1
|
Fountain WA, Bopp TS, Bene M, Walston JD. Metabolic dysfunction and the development of physical frailty: an aging war of attrition. GeroScience 2024; 46:3711-3721. [PMID: 38400874 PMCID: PMC11226579 DOI: 10.1007/s11357-024-01101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
The World Health Organization recently declared 2021-2030 the decade of healthy aging. Such emphasis on healthy aging requires an understanding of the biologic challenges aging populations face. Physical frailty is a syndrome of vulnerability that puts a subset of older adults at high risk for adverse health outcomes including functional and cognitive decline, falls, hospitalization, and mortality. The physiology driving physical frailty is complex with age-related biological changes, dysregulated stress response systems, chronic inflammatory pathway activation, and altered energy metabolism all likely contributing. Indeed, a series of recent studies suggests circulating metabolomic distinctions can be made between frail and non-frail older adults. For example, marked restrictions on glycolytic and mitochondrial energy production have been independently observed in frail older adults and collectively appear to yield a reliance on the highly fatigable ATP-phosphocreatine (PCr) energy system. Further, there is evidence that age-associated impairments in the primary ATP generating systems (glycolysis, TCA cycle, electron transport) yield cumulative deficits and fail to adequately support the ATP-PCr system. This in turn may acutely contribute to several major components of the physical frailty phenotype including muscular fatigue, weakness, slow walking speed and, over time, result in low physical activity and accelerate reductions in lean body mass. This review describes specific age-associated metabolic declines and how they can collectively lead to metabolic inflexibility, ATP-PCr reliance, and the development of physical frailty. Further investigation remains necessary to understand the etiology of age-associated metabolic deficits and develop targeted preventive strategies that maintain robust metabolic health in older adults.
Collapse
Affiliation(s)
- William A Fountain
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Taylor S Bopp
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Michael Bene
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Angelini A, Saha PK, Jain A, Jung SY, Mynatt RL, Pi X, Xie L. PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes. Cell Rep 2021; 37:109767. [PMID: 34610308 PMCID: PMC8658754 DOI: 10.1016/j.celrep.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and β-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA β-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Ali EM, El-Sayed SM, Elbastawisy YM. Ultrastructural aberrations, histological disruption and upregulation of the VEGF, CD34 and ASMA immunoexpression in the myocardium of anemic albino rats. Acta Histochem 2021; 123:151731. [PMID: 34052675 DOI: 10.1016/j.acthis.2021.151731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
Iron deficiency anemia (IDA) is a global health problem affecting various body systems and tissues including the cardiovascular system. Several literatures described the associated physiological and clinical changes in the cardiovascular system and heart. However, the associated structural changes were poorly investigated. Therefore, the main aim of the present work was to elucidate whether IDA induces structural changes and alterations in the VEGF, CD34 and ASMA immunoexpression in the myocardium of albino rats. Thirty adult male albino rats were divided into two groups (fifteen rats each); control and anemic. Hematological data for all animals were assessed weekly and statistically analyzed. Three weeks later, animals were sacrificed, and heart specimens were obtained and processed for light and electron microscopy. All hematological parameters showed a statistically significant decrease in the anemic group. Structurally, the anemic group showed markedly degenerated, disrupted and disorganized cardiomyocytes in addition to markedly congested blood vessels, fibroblasts, collagen fibers deposition and perivascular cellular infiltration were noted. Also, positive immunostaining for VEGF, CD34 and ASMA was observed. Ultra-structurally, the myocardium of the anemic group showed disrupted and degenerated myofibrils with degenerated nuclei, perinuclear edema, widened interstitial spaces and marked collagen deposition. Mitochondria markedly increased with abnormal shapes. IDA induced myocardial injury that may propagate to regeneration through activated CD34 progenitor cells and increased VEGF or to degeneration and fibrosis through collagen fibers deposition and enhanced ASMA. So, early diagnosis and treatment of IDA is mandatory to avoid the associated myocardial structural changes.
Collapse
|
4
|
Tatarkova Z, de Baaij JHF, Grendar M, Aschenbach JR, Racay P, Bos C, Sponder G, Hoenderop JGJ, Röntgen M, Turcanova Koprusakova M, Kolisek M. Dietary Mg 2+ Intake and the Na +/Mg 2+ Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes. Int J Mol Sci 2020; 21:E8221. [PMID: 33153064 PMCID: PMC7663288 DOI: 10.3390/ijms21218221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
Cardiomyocytes are among the most energy-intensive cell types. Interplay between the components of cellular magnesium (Mg) homeostasis and energy metabolism in cardiomyocytes is poorly understood. We have investigated the effects of dietary Mg content and presence/functionality of the Na+/Mg2+ exchanger SLC41A1 on enzymatic functions of selected constituents of the Krebs cycle and complexes of the electron transport chain (ETC). The activities of aconitate hydratase (ACON), isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (KGDH), and ETC complexes CI-CV have been determined in vitro in mitochondria isolated from hearts of wild-type (WT) and Slc41a1-/- mice fed a diet with either normal or low Mg content. Our data demonstrate that both, the type of Mg diet and the Slc41a1 genotype largely impact on the activities of enzymes of the Krebs cycle and ETC. Moreover, a compensatory effect of Slc41a1-/- genotype on the effect of low Mg diet on activities of the tested Krebs cycle enzymes has been identified. A machine-learning analysis identified activities of ICDH, CI, CIV, and CV as common predictors of the type of Mg diet and of CII as suitable predictor of Slc41a1 genotype. Thus, our data delineate the effect of dietary Mg content and of SLC41A1 functionality on the energy-production in cardiac mitochondria.
Collapse
Affiliation(s)
- Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia; (Z.T.); (P.R.)
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; (J.H.F.d.B.); (C.B.); (J.G.J.H.)
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia;
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany; (J.R.A.); (G.S.)
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia; (Z.T.); (P.R.)
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia;
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; (J.H.F.d.B.); (C.B.); (J.G.J.H.)
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany; (J.R.A.); (G.S.)
