1
|
Nessen E, Toussaint B, Israëls J, Brinkman P, Maitland-van der Zee AH, Haarman E. The Non-Invasive Detection of Pulmonary Exacerbations in Disorders of Mucociliary Clearance with Breath Analysis: A Systematic Review. J Clin Med 2024; 13:3372. [PMID: 38929901 PMCID: PMC11203742 DOI: 10.3390/jcm13123372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Disorders of mucociliary clearance, such as cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and bronchiectasis of unknown origin, are characterised by periods with increased respiratory symptoms, referred to as pulmonary exacerbations. These exacerbations are hard to predict and associated with lung function decline and the loss of quality of life. To optimise treatment and preserve lung function, there is a need for non-invasive and reliable methods of detection. Breath analysis might be such a method. Methods: We systematically reviewed the existing literature on breath analysis to detect pulmonary exacerbations in mucociliary clearance disorders. Extracted data included the study design, technique of measurement, definition of an exacerbation, identified compounds and diagnostic accuracy. Results: Out of 244 identified articles, 18 were included in the review. All studies included patients with CF and two also with PCD. Age and the definition of exacerbation differed between the studies. There were five that measured volatile organic compounds (VOCs) in exhaled breath using gas chromatography with mass spectrometry, two using an electronic nose and eleven measured organic compounds in exhaled breath condensate. Most studies showed a significant correlation between pulmonary exacerbations and one or multiple compounds, mainly hydrocarbons and cytokines, but the validation of these results in other studies was lacking. Conclusions: The detection of pulmonary exacerbations by the analysis of compounds in exhaled breath seems possible but is not near clinical application due to major differences in results, study design and the definition of an exacerbation. There is a need for larger studies, with a longitudinal design, international accepted definition of an exacerbation and validation of the results in independent cohorts.
Collapse
Affiliation(s)
- Emma Nessen
- Department of Respiratory Medicine, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands; (E.N.); (B.T.)
| | - Belle Toussaint
- Department of Respiratory Medicine, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands; (E.N.); (B.T.)
| | - Joël Israëls
- Department of Paediatric Pulmonology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands; (E.N.); (B.T.)
| | | | - Eric Haarman
- Department of Paediatric Pulmonology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
2
|
Shahbazi Khamas S, Alizadeh Bahmani AH, Vijverberg SJ, Brinkman P, Maitland-van der Zee AH. Exhaled volatile organic compounds associated with risk factors for obstructive pulmonary diseases: a systematic review. ERJ Open Res 2023; 9:00143-2023. [PMID: 37650089 PMCID: PMC10463028 DOI: 10.1183/23120541.00143-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 09/01/2023] Open
Abstract
Background Asthma and COPD are among the most common respiratory diseases. To improve the early detection of exacerbations and the clinical course of asthma and COPD new biomarkers are needed. The development of noninvasive metabolomics of exhaled air into a point-of-care tool is an appealing option. However, risk factors for obstructive pulmonary diseases can potentially introduce confounding markers due to altered volatile organic compound (VOC) patterns being linked to these risk factors instead of the disease. We conducted a systematic review and presented a comprehensive list of VOCs associated with these risk factors. Methods A PRISMA-oriented systematic search was conducted across PubMed, Embase and Cochrane Libraries between 2000 and 2022. Full-length studies evaluating VOCs in exhaled breath were included. A narrative synthesis of the data was conducted, and the Newcastle-Ottawa Scale was used to assess the quality of included studies. Results The search yielded 2209 records and, based on the inclusion/exclusion criteria, 24 articles were included in the qualitative synthesis. In total, 232 individual VOCs associated with risk factors for obstructive pulmonary diseases were found; 58 compounds were reported more than once and 12 were reported as potential markers of asthma and/or COPD in other studies. Critical appraisal found that the identified studies were methodologically heterogeneous and had a variable risk of bias. Conclusion We identified a series of exhaled VOCs associated with risk factors for asthma and/or COPD. Identification of these VOCs is necessary for the further development of exhaled metabolites-based point-of-care tests in these obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Shahriyar Shahbazi Khamas
