals living with anorexia nervosa. Int J Eat Disord 2023; 56:2001-2011. [PMID: 37548294 DOI: 10.1002/eat.24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE The gut microbiota is implicated in several symptoms and biological pathways relevant to anorexia nervosa (AN). Investigations into the role of the gut microbiota in AN are growing, with a specific interest in the changes that occur in response to treatment. Findings suggest that microbial species may be associated with some of the symptoms common in AN, such as depression and gastrointestinal disturbances (GID). Therefore, researchers believe the gut microbiota may have therapeutic relevance. Whilst research in this field is rapidly expanding, the unique considerations relevant to conducting gut microbiota research in individuals with AN must be addressed. METHOD We provide an overview of the published literature investigating the relationship between the gut microbiota and symptoms and behaviors present in AN, discuss important challenges in gut microbiota research, and offer recommendations for addressing these. We conclude by summarizing research design priorities for the field to move forward. RESULTS Several ways exist to reduce participant burden and accommodate challenges when researching the gut microbiota in individuals with AN. DISCUSSION Recommendations from this article are foreseen to encourage scientific rigor and thoughtful protocol planning for microbiota research in AN, including ways to reduce participant burden. Employing such methods will contribute to a better understanding of the role of the gut microbiota in AN pathophysiology and treatment. PUBLIC SIGNIFICANCE The field of gut microbiota research is rapidly expanding, including the role of the gut microbiota in anorexia nervosa. Thoughtful planning of future research will ensure appropriate data collection for meaningful interpretation while providing a positive experience for the participant. We present current challenges, recommendations for research design and priorities to facilitate the advancement of research in this field.
Collapse
Affiliation(s)
- Madeline L West
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Susan Hart
- Eating and Nutrition Research Group, School of Medicine, Western Sydney University, Cambelltown, Australia
- Nutrition Services, St Vincent's Health Network, Darlinghurst, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Amy Loughman
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
- James Cook University, Townsville, Queensland, Australia
| | - Heidi M Staudacher
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Afrouz Abbaspour
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutetet, Solna, Stockholm, Sweden
| | - Andrea Phillipou
- Orygen, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychological Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Mental Health, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Mental Health, Austin Health, Melbourne, Victoria, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Tetyana Rocks
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
20
|
Kouraki A, Kelly A, Vijay A, Gohir S, Astbury S, Georgopoulos V, Millar B, Walsh DA, Ferguson E, Menni C, Valdes AM. Reproducible microbiome composition signatures of anxiety and depressive symptoms. Comput Struct Biotechnol J 2023; 21:5326-5336. [PMID: 37954149 PMCID: PMC10637863 DOI: 10.1016/j.csbj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The gut microbiome is a significant contributor to mental health, with growing evidence linking its composition to anxiety and depressive disorders. Gut microbiome composition is associated with signs of anxiety and depression both in clinically diagnosed mood disorders and subclinically in the general population and may be influenced by dietary fibre intake and the presence of chronic pain. We provide an update of current evidence on the role of gut microbiome composition in depressive and anxiety disorders or symptoms by reviewing available studies. Analysing data from three independent cohorts (osteoarthritis 1 (OA1); n = 46, osteoarthritis 2 (OA2); n = 58, and healthy controls (CON); n = 67), we identified microbial composition signatures of anxiety and depressive symptoms at genus level and cross-validated our findings performing meta-analyses of our results with results from previously published studies. The genera Bifidobacterium (fixed-effect beta (95% CI) = -0.22 (-0.34, -0.10), p = 3.90e-04) and Lachnospiraceae NK4A136 group (fixed-effect beta (95% CI) = -0.09 (-0.13, -0.05), p = 2.53e-06) were found to be the best predictors of anxiety and depressive symptoms, respectively, across our three cohorts and published literature taking into account demographic and lifestyle covariates, such as fibre intake. The association with anxiety was robust in accounting for heterogeneity between cohorts and supports previous observations of the potential prophylactic effect of Bifidobacterium against anxiety symptoms.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Vasileios Georgopoulos
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Bonnie Millar
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - David Andrew Walsh