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; (J.H.F.d.B.); (C.B.); (J.G.J.H.)
| | - Monika Röntgen
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | | | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia;
| |
Collapse
|
5
|
Wanka H, Lutze P, Staar D, Grunow B, Peters BS, Peters J. An alternative renin isoform is cardioprotective by modulating mitochondrial metabolism. J Cell Mol Med 2018; 22:5991-6001. [PMID: 30247805 PMCID: PMC6237583 DOI: 10.1111/jcmm.13872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023] Open
Abstract
The renin‐angiotensin system promotes oxidative stress, apoptosis, necrosis, fibrosis, and thus heart failure. Secretory renin plays a central role in these processes, initiating the generation of angiotensins. Nevertheless, alternative renin transcripts exist, which code for a cytosolically localized renin isoform (cyto‐renin) that is cardioprotective. We tested the hypothesis that the protective effects are associated with a beneficial switch of metabolic and mitochondrial functions. To assess H9c2 cell mitochondrial parameters, we used the Seahorse XF analyser. Cardiac H9c2 cells overexpressing cyto‐renin exhibited enhanced nonmitochondrial oxygen consumption, lactate accumulation, and LDH activity, reflecting a switch to more aerobic glycolysis known as Warburg effect. Additionally, mitochondrial spare capacity and cell respiratory control ratio were enhanced, indicating an increased potential to tolerate stress conditions. Renin knockdown induced opposite effects on mitochondrial functions without influencing metabolic parameters. Thus, the protective effects of cyto‐renin are associated with an altered bioenergetic profile and an enhanced stress tolerance, which are favourable under ischaemic conditions. Therefore, cyto‐renin is a promising new target for the prevention of ischaemia‐induced myocardial damage.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Bianka Grunow
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Barbara S Peters
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| |
Collapse
|
6
|
GLP-1 Improves Diastolic Function and Survival in Heart Failure with Preserved Ejection Fraction. J Cardiovasc Transl Res 2018; 11:259-267. [DOI: 10.1007/s12265-018-9795-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
|
7
|
Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, Makarova E, Pugovics O, Dambrova M, Liepinsh E. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep 2017; 7:17528. [PMID: 29235526 PMCID: PMC5727517 DOI: 10.1038/s41598-017-17797-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 01/14/2023] Open
Abstract
Increased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.
Collapse
Affiliation(s)
- Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.,University of Latvia, Faculty of Biology, Jelgavas Str. 1, Riga, LV-1004, Latvia
| | - Kristine Volska
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.,Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Unigunde Antone
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Elina Makarova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.,Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| |
Collapse
|
8
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Rüdebusch J, Benkner A, Poesch A, Dörr M, Völker U, Grube K, Hammer E, Felix SB. Dynamic adaptation of myocardial proteome during heart failure development. PLoS One 2017; 12:e0185915. [PMID: 28973020 PMCID: PMC5626523 DOI: 10.1371/journal.pone.0185915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Heart failure (HF) development is characterized by huge structural changes that are crucial for disease progression. Analysis of time dependent global proteomic adaptations during HF progression offers the potential to gain deeper insights in the disease development and identify new biomarker candidates. Therefore, hearts of TAC (transverse aortic constriction) and sham mice were examined by cardiac MRI on either day 4, 14, 21, 28, 42, and 56 after surgery (n = 6 per group/time point). At each time point, proteomes of the left (LV) and right ventricles (RV) of TAC and sham mice were analyzed by mass spectrometry (MS). In TAC mice, systolic LV heart function worsened from day 4 to day 14, remained on a stable level from day 14 to day 42, and showed a further pronounced decline at day 56. MS analysis identified in the LV 330 and in RV 246 proteins with altered abundance over time (TAC vs. sham, fc≥±2). Functional categorization of proteins disclosed the time-dependent alteration of different pathways. Heat shock protein beta-7 (HSPB7) displayed differences in abundance in tissue and serum at an early stage of HF. This study not only provides an overview of the time dependent molecular alterations during transition to HF, but also identified HSPB7 as a novel blood biomarker candidate for the onset of cardiac remodeling.
Collapse
Affiliation(s)
- Julia Rüdebusch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Alexander Benkner
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Axel Poesch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Elke Hammer
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- * E-mail: (SBF); (EH)
| | - Stephan B. Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- * E-mail: (SBF); (EH)
| |
Collapse
|
10
|
von Haehling S, Gremmler U, Krumm M, Mibach F, Schön N, Taggeselle J, Dahm JB, Angermann CE. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: The PrEP Registry. Clin Res Cardiol 2017; 106:436-443. [PMID: 28229219 PMCID: PMC5442200 DOI: 10.1007/s00392-016-1073-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/23/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron deficiency (ID) and anaemia are common in heart failure (HF). The prospective, observational PReP registry (Prävalenz des Eisenmangels bei Patienten mit Herzinsuffizienz) studied prevalence and clinical impact of ID and anaemia in HF outpatients attending cardiology practices in Germany. METHODS AND RESULTS A total of 42 practices enrolled consecutive patients with chronic HF [left ventricular ejection fraction (LVEF) ≤45%]. ID was defined as serum ferritin <100 µg/l, or serum ferritin ≥100 µg/l/<300 µg/l plus transferrin saturation <20%, and anaemia as haemoglobin <13 g/dl (12 g/dl) in men (women). Exercise capacity was assessed using spiroergometry (69.4%) or 6-min walk test (30.4%). Amongst 1198 PReP-participants [69.0 ± 10.6 years, 25.3% female, New York Heart Association (NYHA) class 2.4 ± 0.5, LVEF 35.3 ± 7.2%], ID was found in 42.5% (previously unknown in all), and anaemia in 18.9% (previously known in 4.8%). ID was associated with female gender, lower body weight and haemoglobin, higher NYHA class and natriuretic peptide (NP) levels (all p < 0.05). ID was also more common in anaemic than non-anaemic patients (p < 0.0001), and 9.8% of PrEP-participants had both, ID and anaemia. On spiroergometry, ID independently predicted maximum exercise capacity even after multivariable adjustment, including anaemia (p = 0.0004). In all PrEP-participants, ID predicted reduced physical performance (adjusted for age, gender, anaemia, serum creatinine, C-reactive protein, LVEF, and NP level). CONCLUSIONS Despite high prevalence, ID was previously unknown in all PrEP-participants, and anaemia was often unappreciated. Given the clinical relevance, treatability, and independent association with reduced physical performance, ID should be considered more in real-world ambulatory healthcare settings and ID-screening be advocated to cardiologists in such populations.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical School, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Uwe Gremmler
- MVZ Ambulantes kardiologisches Zentrum, Peine, Germany
| | - Michael Krumm
- MVZ Ambulantes kardiologisches Zentrum, Peine, Germany
| | - Frank Mibach
- Kardiologische Praxis, Gesundheitszentrum Klosterforst, Itzehoe, Germany
| | - Norbert Schön
- Kardiologisch-angiologische Praxis, Mühldorf am Inn, Germany
| | | | - Johannes B Dahm
- Praxis und Klinik für Kardiologie und Angiologie, Herz- und Gefässzentrum, Krankenhaus Neu-Bethlehem, Göttingen, Germany
| | - Christiane E Angermann
- Department of Medicine I, Comprehensive Heart Failure Center, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Mitophagy and Mitochondrial Quality Control Mechanisms in the Heart. CURRENT PATHOBIOLOGY REPORTS 2017; 5:161-169. [PMID: 29082112 DOI: 10.1007/s40139-017-0133-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Mitochondrial homeostasis and quality control are essential to maintenance of cardiac function and a disruption of this pathway can lead to deleterious cardiac consequences. RECENT FINDINGS Mitochondrial quality control has been described as a major homeostatic mechanism in cell. Recent studies highlighted that an impairment of mitochondrial quality control in different cell or mouse models is linked to cardiac dysfunction. Moreover, some conditions as aging, genetic mutations or obesity have been associated with mitochondrial quality control alteration leading to an accumulation of damaged mitochondria responsible for increased production of reactive oxygen species, metabolic inflexibility, and inflammation, all of which can have sustained effects on cardiac cell function and even cell death. SUMMARY In this review, we describe the major mechanisms of mitochondrial quality control, factors that can impair mitochondrial quality control, and the consequences of disrupted mitochondrial quality control.