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Amir Hossein Alizadeh Bahmani
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Susanne J.H. Vijverberg
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- These authors contributed equally
| | - Anke H. Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- These authors contributed equally
| |
Collapse
|
3
|
Mormile M, Mormile I, Fuschillo S, Rossi FW, Lamagna L, Ambrosino P, de Paulis A, Maniscalco M. Eosinophilic Airway Diseases: From Pathophysiological Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24087254. [PMID: 37108417 PMCID: PMC10138384 DOI: 10.3390/ijms24087254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Eosinophils play a key role in airway inflammation in many diseases, such as allergic and non-allergic asthma, chronic rhinosinusitis with nasal polyps, and chronic obstructive pulmonary disease. In these chronic disabling conditions, eosinophils contribute to tissue damage, repair, remodeling, and disease persistence through the production a variety of mediators. With the introduction of biological drugs for the treatment of these respiratory diseases, the classification of patients based on clinical characteristics (phenotype) and pathobiological mechanisms (endotype) has become mandatory. This need is particularly evident in severe asthma, where, despite the great scientific efforts to understand the immunological pathways underlying clinical phenotypes, the identification of specific biomarkers defining endotypes or predicting pharmacological response remains unsatisfied. In addition, a significant heterogeneity also exists among patients with other airway diseases. In this review, we describe some of the immunological differences in eosinophilic airway inflammation associated with severe asthma and other airway diseases and how these factors might influence the clinical presentation, with the aim of clarifying when eosinophils play a key pathogenic role and, therefore, represent the preferred therapeutic target.
Collapse
Affiliation(s)
- Mauro Mormile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| |
Collapse
|
4
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
5
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
6
|
Kooner HK, McIntosh MJ, Desaigoudar V, Rayment JH, Eddy RL, Driehuys B, Parraga G. Pulmonary functional MRI: Detecting the structure-function pathologies that drive asthma symptoms and quality of life. Respirology 2022; 27:114-133. [PMID: 35008127 PMCID: PMC10025897 DOI: 10.1111/resp.14197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary functional MRI (PfMRI) using inhaled hyperpolarized, radiation-free gases (such as 3 He and 129 Xe) provides a way to directly visualize inhaled gas distribution and ventilation defects (or ventilation heterogeneity) in real time with high spatial (~mm3 ) resolution. Both gases enable quantitative measurement of terminal airway morphology, while 129 Xe uniquely enables imaging the transfer of inhaled gas across the alveolar-capillary tissue barrier to the red blood cells. In patients with asthma, PfMRI abnormalities have been shown to reflect airway smooth muscle dysfunction, airway inflammation and remodelling, luminal occlusions and airway pruning. The method is rapid (8-15 s), cost-effective (~$300/scan) and very well tolerated in patients, even in those who are very young or very ill, because unlike computed tomography (CT), positron emission tomography and single-photon emission CT, there is no ionizing radiation and the examination takes only a few seconds. However, PfMRI is not without limitations, which include the requirement of complex image analysis, specialized equipment and additional training and quality control. We provide an overview of the three main applications of hyperpolarized noble gas MRI in asthma research including: (1) inhaled gas distribution or ventilation imaging, (2) alveolar microstructure and finally (3) gas transfer into the alveolar-capillary tissue space and from the tissue barrier into red blood cells in the pulmonary microvasculature. We highlight the evidence that supports a deeper understanding of the mechanisms of asthma worsening over time and the pathologies responsible for symptoms and disease control. We conclude with a summary of approaches that have the potential for integration into clinical workflows and that may be used to guide personalized treatment planning.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Vedanth Desaigoudar