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Eamonn Ferguson
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ana M. Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
22
|
Rashnaei N, Akhavan Sepahi A, Siadat SD, Shahsavand-Ananloo E, Bahramali G. Characterization of gut microbiota profile in Iranian patients with bipolar disorder compared to healthy controls. Front Cell Infect Microbiol 2023; 13:1233687. [PMID: 37808915 PMCID: PMC10552146 DOI: 10.3389/fcimb.2023.1233687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The human gut microbiota plays a crucial role in mental health through the gut-brain axis, impacting central nervous system functions, behavior, mood, and anxiety. Consequently, it is implicated in the development of neuropsychiatric disorders. This study aimed to assess and compare the gut microbiota profiles and populations of individuals with bipolar disorder and healthy individuals in Iran. Methods Fecal samples were collected from 60 participants, including 30 bipolar patients (BPs) and 30 healthy controls (HCs), following rigorous entry criteria. Real-time quantitative PCR was utilized to evaluate the abundance of 10 bacterial genera/species and five bacterial phyla. Results Notably, Actinobacteria and Lactobacillus exhibited the greatest fold change in BPs compared to HCs at the phylum and genus level, respectively, among the bacteria with significant population differences. Ruminococcus emerged as the most abundant genus in both groups, while Proteobacteria and Bacteroidetes showed the highest abundance in BPs and HCs, respectively, at the phylum level. Importantly, our investigation revealed a lower Firmicutes/Bacteroidetes ratio, potentially serving as a health indicator, in HCs compared to BPs. Conclusion This study marks the first examination of an Iranian population and provides compelling evidence of significant differences in gut microbiota composition between BPs and HCs, suggesting a potential link between brain functions and the gut microbial profile and population.
Collapse
Affiliation(s)
- Nassir Rashnaei
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Esmaeil Shahsavand-Ananloo
- Department of Psychosomatic, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
24
|
Liu Y, Yang C, Meng Y, Dang Y, Yang L. Ketogenic diet ameliorates attention deficit hyperactivity disorder in rats via regulating gut microbiota. PLoS One 2023; 18:e0289133. [PMID: 37585373 PMCID: PMC10431618 DOI: 10.1371/journal.pone.0289133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common mental behavioral disorder in children. Alterations in gut microbiota composition are associated with neurological disorders. We aimed to investigate whether a ketogenic diet (KD) can be an alternative therapy for ADHD by altering the gut microbiota. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomly allocated to the normal diet (ND), methylphenidate (MPH), and KD groups. SHR in groups KD and MPH exhibited a significant increase in behavioral characteristics of ADHD, such as distance moved and immobility time. KD and MPH treatment led to a significant elevation in concentrations of 5-HT, AC, cAMP, and NE of brain tissue and the expression of DRD1, DAT, PKA, DARPP32, and cAMP at the protein level in WKY rats and SHR. KD and MPH significantly increased the richness and diversity of gut microbiota in SHR. The abundance of Ruminococcus_gauvreauii_group, Bacteroides, Bifidobacterium, and Blautia significantly increased, whereas that of Lactobacillus, Romboutsia, Facklamia, and Turicibacter significantly declined in the KD group compared with the ND group. The gut microbiota in the KD group of SHR mainly participated in amino acid metabolism- and sugar metabolism-related pathways. KD might alleviate behavioral disorders in ADHD by regulating gut microbiota. This study provides novel insights for the use of KD in treating ADHD.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Changhong Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingxue Meng
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lin Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
25
|
Mattoo R, Mallikarjuna S. Soil microbiome influences human health in the context of climate change. Future Microbiol 2023; 18:845-859. [PMID: 37668469 DOI: 10.2217/fmb-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Soil microbiomes continue to evolve and shape the human microbiota according to external anthropogenic and climate change effects. Ancient microbes are being exposed as a result of glacier melting, soil erosion and poor agricultural practices. Soil microbes subtly regulate greenhouse gas emissions and undergo profound alterations due to poor soil maintenance. This review highlights how the soil microbiome influences human digestion processes, mineral and vitamin production, mental health and mood stimulation. Although much about microbial functions remains unknown, increasing evidence suggests that beneficial soil microbes are vital for enhancing human tolerance to diseases and pathogens. Further research is essential to delineate the specific role of the soil microbiome in promoting human health, especially in light of the increasing anthropogenic pressures and changing climatic conditions.