Collapse
|
12
|
Baig S, Parvaresh Rizi E, Shabeer M, Chhay V, Mok SF, Loh TP, Magkos F, Vidal-Puig A, Tai ES, Khoo CM, Toh SA. Metabolic gene expression profile in circulating mononuclear cells reflects obesity-associated metabolic inflexibility. Nutr Metab (Lond) 2016; 13:74. [PMID: 27800008 PMCID: PMC5081666 DOI: 10.1186/s12986-016-0135-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Obesity is associated with an impaired ability to switch from fatty acid to glucose oxidation during the fasted to fed transition, particularly in skeletal muscle. However, whether such metabolic inflexibility is reflected at the gene transcription level in circulatory mononuclear cells (MNC) is not known. METHODS The whole-body respiratory quotient (RQ) and transcriptional regulation of genes involved in carbohydrate and lipid metabolism in MNC were measured during fasting and in response (up to 6 h) to high-carbohydrate and high-fat meals in nine lean insulin-sensitive and nine obese insulin-resistant men. RESULTS Compared to lean subjects, obese subjects had an impaired ability to increase RQ and switch from fatty acid to glucose oxidation following the high-carbohydrate meal (interaction term P < 0.05). This was accompanied by an impaired induction of genes involved in oxidative metabolism of glucose in MNC, such as phosphofructokinase (PFK), pyruvate dehydrogenase kinase 4 (PDK4), peroxisome proliferator-activated receptor alpha (PPARα) and uncoupling protein 3 (UCP3) and increased expression of genes involved in fatty acid metabolism, such as fatty acid translocase (FAT/CD36) and fatty acid synthase (FASN) (P < 0.05). On the contrary, there were no differences in the gene expression profiles between lean and obese subjects following the high-fat meal. CONCLUSIONS Postprandial expression profiles of genes involved in glucose and fatty acid metabolism in the MNC reflect the differing metabolic flexibility phenotypes of our cohort of lean and obese individuals. These differences in metabolic flexibility between the lean and obese are elicited by an acute meal challenge that is rich in carbohydrate but not fat.
Collapse
Affiliation(s)
- Sonia Baig
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Ehsan Parvaresh Rizi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore.,Department of Medicine, National University Health System, Singapore, Singapore
| | - Muhammad Shabeer
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Vanna Chhay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Shao Feng Mok
- Department of Medicine, National University Health System, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Health System, Singapore, Singapore
| | - Faidon Magkos
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute of Clinical Sciences (SICS), ASTAR, Singapore, Singapore
| | | | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore.,Department of Medicine, National University Health System, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore.,Department of Medicine, National University Health System, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore.,Department of Medicine, National University Health System, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
13
|
Liu Y, Yu M, Zhang Z, Yu Y, Chen Q, Zhang W, Zhao X. Blockade of receptor for advanced glycation end products protects against systolic overload-induced heart failure after transverse aortic constriction in mice. Eur J Pharmacol 2016; 791:535-543. [PMID: 27393458 DOI: 10.1016/j.ejphar.2016.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 11/15/2022]
Abstract
Heart failure is the consequence of sustained, abnormal neurohormonal and mechanical stress and remains a leading cause of death worldwide. The aim of this work was to identify whether blockade of receptor for advanced glycation end products (RAGE) protected against systolic overload-induced heart failure and investigate the possible underlying mechanism. It was found that RAGE mRNA and protein expression was up-regulated in cardiac tissues from mice subjected to pressure overload by transverse aortic constriction (TAC). Importantly, inhibition of RAGE by treatment with soluble RAGE (sRAGE) or FPS-ZM1 (a high-affinity RAGE-specific inhibitor) for 8 weeks attenuated cardiac remodeling (including cardiac hypertrophy and fibrosis), and dysfunction in mice exposed to TAC. Furthermore, treatment of TAC mice with sRAGE or FPS-ZM1 enhanced phosphorylation of AMPK and reduced phosphorylation of mTOR and protein expression of NFκB p65 in cardiac tissues. In addition, treatment of TAC mice with sRAGE or FPS-ZM1 abated oxidative stress, attenuated endoplasmic reticulum stress, and suppressed inflammation in cardiac tissues. These data demonstrated the benefits of blocking RAGE on the progression of systolic overload-induced heart failure in mice, which was possibly through modulating AMPK/mTOR and NFκB pathways.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Jinling Hospital, Nanjing University, Zhongshan East Road 305, Nanjing 210002, China; Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Manli Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhigang Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunhua Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qi Chen
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Rocha LADO, Oliveira KS, Migliolo L, Franco OL. Effect of Moderate Exercise on Mitochondrial Proteome in Heart Tissue of Spontaneous Hypertensive Rats. Am J Hypertens 2016; 29:696-704. [PMID: 26391256 DOI: 10.1093/ajh/hpv160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/19/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hypertension is a multifactorial disease and an important independent risk factor for cardiovascular diseases. Exercise training is one of the most important non-pharmacological therapeutic strategies for treating hypertension; however, mitochondrial adaptations in the hypertensive heart as a result of exercise remain obscure. METHODS Aiming to explore the effects of exercise training of moderate intensity on the mitochondrial proteome in hypertensive animal models before and after the pathology developed, 20 isogenic male spontaneous hypertensive rats (SHRs) were randomly divided into 2 groups, 1 with animals of 6 and 40 weeks of age. Animals were submitted to exercise training on a treadmill for 30 minutes, 5 days per week for 4 weeks at 90% of the anaerobic threshold (AT). A mitochondrial sample extract from the left ventricle was prepared and further analyzed using LC-MS/MS. RESULTS Proteomics analyses led to the identification of 143 proteins in all groups. The data showed a considerable and clear increase in the abundance of NADH dehydrogenase and ATP synthase, as well as voltage-dependent anion channel (VDAC) type 1 decrease in exercise groups. When exercise effects were compared, differential proteins expressed only in exercise increased, such as cytochrome c oxidase, alcohol dehydrogenase, and NADH dehydrogenase [ubiquinone] 1 alpha subcomplex. CONCLUSIONS The results support the proposition that moderate exercise induces a beneficial adaptation in left ventricle myocardial mitochondria in order to attenuate the decrease in ATP production in hypertensive models.