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jonathan H Rayment
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel L Eddy
- Centre of Heart Lung Innovation, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Centre, Durham, North Carolina, USA
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Finding suitable biomarkers to phenotype asthma, identify individuals at risk of worsening and guide treatment is highly prioritized in asthma research. We aimed to provide an analysis of currently used and upcoming biomarkers, focusing on developments published in the past 2 years. RECENT FINDINGS Type 2 inflammation is the most studied asthma mechanism with the most biomarkers in the pipeline. Blood eosinophils and fractional exhaled nitric oxide (FeNO) are those most used clinically. Recent developments include their ability to identify individuals at higher risk of exacerbations, faster decline in lung function and more likely to benefit from anti-IL-5 and anti-IL-4/-13 treatment. Certain patterns of urinary eicosanoid excretion also relate to type 2 inflammation. Results of recent trials investigating the use of serum periostin or dipeptidyl peptidase-4 to guide anti-IL-13 therapy were somewhat disappointing. Less is known about non-type 2 inflammation but blood neutrophils and YKL-40 may be higher in patients with evidence of non-type 2 asthma. Volatile organic compounds show promise in their ability to distinguish both eosinophilic and neutrophilic asthma. SUMMARY The ultimate panel of biomarkers for identification of activated inflammatory pathways and treatment strategies in asthma patients still lies in the future, particularly for non-type 2 asthma, but potential candidates are available.
Collapse
|
9
|
Lammers A, Neerincx AH, Vijverberg SJH, Longo C, Janssen NAH, Boere AJF, Brinkman P, Cassee FR, van der Zee AHM. The Impact of Short-Term Exposure to Air Pollution on the Exhaled Breath of Healthy Adults. SENSORS 2021; 21:s21072518. [PMID: 33916542 PMCID: PMC8038449 DOI: 10.3390/s21072518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022]
Abstract
Environmental factors, such as air pollution, can affect the composition of exhaled breath, and should be well understood before biomarkers in exhaled breath can be used in clinical practice. Our objective was to investigate whether short-term exposures to air pollution can be detected in the exhaled breath profile of healthy adults. In this study, 20 healthy young adults were exposed 2–4 times to the ambient air near a major airport and two highways. Before and after each 5 h exposure, exhaled breath was analyzed using an electronic nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. The discrimination between pre and post-exposure was investigated with multilevel partial least square discriminant analysis (PLSDA), followed by linear discriminant and receiver operating characteristic (ROC) analysis, for all data (71 visits), and for a training (51 visits) and validation set (20 visits). Using all eNose measurements and the training set, discrimination between pre and post-exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76–0.89) and 0.84 (95% CI = 0.75–0.92), whereas it decreased to 0.66 (95% CI = 0.48–0.84) in the validation set. Short-term exposure to high levels of air pollution potentially influences the exhaled breath profiles of healthy adults, however, the effects may be minimal for regular daily exposures.
Collapse
Affiliation(s)
- Ariana Lammers
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.); (A.H.N.); (S.J.H.V.); (C.L.); (P.B.)
| | - Anne H. Neerincx
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.); (A.H.N.); (S.J.H.V.); (C.L.); (P.B.)
| | - Susanne J. H. Vijverberg
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.); (A.H.N.); (S.J.H.V.); (C.L.); (P.B.)
| | - Cristina Longo
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.); (A.H.N.); (S.J.H.V.); (C.L.); (P.B.)
| | - Nicole A. H. Janssen
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.A.H.J.); (A.J.F.B.); (F.R.C.)
| | - A. John F. Boere
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.A.H.J.); (A.J.F.B.); (F.R.C.)
| | - Paul Brinkman
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.); (A.H.N.); (S.J.H.V.); (C.L.); (P.B.)
| | - Flemming R. Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.A.H.J.); (A.J.F.B.); (F.R.C.)
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Anke H. Maitland van der Zee
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.); (A.H.N.); (S.J.H.V.); (C.L.); (P.B.)