Collapse
Affiliation(s)
- Rohini Mattoo
- Divecha Center for Climate Change, Indian Institute of Science, Bangalore, 560038, India
| | - Suman Mallikarjuna
- Divecha Center for Climate Change, Indian Institute of Science, Bangalore, 560038, India
| |
Collapse
|
26
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
27
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
28
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
29
|
Wei X, Xin J, Chen W, Wang J, Lv Y, Wei Y, Li Z, Ding Q, Shen Y, Xu X, Zhang X, Zhang W, Zu X. Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomed Pharmacother 2023; 163:114862. [PMID: 37167729 DOI: 10.1016/j.biopha.2023.114862] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood. A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria. In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS. Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS. This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.
Collapse
Affiliation(s)
- Xintong Wei
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiayun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanhui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhanhong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510640, China
| | - Qianqian Ding
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiuyun Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
30
|
Wasiak J, Gawlik-Kotelnicka O. Intestinal permeability and its significance in psychiatric disorders - a narrative review and future perspectives. Behav Brain Res 2023; 448:114459. [PMID: 37121278 DOI: 10.1016/j.bbr.2023.114459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The topic of increased intestinal permeability and its impact on the human body is. increasingly being addressed by researchers. It is associated with disruption of the. intestinal barrier, leading to the "leaky gut" syndrome. This can be assessed by. classical methods, determining the concentration of orally administered tracer. molecules in urine or by using biomarkers such as LPS, LBP or zonulin in blood. plasma. The presence of bacterial endotoxins in the body causes inflammation. In this. article, we review research on increased intestinal permeability in psychiatric illness. mood disorders, schizophrenia, alcohol dependence, anxiety disorders,. neurodegenerative and neurodevelopmental disorders. The results of the studies used. to assess intestinal permeability in different disease entities are presented. Possible. mechanisms for these interactions are the effects of chronic, low-grade inflammation. on the human brain, causing interruption of the brain blood barrier and dysfunction of. astrocytes and microglia. This affects brain function by reducing the number of. dopaminergic neurons, disrupting tryptophan metabolism and altering the amount of. GABA and glutamate. The links and mechanisms found may, in the future, allow earlier. detection of diseases and their targeted treatment.
Collapse
Affiliation(s)
- Jakub Wasiak
- Medical University of Lodz, Kosciuszki 4, 90-419 Lodz, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
31
|
Yang Q, Dai H, Cheng Y, Wang B, Xu J, Zhang Y, Chen Y, Xu F, Ma Q, Lin F, Wang C. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Rep 2023; 42:112346. [PMID: 37022934 DOI: 10.1016/j.celrep.2023.112346] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Nanoplastics (NPs) as contaminants in food and water have drawn increasing public attention. However, little is known about how NPs shape the gut immune landscape after injection. In this study, we fabricate NPs (∼500 nm) and microplastics (MPs) (∼2 μm) and evaluate their in vivo effects by feeding them to mice. The results suggest that NPs show a better ability to induce gut macrophage activation than MPs. In addition, NPs trigger gut interleukin-1 (IL-1)-producing macrophage reprogramming via inducing lysosomal damage. More importantly, IL-1 signaling from the intestine can affect brain immunity, leading to microglial activation and Th17 differentiation, all of which correlates with a decline in cognitive and short-term memory in NP-fed mice. Thus, this study provides insight into the mechanism of action of the gut-brain axis, delineates the way NPs reduce brain function, and highlights the importance of fixing the plastic pollution problem worldwide.