Collapse
Affiliation(s)
- Luiz Antonio de Oliveira Rocha
- Curso de Educação Física, Universidade Católica de Brasilia, Brasília, DF, Brazil; Curso de pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; Centro de Analises Proteomicas e Bioquimicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Kleber Souza Oliveira
- Centro de Analises Proteomicas e Bioquimicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Ludovico Migliolo
- Centro de Analises Proteomicas e Bioquimicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Octavio Luiz Franco
- Curso de pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; Centro de Analises Proteomicas e Bioquimicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
15
|
Brown DR, Samsa LA, Qian L, Liu J. Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis 2016; 3. [PMID: 27335817 PMCID: PMC4913704 DOI: 10.3390/jcdd3020013] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.
Collapse
Affiliation(s)
- Daniel R. Brown
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leigh Ann Samsa
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-962-0326; Fax: +1-919- 843-2063
| |
Collapse
|
16
|
Hamilton DJ, Zhang A, Li S, Cao TN, Smith JA, Vedula I, Cordero-Reyes AM, Youker KA, Torre-Amione G, Gupte AA. Combination of angiotensin II and l-NG-nitroarginine methyl ester exacerbates mitochondrial dysfunction and oxidative stress to cause heart failure. Am J Physiol Heart Circ Physiol 2016; 310:H667-80. [PMID: 26747502 DOI: 10.1152/ajpheart.00746.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction has been implicated as a cause of energy deprivation in heart failure (HF). Herein, we tested individual and combined effects of two pathogenic factors of nonischemic HF, inhibition of nitric oxide synthesis [with l-N(G)-nitroarginine methyl ester (l-NAME)] and hypertension [with angiotensin II (AngII)], on myocardial mitochondrial function, oxidative stress, and metabolic gene expression. l-NAME and AngII were administered individually and in combination to mice for 5 wk. Although all treatments increased blood pressure and reduced cardiac contractile function, the l-NAME + AngII group was associated with the most severe HF, as characterized by edema, hypertrophy, oxidative stress, increased expression of Nppa and Nppb, and decreased expression of Atp2a2 and Camk2b. l-NAME + AngII-treated mice exhibited robust deterioration of cardiac mitochondrial function, as observed by reduced respiratory control ratios in subsarcolemmal mitochondria and reduced state 3 levels in interfibrillar mitochondria for complex I but not for complex II substrates. Cardiac myofibrils showed reduced ADP-supported and oligomycin-inhibited oxygen consumption. Mitochondrial functional impairment was accompanied by reduced mitochondrial DNA content and activities of pyruvate dehydrogenase and complex I but increased H2O2 production and tissue protein carbonyls in hearts from AngII and l-NAME + AngII groups. Microarray analyses revealed the majority of the gene changes attributed to the l-NAME + AngII group. Pathway analyses indicated significant changes in metabolic pathways, such as oxidative phosphorylation, mitochondrial function, cardiac hypertrophy, and fatty acid metabolism in l-NAME + AngII hearts. We conclude that l-NAME + AngII is associated with impaired mitochondrial respiratory function and increased oxidative stress compared with either l-NAME or AngII alone, resulting in nonischemic HF.
Collapse
Affiliation(s)
- Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas; Houston Methodist Department of Medicine, Weill Cornell Medical College, Houston, Texas
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Tram N Cao
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Jessie A Smith
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Andrea M Cordero-Reyes
- Houston Methodist Department of Cardiology, Weill Cornell Medical College, Houston, Texas
| | - Keith A Youker
- Houston Methodist Department of Cardiology, Weill Cornell Medical College, Houston, Texas
| | - Guillermo Torre-Amione
- Houston Methodist Department of Cardiology, Weill Cornell Medical College, Houston, Texas; Catedra de Cardiologia y Medicina Vascular, Tecnologico de Monterrey, Nuevo Leon, Mexico
| | - Anisha A Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas;
| |
Collapse
|
17
|
Tricò D, Baldi S, Frascerra S, Venturi E, Marraccini P, Neglia D, Natali A. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy. J Diabetes Res 2016; 2016:3906425. [PMID: 26798650 PMCID: PMC4699228 DOI: 10.1155/2016/3906425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217.