- Correspondence: ; Tel.: +31-20-56-68137
| |
Collapse
|
10
|
The Influence of Smoking Status on Exhaled Breath Profiles in Asthma and COPD Patients. Molecules 2021; 26:molecules26051357. [PMID: 33806279 PMCID: PMC7961431 DOI: 10.3390/molecules26051357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023] Open
Abstract
Breath analysis using eNose technology can be used to discriminate between asthma and COPD patients, but it remains unclear whether results are influenced by smoking status. We aim to study whether eNose can discriminate between ever- vs. never-smokers and smoking <24 vs. >24 h before the exhaled breath, and if smoking can be considered a confounder that influences eNose results. We performed a cross-sectional analysis in adults with asthma or chronic obstructive pulmonary disease (COPD), and healthy controls. Ever-smokers were defined as patients with current or past smoking habits. eNose measurements were performed by using the SpiroNose. The principal component (PC) described the eNose signals, and linear discriminant analysis determined if PCs classified ever-smokers vs. never-smokers and smoking <24 vs. >24 h. The area under the receiver–operator characteristic curve (AUC) assessed the accuracy of the models. We selected 593 ever-smokers (167 smoked <24 h before measurement) and 303 never-smokers and measured the exhaled breath profiles of discriminated ever- and never-smokers (AUC: 0.74; 95% CI: 0.66–0.81), and no cigarette consumption <24h (AUC 0.54, 95% CI: 0.43–0.65). In healthy controls, the eNose did not discriminate between ever or never-smokers (AUC 0.54; 95% CI: 0.49–0.60) and recent cigarette consumption (AUC 0.60; 95% CI: 0.50–0.69). The eNose could distinguish between ever and never-smokers in asthma and COPD patients, but not recent smokers. Recent smoking is not a confounding factor of eNose breath profiles.
Collapse
|
11
|
Belizário JE, Faintuch J, Malpartida MG. Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases. Front Cell Infect Microbiol 2021; 10:564194. [PMID: 33520731 PMCID: PMC7839533 DOI: 10.3389/fcimb.2020.564194] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023] Open
Abstract
Exhaled breath contains thousand metabolites and volatile organic compounds (VOCs) that originated from both respiratory tract and internal organ systems and their microbiomes. Commensal and pathogenic bacteria and virus of microbiomes are capable of producing VOCs of different chemical classes, and some of them may serve as biomarkers for installation and progression of various common human diseases. Here we describe qualitative and quantitative methods for measuring VOC fingerprints generated by cellular and microbial metabolic and pathologic pathways. We describe different chemical classes of VOCs and their role in the host cell-microbial interactions and their impact on infection disease pathology. We also update on recent progress on VOC signatures emitted by isolated bacterial species and microbiomes, and VOCs identified in exhaled breath of patients with respiratory tract and gastrointestinal diseases, and inflammatory syndromes, including the acute respiratory distress syndrome and sepsis. The VOC curated databases and instrumentations have been developed through statistically robust breathomic research in large patient populations. Scientists have now the opportunity to find potential biomarkers for both triage and diagnosis of particular human disease.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joel Faintuch
- Department of Gastroenterology of Medical School, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
Moor CC, Oppenheimer JC, Nakshbandi G, Aerts JGJV, Brinkman P, Maitland-van der Zee AH, Wijsenbeek MS. Exhaled breath analysis by use of eNose technology: a novel diagnostic tool for interstitial lung disease. Eur Respir J 2021; 57:13993003.02042-2020. [PMID: 32732331 DOI: 10.1183/13993003.02042-2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Early and accurate diagnosis of interstitial lung diseases (ILDs) remains a major challenge. Better noninvasive diagnostic tools are much needed. We aimed to assess the accuracy of exhaled breath analysis using eNose technology to discriminate between ILD patients and healthy controls, and to distinguish ILD subgroups. METHODS In this cross-sectional study, exhaled breath of consecutive ILD patients and healthy controls was analysed using eNose technology (SpiroNose). Statistical analyses were done using partial least square discriminant analysis and receiver operating characteristic analysis. Independent training and validation sets (2:1) were used in larger subgroups. RESULTS A total of 322 ILD patients and 48 healthy controls were included: sarcoidosis (n=141), idiopathic pulmonary fibrosis (IPF) (n=85), connective tissue disease-associated ILD (n=33), chronic hypersensitivity pneumonitis (n=25), idiopathic nonspecific interstitial pneumonia (n=10), interstitial pneumonia with autoimmune features (n=11) and other ILDs (n=17). eNose sensors discriminated between ILD and healthy controls, with an area under the curve (AUC) of 1.00 in the training and validation sets. Comparison of patients with IPF and patients with other ILDs yielded an AUC of 0.91 (95% CI 0.85-0.96) in the training set and an AUC of 0.87 (95% CI 0.77-0.96) in the validation set. The eNose reliably distinguished between individual diseases, with AUC values ranging from 0.85 to 0.99. CONCLUSIONS eNose technology can completely distinguish ILD patients from healthy controls and can accurately discriminate between different ILD subgroups. Hence, exhaled breath analysis using eNose technology could be a novel biomarker in ILD, enabling timely diagnosis in the future.