Collapse
Affiliation(s)
- Qianyu Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Cheng
- Institute of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Disease, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beilei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yitong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Lin
- Institute of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Disease, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
32
|
Han K, Ji L, Xie Q, Liu L, Wu X, He L, Shi Y, Zhang R, He G, Dong Z, Yu T. Different roles of microbiota and genetics in the prediction of treatment response in major depressive disorder. J Psychiatr Res 2023; 161:402-411. [PMID: 37023596 DOI: 10.1016/j.jpsychires.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The roles of gut microbiota and susceptibility genes in patients with major depression disorder (MDD) are not well understood. Examining the microbiome and host genetics might be helpful for clinical decision-making. Patients with MDD were recruited in this study and subsequently treated for eight weeks. We identified the differences between the population with a response after two weeks and those with a response after eight weeks. The factors that were significantly correlated with efficacy were used to predict the treatment response. The differences in the importance of microbiota and genetics in prediction were analyzed. Our study identified rs58010457 as a potentially key locus affecting the treatment effect. Different microbiota and enriched pathways might play different roles in the response after two and eight weeks. We found that the area under the curve (AUC) value was greater than 0.8 for both random forest models. The contribution of different components to the AUC was evaluated by removing genetic information, microbiota abundance, and pathway data. The gut microbiome was an important predictor of the response after eight weeks, while genetics was an important predictor of the response after two weeks. These results suggested a dynamic effect of interaction among genetics and gut microbes on treatment. Furthermore, these results provide new guidance for clinical decisions: in cases of inadequate treatment effects after two weeks, the composition of the intestinal flora can be improved by diet therapy, which could ultimately affect the efficacy.
Collapse
Affiliation(s)
- Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Qinglian Xie
- Out-patient Department of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Rong Zhang
- Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai, 200062, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai, 200062, China.
| |
Collapse
|
33
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:nu15071620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a “leaky gut.” A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota–gut–brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut–brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
|
34
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:nu15061496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
35
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
36
|
Inserra A, Giorgini G, Lacroix S, Bertazzo A, Choo J, Markopolous A, Grant E, Abolghasemi A, De Gregorio D, Flamand N, Rogers G, Comai S, Silvestri C, Gobbi G, Di Marzo V. Effects of repeated lysergic acid diethylamide (LSD) on the mouse brain endocannabinoidome and gut microbiome. Br J Pharmacol 2023; 180:721-739. [PMID: 36316276 DOI: 10.1111/bph.15977] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND PURPOSE Psychedelics elicit prosocial, antidepressant and anxiolytic effects via neuroplasticity, neurotransmission and neuro-immunomodulatory mechanisms. Whether psychedelics affect the brain endocannabinoid system and its extended version, the endocannabinoidome (eCBome) or the gut microbiome, remains unknown. EXPERIMENTAL APPROACH Adult C57BL/6N male mice were administered lysergic acid diethylamide (LSD) or saline for 7 days. Sociability was assessed in the direct social interaction and three chambers tests. Prefrontal cortex and hippocampal endocannabinoids, endocannabinoid-like mediators and metabolites were quantified via high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Neurotransmitter levels were assessed via HPLC-UV/fluorescence. Gut microbiome changes were investigated by 16S ribosomal DNA sequencing. KEY RESULTS LSD increased social preference and novelty and decreased hippocampal levels of the N-acylethanolamines N-linoleoylethanolamine (LEA), anandamide (N-arachidonoylethanolamine) and N-docosahexaenoylethanolamine (DHEA); the monoacylglycerol 1/2-docosahexaenoylglycerol (1/2-DHG); the prostaglandins D2 (PGD2 ) and F2α (PGF2α ); thromboxane 2 and kynurenine. Prefrontal eCBome mediator and metabolite levels were less affected by the treatment. LSD decreased Shannon alpha diversity of the gut microbiota, prevented the decrease in the Firmicutes:Bacteroidetes ratio observed in saline-treated mice and altered the relative abundance of the bacterial taxa Bifidobacterium, Ileibacterium, Dubosiella and Rikenellaceae RC9. CONCLUSIONS AND IMPLICATIONS The prosocial effects elicited by repeated LSD administration are accompanied by alterations of hippocampal eCBome and kynurenine levels, and the composition of the gut microbiota. Modulation of the hippocampal eCBome and kynurenine pathway might represent a mechanism by which psychedelic compounds elicit prosocial effects and affect the gut microbiome.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | - Giada Giorgini
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada.,Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Sebastien Lacroix
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Jocelyn Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Athanasios Markopolous
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | - Emily Grant