Collapse
MESH Headings
- Aged
- Biomarkers/blood
- Blood Flow Velocity
- Blood Glucose/metabolism
- Cardiac Pacing, Artificial
- Cardiomyopathy, Dilated/blood
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Case-Control Studies
- Coronary Circulation
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/metabolism
- Energy Metabolism
- Fatty Acids, Nonesterified/metabolism
- Female
- Glucose Intolerance/blood
- Glucose Intolerance/diagnosis
- Glucose Intolerance/metabolism
- Humans
- Lactic Acid/metabolism
- Male
- Middle Aged
- Myocardium/metabolism
- Oleic Acid/metabolism
- Oxidation-Reduction
- Oxygen/blood
- Ventricular Function, Left
Collapse
Affiliation(s)
- Domenico Tricò
- Dipartimento di Medicina Clinica e Sperimentale, Via Roma 67, 56126 Pisa, Italy
| | - Simona Baldi
- Dipartimento di Medicina Clinica e Sperimentale, Via Roma 67, 56126 Pisa, Italy
| | - Silvia Frascerra
- Dipartimento di Medicina Clinica e Sperimentale, Via Roma 67, 56126 Pisa, Italy
| | - Elena Venturi
- Dipartimento di Medicina Clinica e Sperimentale, Via Roma 67, 56126 Pisa, Italy
| | - Paolo Marraccini
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Danilo Neglia
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Andrea Natali
- Dipartimento di Medicina Clinica e Sperimentale, Via Roma 67, 56126 Pisa, Italy
- *Andrea Natali:
| |
Collapse
|
18
|
Li Y, Huang T, Zhang X, Zhong M, Walker NN, He J, Berr SS, Keller SR, Kundu BK. Determination of Fatty Acid Metabolism with Dynamic [
11
C]Palmitate Positron Emission Tomography of Mouse Heart In Vivo. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yinlin Li
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Tao Huang
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Xinyue Zhang
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Min Zhong
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Natalie N. Walker
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiang He
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Stuart S. Berr
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Susanna R. Keller
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Bijoy K. Kundu
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Abstract
The heart is a very special organ in the body and has a high requirement for metabolism due to its constant workload. As a consequence, to provide a consistent and sufficient energy a high steady-state demand of metabolism is required by the heart. When delicately balanced mechanisms are changed by physiological or pathophysiological conditions, the whole system's homeostasis will be altered to a new balance, which contributes to the pathologic process. So it is no wonder that almost every heart disease is related to metabolic shift. Furthermore, aging is also found to be related to the reduction in mitochondrial function, insulin resistance, and dysregulated intracellular lipid metabolism. Adenosine monophosphate-activated protein kinase (AMPK) functions as an energy sensor to detect intracellular ATP/AMP ratio and plays a pivotal role in intracellular adaptation to energy stress. During different pathology (like myocardial ischemia and hypertension), the activation of cardiac AMPK appears to be essential for repairing cardiomyocyte's function by accelerating ATP generation, attenuating ATP depletion, and protecting the myocardium against cardiac dysfunction and apoptosis. In this overview, we will talk about the normal heart's metabolism, how metabolic shifts during aging and different pathologies, and how AMPK regulates metabolic changes during these conditions.
Collapse
Affiliation(s)
- Yina Ma
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| |
Collapse
|
20
|
Seymour AML, Giles L, Ball V, Miller JJ, Clarke K, Carr CA, Tyler DJ. In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 2015; 106:249-60. [PMID: 25750189 PMCID: PMC4400188 DOI: 10.1093/cvr/cvv101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/02/2015] [Indexed: 01/22/2023] Open
Abstract
Aims Left ventricular hypertrophy is an adaptive response of the heart to chronic mechanical overload and can lead to functional deterioration and heart failure. Changes in cardiac energy metabolism are considered as key to the hypertrophic remodelling process. The concurrence of obesity and hypertrophy has been associated with contractile dysfunction, and this work therefore aimed to investigate the in vivo structural, functional, and metabolic remodelling that occurs in the hypertrophied heart in the setting of a high-fat, high-sucrose, Western diet (WD). Methods and results Following induction of cardiac hypertrophy through abdominal aortic banding, male Sprague Dawley rats were exposed to either a standard diet or a WD (containing 45% fat and 16% sucrose) for up to 14 weeks. Cardiac structural and functional characteristics were determined by CINE MRI, and in vivo metabolism was investigated using hyperpolarized 13C-labelled pyruvate. Cardiac hypertrophy was observed at all time points, irrespective of dietary manipulation, with no evidence of cardiac dysfunction. Pyruvate dehydrogenase flux was unchanged in the hypertrophied animals at any time point, but increased incorporation of the 13C label into lactate was observed by 9 weeks and maintained at 14 weeks, indicative of enhanced glycolysis. Conclusion Hypertrophied hearts revealed little evidence of a switch towards increased glucose oxidation but rather an uncoupling of glycolytic metabolism from glucose oxidation. This was maintained under conditions of dietary stress provided by a WD but, at this compensated phase of hypertrophy, did not result in any contractile dysfunction.
Collapse
Affiliation(s)
- Anne-Marie L Seymour
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Lucia Giles
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Vicky Ball
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
21
|
Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2015; 159:1253-62. [PMID: 25480291 DOI: 10.1016/j.cell.2014.11.034] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 12/18/2022]
Abstract
Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility.
Collapse
Affiliation(s)
- Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Li Y, Huang T, Zhang X, Zhong M, Walker NN, He J, Berr SS, Keller SR, Kundu BK. Determination of Fatty Acid Metabolism with Dynamic [11C]Palmitate Positron Emission Tomography of Mouse Heart In Vivo. Mol Imaging 2015; 14:516-25. [PMID: 26462138 PMCID: PMC4625801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
The goal of this study was to establish a quantitative method for measuring fatty acid (FA) metabolism with partial volume (PV) and spill-over (SP) corrections using dynamic [(11)C]palmitate positron emission tomographic (PET) images of mouse heart in vivo. Twenty-minute dynamic [(11)C]palmitate PET scans of four 18- to 20-week-old male C57BL/6 mice under isoflurane anesthesia were performed using a Focus F-120 PET scanner. A model-corrected blood input function, by which the input function with SP and PV corrections and the metabolic rate constants (k1-k5) are simultaneously estimated from the dynamic [(11)C]palmitate PET images of mouse hearts in a four-compartment tracer kinetic model, was used to determine rates of myocardial fatty acid oxidation (MFAO), myocardial FA esterification, myocardial FA use, and myocardial FA uptake. The MFAO thus measured in C57BL/6 mice was 375.03 ± 43.83 nmol/min/g. This compares well to the MFAO measured in perfused working C57BL/6 mouse hearts ex vivo of about 350 nmol/g/min and 400 nmol/min/g. FA metabolism was measured for the first time in mouse heart in vivo using dynamic [(11)C]palmitate PET in a four-compartment tracer kinetic model. MFAO obtained with this model was validated by results previously obtained with mouse hearts ex vivo.