Collapse
Affiliation(s)
- Catharina C Moor
- Center of Excellence and European Reference Center for Interstitial Lung Disease and Sarcoidosis, Dept of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,These authors share first authorship
| | - Judith C Oppenheimer
- Center of Excellence and European Reference Center for Interstitial Lung Disease and Sarcoidosis, Dept of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,These authors share first authorship
| | - Gizal Nakshbandi
- Center of Excellence and European Reference Center for Interstitial Lung Disease and Sarcoidosis, Dept of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Center of Excellence and European Reference Center for Interstitial Lung Disease and Sarcoidosis, Dept of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Rotterdam, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Rotterdam, The Netherlands.,These authors share senior authorship
| | - Marlies S Wijsenbeek
- Center of Excellence and European Reference Center for Interstitial Lung Disease and Sarcoidosis, Dept of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,These authors share senior authorship
| |
Collapse
|
13
|
Abdel-Aziz MI, Brinkman P, Vijverberg SJH, Neerincx AH, de Vries R, Dagelet YWF, Riley JH, Hashimoto S, Montuschi P, Chung KF, Djukanovic R, Fleming LJ, Murray CS, Frey U, Bush A, Singer F, Hedlin G, Roberts G, Dahlén SE, Adcock IM, Fowler SJ, Knipping K, Sterk PJ, Kraneveld AD, Maitland-van der Zee AH. eNose breath prints as a surrogate biomarker for classifying patients with asthma by atopy. J Allergy Clin Immunol 2020; 146:1045-1055. [PMID: 32531371 DOI: 10.1016/j.jaci.2020.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Electronic noses (eNoses) are emerging point-of-care tools that may help in the subphenotyping of chronic respiratory diseases such as asthma. OBJECTIVE We aimed to investigate whether eNoses can classify atopy in pediatric and adult patients with asthma. METHODS Participants with asthma and/or wheezing from 4 independent cohorts were included; BreathCloud participants (n = 429), Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adults (n = 96), Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes pediatric participants (n = 100), and Pharmacogenetics of Asthma Medication in Children: Medication with Anti-Inflammatory Effects 2 participants (n = 30). Atopy was defined as a positive skin prick test result (≥3 mm) and/or a positive specific IgE level (≥0.35 kU/L) for common allergens. Exhaled breath profiles were measured by using either an integrated eNose platform or the SpiroNose. Data were divided into 2 training and 2 validation sets according to the technology used. Supervised data analysis involved the use of 3 different machine learning algorithms to classify patients with atopic versus nonatopic asthma with reporting of areas under the receiver operating characteristic curves as a measure of model performance. In addition, an unsupervised approach was performed by using a bayesian network to reveal data-driven relationships between eNose volatile organic compound profiles and asthma characteristics. RESULTS Breath profiles of 655 participants (n = 601 adults and school-aged children with asthma and 54 preschool children with wheezing [68.2% of whom were atopic]) were included in this study. Machine learning models utilizing volatile organic compound profiles discriminated between atopic and nonatopic participants with areas under the receiver operating characteristic curves of at least 0.84 and 0.72 in the training and validation sets, respectively. The unsupervised approach revealed that breath profiles classifying atopy are not confounded by other patient characteristics. CONCLUSION eNoses accurately detect atopy in individuals with asthma and wheezing in cohorts with different age groups and could be used in asthma phenotyping.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rianne de Vries