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | - Armita Abolghasemi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Geraint Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada.,Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada.,Centre NUTRISS, École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada.,Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada.,Centre NUTRISS, École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| |
Collapse
|
37
|
Chen Y, Chen X, Chen P, Chen X, Pan L, Han L, Zhu T. Alteration of the Gut Microbiota in Missed Abortion. Indian J Microbiol 2023; 63:106-119. [PMID: 37179577 PMCID: PMC10172435 DOI: 10.1007/s12088-023-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
There is a symbiotic relationship between gut microbiota and human beings. Imbalance of the gut microbiota will cause pathological damages to humans. Although many risk factors are associated with missed abortion (MA), the pathological mechanism of it is still unclear. Here, we analyzed gut flora of the patients with MA by S16 high-throughput sequencing. The possible pathogenic mechanisms of the MA were explored. Fecal samples from 14 healthy controls and 16 MA patients were collected to do 16S rRNA gene high-throughput sequencing analysis. The abundance of the Bacteroidetes, Proteobacteria, Actinobacteria, Escherichia, Streptococcus_ Salivarius, and Lactobacillus was significantly reduced in the MA group, while, the abundance of the Klebsiella was significantly increased in the MA patients. The Ruminococcaceae and [Eubacterium]_coprostanoligenes_group were found only in the specimens of the MA patients. The Fabrotax function prediction analysis showed that four photosynthesis function bacteria (cyanobateria, oxygenic_photoautotrophy, photoautotrophy, and phototrophy) only existed in the MA group. In the analysis of the BugBase microbiome function prediction, the Escherichia of the MA group is significantly reduced compared to that of the healthy controls in the items of that Contains_Mobile_Elements, Facultatively_Anaerobic, Forms_Biofilms, Potentially_Pathogenic.png, Gram_Nagative, and Stress_Tolerant_relabundance. These alterations may affect the stability of the host's immune, neural, metabolic and other systems by interfering with the balance of the gut microbiota or by the metabolites of those bacteria, causing the MA. This study explored the possible pathogenic factors of the gut microbiota of the MA. The results provide evidence to figure out the pathogenesis of the MA.
Collapse
Affiliation(s)
- Yi Chen
- Gynaecology Department, The First Hospital of Putian, Putian, 351100 Fujian China
| | - Xianqian Chen
- Gynaecology Department, The First Hospital of Putian, Putian, 351100 Fujian China
| | - Pingyu Chen
- Gynaecology Department, The First Hospital of Putian, Putian, 351100 Fujian China
| | - Xiuxia Chen
- Gynaecology Department, The First Hospital of Putian, Putian, 351100 Fujian China
| | - Lin Pan
- Gynaecology Department, The First Hospital of Putian, Putian, 351100 Fujian China
| | - Lihong Han
- Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medical Science, Putian University, 450 Dongzhen Road West, Putian, 351100 Fujian China
| | - Tang Zhu
- Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medical Science, Putian University, 450 Dongzhen Road West, Putian, 351100 Fujian China
- Yujia Biotech., D-201, 3 Juquan Road, Guangzhou, 510700 Guangdong China
| |
Collapse
|
38
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
39
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
40
|
Understanding the Connection between Gut Homeostasis and Psychological Stress. J Nutr 2023; 153:924-939. [PMID: 36806451 DOI: 10.1016/j.tjnut.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Long-term exposure to adverse life events that provoke acute or chronic psychological stress (hereinafter "stress") can negatively affect physical health and even increase susceptibility to psychological illnesses, such as anxiety and depression. As a part of the hypothalamic-pituitary-adrenal axis, corticotropin-releasing factor (CRF) released from the hypothalamus is primarily responsible for the stress response. Typically, CRF disrupts the gastrointestinal system and leads to gut microbiota dysbiosis, thereby increasing risk of functional gastrointestinal diseases, such as irritable bowel syndrome. Furthermore, CRF increases oxidative damage to the colon and triggers immune responses involving mast cells, neutrophils, and monocytes. CRF even affects the differentiation of intestinal stem cells (ISCs), causing enterochromaffin cells to secrete excessive amounts of 5-hydroxytryptamine (5-HT). Therefore, stress is often accompanied by damage to the intestinal epithelial barrier function, followed by increased intestinal permeability and bacterial translocation. There are multi-network interactions between the gut microbiota and stress, and gut microbiota may relieve the effects of stress on the body. Dietary intake of probiotics can provide energy for ISCs through glycolysis, thereby alleviating the disruption to homeostasis caused by stress, and it significantly bolsters the intestinal barrier, alleviates intestinal inflammation, and maintains endocrine homeostasis. Gut microbiota also directly affect the synthesis of hormones and neurotransmitters, such as CRF, 5-HT, dopamine, and norepinephrine. Moreover, the Mediterranean diet enhances the stress resistance to some extent by regulating the intestinal flora. This article reviews recent research on how stress damages the gut and microbiota, how the gut microbiota can improve gut health by modulating injury due to stress, and how the diet relieves stress injury by interfering with intestinal microflora. This review gives insight into the potential role of the gut and its microbiota in relieving the effects of stress via the gut-brain axis.