Collapse
Affiliation(s)
- Yinlin Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
- School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Tao Huang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Xinyue Zhang
- School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Min Zhong
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Natalie N. Walker
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, VA, USA
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Stuart S. Berr
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Susanna R. Keller
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, VA, USA
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
23
|
Quinones QJ, Ma Q, Zhang Z, Barnes BM, Podgoreanu MV. Organ protective mechanisms common to extremes of physiology: a window through hibernation biology. Integr Comp Biol 2014; 54:497-515. [PMID: 24848803 DOI: 10.1093/icb/icu047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Supply and demand relationships govern survival of animals in the wild and are also key determinants of clinical outcomes in critically ill patients. Most animals' survival strategies focus on the supply side of the equation by pursuing territory and resources, but hibernators are able to anticipate declining availability of nutrients by reducing their energetic needs through the seasonal use of torpor, a reversible state of suppressed metabolic demand and decreased body temperature. Similarly, in clinical medicine the majority of therapeutic interventions to care for critically ill or trauma patients remain focused on elevating physiologic supply above critical thresholds by increasing the main determinants of delivery of oxygen to the tissues (cardiac output, perfusion pressure, hemoglobin concentrations, and oxygen saturation), as well as increasing nutritional support, maintaining euthermia, and other general supportive measures. Techniques, such as induced hypothermia and preconditioning, aimed at diminishing a patient's physiologic requirements as a short-term strategy to match reduced supply and to stabilize their condition, are few and underutilized in clinical settings. Consequently, comparative approaches to understand the mechanistic adaptations that suppress metabolic demand and alter metabolic use of fuel as well as the application of concepts gleaned from studies of hibernation, to the care of critically ill and injured patients could create novel opportunities to improve outcomes in intensive care and perioperative medicine.
Collapse
Affiliation(s)
- Quintin J Quinones
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Qing Ma
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Zhiquan Zhang
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Brian M Barnes
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Mihai V Podgoreanu
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA*Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
24
|
Abstract
Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | |
Collapse
|
25
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 544] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
26
|
Vaillant F, Lauzier B, Poirier I, Gélinas R, Rivard ME, Robillard Frayne I, Thorin E, Des Rosiers C. Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am J Physiol Heart Circ Physiol 2013; 306:H78-87. [PMID: 24186097 DOI: 10.1152/ajpheart.00465.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mice, genetic background is known to influence various parameters, including cardiac function. Its impact on cardiac energy substrate metabolism-a factor known to be closely related to function and contributes to disease development-is, however, unclear. This was examined in this study. In commonly used control mouse substrains SJL/JCrNTac, 129S6/SvEvTac, C57Bl/6J, and C57Bl/6NCrl, we assessed the functional and metabolic phenotypes of 3-mo-old working mouse hearts perfused ex vivo with physiological concentrations of (13)C-labeled carbohydrates (CHO) and a fatty acid (FA). Marked variations in various functional and metabolic flux parameters were observed among all mouse substrains, although the pattern observed differed for these parameters. For example, among all strains, C57Bl/6NCrl hearts had a greater cardiac output (+1.7-fold vs. SJL/JCrNTac and C57Bl/6J; P < 0.05), whereas at the metabolic level, 129S6/SvEvTac hearts stood out by displaying (vs. all 3 strains) a striking shift from exogenous FA (~-3.5-fold) to CHO oxidation as well as increased glycolysis (+1.7-fold) and FA incorporation into triglycerides (+2-fold). Correlation analyses revealed, however, specific linkages between 1) glycolysis, FA oxidation, and pyruvate metabolism and 2) cardiac work, oxygen consumption with heart rate, respectively. This implies that any genetically determined factors affecting a given metabolic flux parameter may impact on the associated functional parameters. Our results emphasize the importance of selecting the appropriate control strain for cardiac metabolic studies using transgenic mice, a factor that has often been neglected. Understanding the molecular mechanisms underlying the diversity of strain-specific cardiac metabolic and functional profiles, particularly the 129S6/SvEvTac, may ultimately disclose new specific metabolic targets for interventions in heart disease.
Collapse
Affiliation(s)
- Fanny Vaillant
- Departments of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang Y, Liu J, Li Y, Chang H, Li G, Xu B, Chen X, Li W, Xia W, Xu S. Prenatal exposure to bisphenol A at the reference dose impairs mitochondria in the heart of neonatal rats. J Appl Toxicol 2013; 34:1012-22. [DOI: 10.1002/jat.2924] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Ying Jiang
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Juan Liu
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Huailong Chang
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Gengqi Li
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Xi Chen
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Weiyong Li
- Institute of Clinical Pharmacy, Union Hospital, Tongji Medical College; HuaZhong University of Science and Technology; Wuhan 430030 China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environment Health (Incubation); Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection; School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
28
|
Prévilon M, Le Gall M, Chafey P, Federeci C, Pezet M, Clary G, Broussard C, François G, Mercadier JJ, Rouet-Benzineb P. Comparative differential proteomic profiles of nonfailing and failing hearts after in vivo thoracic aortic constriction in mice overexpressing FKBP12.6. Physiol Rep 2013; 1:e00039. [PMID: 24303125 PMCID: PMC3834996 DOI: 10.1002/phy2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic pressure overload (PO) induces pathological left ventricular hypertrophy (LVH) leading to congestive heart failure (HF). Overexpression of FKBP12.6 (FK506-binding protein [K]) in mice should prevent Ca2+-leak during diastole and may improve overall cardiac function. In order to decipher molecular mechanisms involved in thoracic aortic constriction (TAC)-induced cardiac remodeling and the influence of gender and genotype, we performed a proteomic analysis using two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and bioinformatics techniques to identify alterations in characteristic biological networks. Wild-type (W) and K mice of both genders underwent TAC. Thirty days post-TAC, the altered cardiac remodeling was accompanied with systolic and diastolic dysfunction in all experimental groups. A gender difference in inflammatory protein expression (fibrinogen, α-1-antitrypsin isoforms) and in calreticulin occurred (males > females). Detoxification enzymes and cytoskeletal proteins were noticeably increased in K mice. Both non- and congestive failing mouse heart exhibited down- and upregulation of proteins related to mitochondrial function and purine metabolism, respectively. HF was characterized by a decrease in enzymes related to iron homeostasis, and altered mitochondrial protein expression related to fatty acid metabolism, glycolysis, and redox balance. Moreover, two distinct differential protein profiles characterized TAC-induced pathological LVH and congestive HF in all TAC mice. FKBP12.6 overexpression did not influence TAC-induced deleterious effects. Huntingtin was revealed as a potential mediator for HF. A broad dysregulation of signaling proteins associated with congestive HF suggested that different sets of proteins could be selected as useful biomarkers for HF progression and might predict outcome in PO-induced pathological LVH.