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Breathomix BV, Reeuwijk, The Netherlands
| | - Yennece W F Dagelet
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John H Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Paediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | | | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Graham Roberts
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Sven-Erik Dahlén
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Karen Knipping
- Danone Nutricia Research, Utrecht, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Department of Paediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
14
|
Wingelaar TT, Brinkman P, de Vries R, van Ooij PJA, Hoencamp R, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Detecting Pulmonary Oxygen Toxicity Using eNose Technology and Associations between Electronic Nose and Gas Chromatography-Mass Spectrometry Data. Metabolites 2019; 9:metabo9120286. [PMID: 31766640 PMCID: PMC6950559 DOI: 10.3390/metabo9120286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Exposure to oxygen under increased atmospheric pressures can induce pulmonary oxygen toxicity (POT). Exhaled breath analysis using gas chromatography–mass spectrometry (GC–MS) has revealed that volatile organic compounds (VOCs) are associated with inflammation and lipoperoxidation after hyperbaric–hyperoxic exposure. Electronic nose (eNose) technology would be more suited for the detection of POT, since it is less time and resource consuming. However, it is unknown whether eNose technology can detect POT and whether eNose sensor data can be associated with VOCs of interest. In this randomized cross-over trial, the exhaled breath from divers who had made two dives of 1 h to 192.5 kPa (a depth of 9 m) with either 100% oxygen or compressed air was analyzed, at several time points, using GC–MS and eNose. We used a partial least square discriminant analysis, eNose discriminated oxygen and air dives at 30 min post dive with an area under the receiver operating characteristics curve of 79.9% (95%CI: 61.1–98.6; p = 0.003). A two-way orthogonal partial least square regression (O2PLS) model analysis revealed an R² of 0.50 between targeted VOCs obtained by GC–MS and eNose sensor data. The contribution of each sensor to the detection of targeted VOCs was also assessed using O2PLS. When all GC–MS fragments were included in the O2PLS model, this resulted in an R² of 0.08. Thus, eNose could detect POT 30 min post dive, and the correlation between targeted VOCs and eNose data could be assessed using O2PLS.
Collapse
Affiliation(s)
- Thijs T. Wingelaar
- Diving and Submarine Medical Center, Royal Netherlands Navy, Rijkszee en Marinehaven, 1780 CA Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-889-510-480
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rianne de Vries
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Breathomix, Pascalstraat 13H, 2811 EL Reeuwijk, the Netherlands
| | - Pieter-Jan A.M. van Ooij
- Diving and Submarine Medical Center, Royal Netherlands Navy, Rijkszee en Marinehaven, 1780 CA Den Helder, The Netherlands
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Hospital, Simon Smitweg 1, 2353 GA Leiderdorp, The Netherlands
- Defense Healthcare Organisation, Ministry of Defence, Herculeslaan 1, 3584 AB Utrecht, The Netherlands
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rob A. van Hulst
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Sterk PJ. Modern Inflammatory Phenotyping of Asthma. Breathomics Is Here to Stay. Am J Respir Crit Care Med 2019; 200:405-406. [PMID: 30995075 PMCID: PMC6701043 DOI: 10.1164/rccm.201904-0733ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Peter J Sterk
- 1Amsterdam UMCUniversity of AmsterdamAmsterdam, the Netherlands
| |
Collapse
|