Collapse
|
41
|
Han K, Ji L, Wang C, Shao Y, Chen C, Liu L, Feng M, Yang F, Wu X, Li X, Xie Q, He L, Shi Y, He G, Dong Z, Yu T. The host genetics affects gut microbiome diversity in Chinese depressed patients. Front Genet 2023; 13:976814. [PMID: 36699448 PMCID: PMC9868868 DOI: 10.3389/fgene.2022.976814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome and host genetics are both associated with major depressive disorder (MDD); however, the molecular mechanisms among the associations are poorly understood, especially in the Asian, Chinese group. Our study applied linear discriminant analysis (LDA) effect size (LEfSe) and genome-wide association analysis in the cohort with both gut sequencing data and genomics data. We reported the different gut microbiota characteristics between MDD and control groups in the Chinese group and further constructed the association between host genetics and the gut microbiome. Actinobacteria and Pseudomonades were found more in the MDD group. We found significant differences in the ACE and Chao indexes of alpha diversity while no discrepancy in beta diversity. We found three associations between host genetics with microbiome features: beta diversity and rs6108 (p = 8.65 × 10-9), Actinobacteria and rs77379751 (p = 8.56 × 10-9), and PWY-5913 and rs1775633082 (p = 4.54 × 10-8). A species of the Romboutsia genus was co-associated with the species of Ruminococcus gnavus in an internetwork through four genes: METTL8, ITGB2, OTULIN, and PROSER3, with a strict threshold (p < 5 × 10-4). Furthermore, our findings suggested that the gut microbiome diversity might affect microRNA expression in the brain and influenced SERPINA5 and other spatially close genes afterward. These findings suggest new linkages between depression and gut microbiome in Asian, Chinese people, which might be mediated by genes and microRNA regulation in space distance.
Collapse
Affiliation(s)
- Ke Han
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chenliu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shao
- Asbios (Tianjin) Biotechnology Co., Ltd., Tianjin, China
| | - Changfeng Chen
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qinglian Xie
- Out-patient Department of West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Tao Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Women and Children’s Health, Shanghai, China
| |
Collapse
|
42
|
Guo Y, Chen X, Gong P, Li Z, Wu Y, Zhang J, Wang J, Yao W, Yang W, Chen F. Advances in the mechanisms of polysaccharides in alleviating depression and its complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154566. [PMID: 36610126 DOI: 10.1016/j.phymed.2022.154566] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is one of the most serious mental illnesses worldwide that endangers the health of people. The pathogenesis of depression is complex and is associated with abnormal neurotransmitter levels, activation of the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, and gut flora-related disorders. However, most of the current pharmacological therapies used to manage depression are inconsistent and are associated with side effects. Owing to their low toxicity and wide availability in nature, polysaccharides are gradually attracting attention and are being discovered to exert direct or indirect antidepressant effects. PURPOSE In this review, we have summarized the classification, dosage, and experimental models to study polysaccharides with antidepressant effects obtained from different sources. We have also reviewed the protective effects and underlying mechanisms of these polysaccharides in depression by modulating inflammation, the HPA axis, and intestinal flora. METHODS We searched the PubMed, Web of Science, and Google scholar databases and included studies that reported the use of polysaccharides in treating depression. RESULTS The unique benefits of natural polysaccharides as antidepressants lie in their potential to modulate inflammation, regulate the HPA axis, and regulate intestinal flora, giving full play to their antidepressant effects via multiple pathways and targets. CONCLUSION Natural polysaccharides may be a promising resource for use as adjuvant antidepressant therapy. Our study might therefore provide evidence for the development of polysaccharide resources as antidepressants.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zixuan Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Yanping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Jie Zhang
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
43
|