Collapse
|
29
|
Tilton SC, Karin NJ, Webb-Robertson BJM, Waters KM, Mikheev V, Lee KM, Corley RA, Pounds JG, Bigelow DJ. Impaired transcriptional response of the murine heart to cigarette smoke in the setting of high fat diet and obesity. Chem Res Toxicol 2013; 26:1034-42. [PMID: 23786483 PMCID: PMC4234196 DOI: 10.1021/tx400078b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Smoking and obesity are each well-established risk factors for cardiovascular heart disease, which together impose earlier onset and greater severity of disease. To identify early signaling events in the response of the heart to cigarette smoke exposure within the setting of obesity, we exposed normal weight and high fat diet-induced obese (DIO) C57BL/6 mice to repeated inhaled doses of mainstream (MS) or sidestream (SS) cigarette smoke administered over a two week period, monitoring effects on both cardiac and pulmonary transcriptomes. MS smoke (250 μg wet total particulate matter (WTPM)/L, 5 h/day) exposures elicited robust cellular and molecular inflammatory responses in the lung with 1466 differentially expressed pulmonary genes (p < 0.01) in normal weight animals and a much-attenuated response (463 genes) in the hearts of the same animals. In contrast, exposures to SS smoke (85 μg WTPM/L) with a CO concentration equivalent to that of MS smoke (~250 CO ppm) induced a weak pulmonary response (328 genes) but an extensive cardiac response (1590 genes). SS smoke and to a lesser extent MS smoke preferentially elicited hypoxia- and stress-responsive genes as well as genes predicting early changes of vascular smooth muscle and endothelium, precursors of cardiovascular disease. The most sensitive smoke-induced cardiac transcriptional changes of normal weight mice were largely absent in DIO mice after smoke exposure, while genes involved in fatty acid utilization were unaffected. At the same time, smoke exposure suppressed multiple proteome maintenance genes induced in the hearts of DIO mice. Together, these results underscore the sensitivity of the heart to SS smoke and reveal adaptive responses in healthy individuals that are absent in the setting of high fat diet and obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joel G. Pounds
- Pacific Northwest National Laboratory, Richland, WA 99352
| | | |
Collapse
|
30
|
Mahmud H, Ruifrok WPT, Westenbrink BD, Cannon MV, Vreeswijk-Baudoin I, van Gilst WH, Silljé HHW, de Boer RA. Suicidal erythrocyte death, eryptosis, as a novel mechanism in heart failure-associated anaemia. Cardiovasc Res 2013; 98:37-46. [PMID: 23341574 DOI: 10.1093/cvr/cvt010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS Suicidal death of erythrocytes (eryptosis) is characterized by cell shrinkage and exposure of phosphatidylserine (PS) residues at the cell surface. Excessive eryptosis may lead to anaemia. We aimed to study the role of eryptosis in heart failure (HF)-associated anaemia. METHODS AND RESULTS We measured eryptosis in rodent models of HF. Typical measures of eryptosis including PS-exposure, increased intracellular Ca(2+) levels, and decreased cell volume were determined by flow cytometry. Transgenic REN2 rats displayed mild anaemia which was associated with a two-fold increase in erythrocyte PS-exposure when compared with Sprague Dawley (SD) control rats (P < 0.01). Upon stimulation with eryptotic triggers such as oxidative stress, hyperosmotic shock and energy depletion, eryptosis was more prominent in REN2 as shown by increased PS-exposure, cytosolic Ca(2+) influx, and cell shrinkage (P < 0.05 vs. SD). Increasing cytosolic Ca(2+) levels resulted in a stronger increase in PS-exposure in REN2 erythrocytes (P < 0.01 vs. SD). Accordingly, inhibition of Ca(2+) entry blunted the increased PS-exposure upon oxidative stress. The REN2 rats had significantly higher reticulocytes (REN2: 10.6 ± 2.3%; SD: 5.4 ± 0.1%; P < 0.05) and erythrocyte turnover was increased, indicated by increased clearance of eryptotic erythrocytes. Eryptosis was also increased in a rat model of hypertensive cardiac remodelling (uninephrectomized rats implanted with deoxycorticosterone acetate pellets), in mice after transverse aortic constriction, as well as in a small proof-of-concept study in human HF patients. CONCLUSION Eryptosis is increased during HF development and could contribute to HF-associated anaemia. Eryptosis may therefore become a novel target for therapy in HF-associated anaemia.
Collapse
Affiliation(s)
- Hasan Mahmud
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, Resch M, Endemann D, Stark K, Riegger G, Luchner A. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail 2012; 18:660-73. [PMID: 22858083 DOI: 10.1016/j.cardfail.2012.06.418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 05/09/2012] [Accepted: 06/08/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Molecular mechanisms of congestive heart failure as reflected by alterations of protein expression patterns are still incompletely analyzed. We therefore investigated intraventricular (ie, left ventricular congestive heart failure [LV-CHF] vs. LV-control [CTRL], and right ventricular [RV]-CHF vs. RV-CTRL) and interventricular (ie, LV-CHF vs. RV-CHF, and LV-CTRL vs. RV-CTRL) protein expression differences in an animal model. METHODS The model of rapid ventricular pacing in rabbits was combined with a proteomic approach using 2-dimensional gel electrophoresis. Identification of proteins was done by matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS). RESULTS Rapid ventricular pacing-induced heart failure was characterized by LV dilatation, dysfunction, and hypotension as well as by increased BNP gene expression. By comparing LV-CHF vs. LV-CTRL, proteins were found to be underexpressed at 3 crucial points of cellular energy metabolism. In RV-CHF vs. RV-CTRL, proteins belonging to respiratory chain complexes were underexpressed, but additionally a disturbance in the nitric oxide-generating enzymatic apparatus was seen. Regarding the interventricular analyses, a stronger expression of energetic pathways was accompanied by an underexpression of contractile and stress response proteins in failing left vs. right ventricles. Finally, significant protein expression differences were found in LV-CTRL vs. RV-CTRL reflecting a higher expression of contractile, stress response, and respiratory chain proteins in LV tissue. CONCLUSIONS In tachycardia-induced heart failure, significant inter- and intraventricular protein expression patterns were found with a predominance of proteins, which are involved in cellular energy metabolism.
Collapse
Affiliation(s)
- Christoph Birner
- Department of Internal Medicine II, University Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Scharin Täng M, Redfors B, Lindbom M, Svensson J, Ramunddal T, Ohlsson C, Shao Y, Omerovic E. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling. Growth Horm IGF Res 2012; 22:206-211. [PMID: 23102937 DOI: 10.1016/j.ghir.2012.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/17/2012] [Accepted: 09/10/2012] [Indexed: 11/25/2022]
Abstract
IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI.