Zhang B, Dong W, Ma Z, Duan S, Han R, Lv Z, Liu X, Mao Y. Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling gut microbiota and regulating host metabolism. CNS Neurosci Ther 2022; 29:239-255. [PMID: 36261870 PMCID: PMC9804075 DOI: 10.1111/cns.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS There is growing evidence that the gut microbiota plays a significant part in the pathophysiology of chronic stress. The dysbiosis of the gut microbiota closely relates to dysregulation of microbiota-host cometabolism. Composition changes in the gut microbiota related to perturbations in metabolic profiles are vital risk factors for disease development. Hyperbaric oxygen therapy is commonly applied as an alternative or primary therapy for various diseases. Therefore, a metabolic and gut bacteria perspective is essential to uncover possible mechanisms of chronic stress and the therapeutic effect of hyperbaric oxygenation. We determined that there were significantly disturbed metabolites and disordered gut microbiota between control and chronic stress group. The study aims to offer further information on the interactions between host metabolism, gut microbiota, and chronic stress. METHODS At present, chronic unpredictable mild stress is considered the most widespread method of modeling chronic stress in animals, so we used a chronic unpredictable mild stress mouse model to characterize changes in the metabolome and microbiome of depressed mice by combining 16S rRNA gene sequencing and UHPLC-MS/MS-based metabolomics. Pearson's correlation-based clustering analysis was performed with above metabolomics and fecal microbiome data to determine gut microbiota-associated metabolites. RESULTS We found that 18 metabolites showed a significant correlation with campylobacterota. Campylobacterota associated metabolites were significantly enriched mainly in the d-glutamate and d-glutamine metabolism. Hyperoxia treatment may improve depression-like behaviors in chronic stress model mice through regulating the disrupted metabolites. CONCLUSIONS Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling Campylobacterota associated metabolites.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenwen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zhixin Ma
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ruina Han
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinru Liu
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
44
|
Lockwood MB, Fischer MJ, Silva K, Contreras BN, Zamora G, Goldstein A, Meinel M, Holden C, Lash J, Steffens A, Doorenbos A. Acceptability and feasibility of fecal microBIOME and serum metabolite sample collection in people with end-stage kidney disease and pain being treated with HemoDialysis: A pilot study (BIOME-HDp). Contemp Clin Trials Commun 2022; 29:100995. [PMID: 36105265 PMCID: PMC9464895 DOI: 10.1016/j.conctc.2022.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Pain is known to reduce hemodialysis treatment adherence, reduce quality of life, and increase mortality. The absence of effective strategies to treat pain without medications has contributed to poor health outcomes for people with end-stage kidney disease (ESKD) on hemodialysis. It is now recognized that symbiotic microbiota in the gut play a critical role in health and disease, and new evidence sheds light on the role of the microbiome in chronic pain. The pilot study protocol presented here (BIOME-HDp) employs a longitudinal repeated measures design to interrogate the effects of a nonpharmacological pain intervention on the composition and function of the gut microbiome and circulating metabolites. This pilot study is an ancillary study of the HOPE Consortium Trial to reduce pain and opioid use in hemodialysis, which is part of the NIH's Helping to End Addiction Long-term (HEAL) initiative. The BIOME-HDp pilot study will establish clinical microbiome research methods and determine the acceptability and feasibility of fecal microbiome and serum metabolite sample collection.
Collapse
Affiliation(s)
- Mark B. Lockwood
- Department of Behavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Michael J. Fischer
- Department of Internal Medicine, University of Illinois Hospital and Health Sciences Center, Medical Service, Jesse Brown VA Medical Center, Center of Innovation for Complex Chronic Health Care, Edward Hines Jr. VA Hospital, Hines, Chicago, IL, USA
| | - Kimberly Silva
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Blanca N. Contreras
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Guillermo Zamora
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Amanda Goldstein
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Monya Meinel
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Christopher Holden
- Department of Psychiatry, University of Illinois College of Medicine, UI Health, Chicago, IL, USA
| | - James Lash
- Department of Internal Medicine, University of Illinois Hospital and Health Sciences Center, Chicago, IL, USA
| | - Alana Steffens
- Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Ardith Doorenbos
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Zarei I, Koistinen VM, Kokla M, Klåvus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep 2022; 12:15018. [PMID: 36056162 PMCID: PMC9440220 DOI: 10.1038/s41598-022-19327-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Ambrin Farizah Babu
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland.