Collapse
Affiliation(s)
- M Scharin Täng
- Wallenberg Laboratory at Sahlgrenska Academy, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
An increasing body of clinical observations and experimental evidence suggests that cardiac dysfunction results from autonomic dysregulation of the contractile output of the heart. Excessive activation of the sympathetic nervous system and a decrease in parasympathetic tone are associated with increased mortality. Elevated levels of circulating catecholamines closely correlate with the severity and poor prognosis in heart failure. Sympathetic over-stimulation causes increased levels of catecholamines, which induce excessive aerobic metabolism leading to excessive cardiac oxygen consumption. Resulting impaired mitochondrial function causes acidosis, which results in reduction in blood flow by impairment of contractility. To the extent that the excessive aerobic metabolism resulting from adrenergic stimulation comes to a halt the energy deficit has to be compensated for by anaerobic metabolism. Glucose and glycogen become the essential nutrients. Beta-adrenergic blockade is used successfully to decrease hyperadrenergic drive. Neurohumoral antagonists block adrenergic over-stimulation but do not provide the heart with fuel for compensatory anaerobic metabolism. The endogenous hormone ouabain reduces catecholamine levels in healthy volunteers, promotes the secretion of insulin, induces release of acetylcholine from synaptosomes and potentiates the stimulation of glucose metabolism by insulin and acetylcholine. Ouabain stimulates glycogen synthesis and increases lactate utilisation by the myocardium. Decades of clinical experience with ouabain confirm the cardioprotective effects of this endogenous hormone. The so far neglected sympatholytic and vagotonic effects of ouabain on myocardial metabolism clearly make a clinical re-evaluation of this endogenous hormone necessary. Clinical studies with ouabain that correspond to current standards are warranted.
Collapse
|
34
|
Jankowska EA, von Haehling S, Anker SD, Macdougall IC, Ponikowski P. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J 2012; 34:816-29. [PMID: 23100285 PMCID: PMC3596759 DOI: 10.1093/eurheartj/ehs224] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Iron is a micronutrient essential for cellular energy and metabolism, necessary for maintaining body homoeostasis. Iron deficiency is an important co-morbidity in patients with heart failure (HF). A major factor in the pathogenesis of anaemia, it is also a separate condition with serious clinical consequences (e.g. impaired exercise capacity) and poor prognosis in HF patients. Experimental evidence suggests that iron therapy in iron-deficient animals may activate molecular pathways that can be cardio-protective. Clinical studies have demonstrated favourable effects of i.v. iron on the functional status, quality of life, and exercise capacity in HF patients. It is hypothesized that i.v. iron supplementation may become a novel therapy in HF patients with iron deficiency.
Collapse
Affiliation(s)
- Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, ul Weigla 5, 50-981 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
35
|
Turer AT. Using metabolomics to assess myocardial metabolism and energetics in heart failure. J Mol Cell Cardiol 2012; 55:12-8. [PMID: 22982115 DOI: 10.1016/j.yjmcc.2012.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022]
Abstract
There is a long history of investigation into the metabolism of the failing heart. Congestive heart failure is marked both by severe disruptions in myocardial energy supply and an inability of the heart to efficiently uptake and oxidize fuels. Despite the many advancements in our understanding, there are still even more outstanding questions in the field. Metabolomics has the power to assist our understanding of the metabolic derangements which accompany myocardial dysfunction. Metabolomic investigations in animal models of heart failure have already highlighted several novel, potentially important pathways of substrate selection and toxicity. Metabolomic biomarker studies in humans, already successfully applied to other forms of cardiovascular disease, have the potential to improve diagnosis and patient care. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Aslan T Turer
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8521, USA.
| |
Collapse
|
36
|
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Curr Heart Fail Rep 2012; 9:164-73. [DOI: 10.1007/s11897-012-0102-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
García-Rúa V, Otero MF, Lear PV, Rodríguez-Penas D, Feijóo-Bandín S, Noguera-Moreno T, Calaza M, Álvarez-Barredo M, Mosquera-Leal A, Parrington J, Brugada J, Portolés M, Rivera M, González-Juanatey JR, Lago F. Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One 2012; 7:e37505. [PMID: 22701570 PMCID: PMC3368932 DOI: 10.1371/journal.pone.0037505] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/19/2012] [Indexed: 01/08/2023] Open
Abstract
Background Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca2+)-handling in the human heart. Methods RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6). Results Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca2+-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM. Conclusion DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca2+-handling genes.
Collapse
Affiliation(s)
- Vanessa García-Rúa
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Manuel Francisco Otero
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- Department of Clinical Chemistry, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Pamela Virginia Lear
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Teresa Noguera-Moreno
- Unit of Biostatistical Research, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Calaza
- Laboratory 10, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - María Álvarez-Barredo
- Department of Cardiology, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Ana Mosquera-Leal
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - John Parrington
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
| | - Josep Brugada
- Cardiology Department, Thorax Institute, Hospital Clinic, Barcelona, Spain
| | | | | | - José Ramón González-Juanatey
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- Department of Cardiology, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Francisca Lago
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
38
|
Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection? J Lipids 2012; 2012:365798. [PMID: 22496981 PMCID: PMC3306973 DOI: 10.1155/2012/365798] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/17/2011] [Indexed: 01/16/2023] Open
Abstract
Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.
Collapse
|
39
|
Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future Cardiol 2012; 8:71-88. [DOI: 10.2217/fca.11.79] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mitochondrion is the main site of production of ATP that represents the source of energy for a large number of cellular processes. Mitochondrial diseases that result in a deficit in ATP production can affect almost every organ system with a large spectrum of clinical phenotypes. Cardiomyocytes are particularly vulnerable to limited ATP supply because of their large energy requirement. Abnormalities in the mitochondrial function are increasingly recognized in association with dilated and hypertrophic cardiomyopathy, cardiac conduction defects, endothelial dysfunction and coronary artery disease. Cardiologists should, therefore, be alerted to symptoms and signs suggestive of mitochondrial diseases and become familiar with the general issues related to multisystem disease management, genetic counseling and testing.
Collapse
Affiliation(s)
- Giuseppe Limongelli
- Monaldi Hospital Second University of Naples (SUN), Naples, Italy
- The Heart Hospital, University College of London (UCL), London, UK
| | - Daniele Masarone
- Monaldi Hospital Second University of Naples (SUN), Naples, Italy
| | | | - Perry M Elliott
- The Heart Hospital, University College of London (UCL), London, UK
| |
Collapse
|
40
|
Beauloye C, Bertrand L, Horman S, Hue L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 2011; 90:224-33. [PMID: 21285292 DOI: 10.1093/cvr/cvr034] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compensated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.
Collapse
Affiliation(s)
- Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardio-Vasculaire, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|