| |
Collapse
|
46
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
47
|
Repetitive transcranial direct current stimulation modulates the brain-gut-microbiome axis in obese rodents. Pharmacol Rep 2022; 74:871-889. [PMID: 35945482 PMCID: PMC9585011 DOI: 10.1007/s43440-022-00401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
Background Complex interactions between the brain, gut and adipose tissue allow to recognize obesity as a neurometabolic disorder. The recent data have shown that gut microbiota can play a potential role in obesity development. Transcranial direct current stimulation (tDCS) is a safe and non-invasive technique to modulate the activity of cerebral cortex and other connected brain areas also in context of appetite control. The objective of this study was to evaluate the effects of repetitive anodal tDCS (AtDCS) of prefrontal cortex on feeding behavior, metabolic status and selected phyla of gut microbiota in rats with obesity induced by high-calorie diet (HCD). Methods 32 female Wistar rats were equally divided into 4 subgroups depending on diet effect (lean versus obese) and type of stimulation (active versus sham tDCS versus no stimulation). Feed intake, body weight, blood lipoproteins and leptin levels as well as Firmicutes and Bacteroidetes in intestines and stool were examined. Results HCD changed feeding behavior and metabolic parameters typically for obesity-related ranges and resulted in an abundance of Firmicutes at the expanse of Bacteroidetes in the large intestine and stool. AtDCS decreased appetite, body weight, and cholesterol levels. In addition, AtDCS reduced ratio of the average number of Firmicutes to average number of Bacteroidetes in all examined tissues. Conclusions Repetitive AtDCS is not only effective for appetite restriction but can also modulate gut microbiome composition which demonstrates the existence of the brain–gut–microbiome axis and points at this technique as a promising complementary treatment for obesity. However, the effects should be further replicated in human studies.
Collapse
|
48
|
Bi C, Guo S, Hu S, Chen J, Ye M, Liu Z. The microbiota-gut-brain axis and its modulation in the therapy of depression: comparison of efficacy of conventional drugs and traditional Chinese medicine approaches. Pharmacol Res 2022; 183:106372. [PMID: 35908662 DOI: 10.1016/j.phrs.2022.106372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Depression is a common and severe mental disease that places a heavy burden on human society, which can lead to decreased cognitive function, energy loss, insomnia, and even suicide. Although medication plays an important role in improving the symptoms of depression, approximately one third of people with depression do not significantly benefit from medication and experience various adverse reactions. Recently, increasing evidence has shown that gut microbes play an important role in the occurrence and development of depression. There have been illuminating studies previously conducted on the relationship between antidepressant chemicals, traditional Chinese medicine, and the microbiota-gut-brain axis (MGBA). Therefore, in this review, we summarize the role of the MGBA in the occurrence and development of depression, especially the important role of the MGBA in the mechanism of action of antidepressants. Modulation of the MGBA is proposed to enhance the efficacy of antidepressant drugs and reduce their side effects and disease recurrence, so as to provide a new method for the treatment of depression.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijia Hu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical College, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
49
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|
50
|
van Erp JBF. Gastrointestinal tract-based implicit measures for cognition, emotion and behavior. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.899507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Implicit physiological measures such as heart rate and skin conductance convey information about someone's cognitive or affective state. Currently, gastrointestinal (GI) tract-based markers are not yet considered while both the organs involved as well as the microbiota populating the GI tract are bidirectionally connected to the brain and have a relation to emotion, cognition and behavior. This makes GI tract-based measures relevant and interesting, especially because the relation may be causal, and because they have a different timescale than current physiological measures. This perspective paper (1) presents the (mechanistic) involvement of the GI tract and its microbiota in emotion, cognition and behavior; (2) explores the added value of microbiome-based implicit measures as complementary to existing measures; and (3) sets the priorities to move forward. Five potential measures are proposed and discussed in more detail: bowel movement, short-chain fatty acids, tyrosine and tryptophan, GI tract flora composition, and cytokine levels. We conclude (1) that the involvement of the GI tract in emotion, cognition and behavior is undisputed, (2) that GI tract-based implicit measures are still in a conceptual phase of development but show potential and (3) that the first step to bring this field forward is to start validation studies in healthy humans and that are designed in the context of implicit measurements.
Collapse
|