1
|
Menezes RC, Ferreira IBB, Sobral L, Garcia SL, Pustilnik HN, Araújo-Pereira M, Andrade BB. Severe viral lower respiratory tract infections in Brazilian children: Clinical features of a national cohort. J Infect Public Health 2024; 17:1-9. [PMID: 37988811 DOI: 10.1016/j.jiph.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The accurate etiological diagnosis of lower respiratory tract infections (LRTI) is essential for their effective clinical management. The extensive use of molecular methods during the COVID-19 pandemic has enabled massive data acquisition on viral lower respiratory tract infections. The current study aims to identify clinical features associated with eight viral agents among children presenting severe LRTI. METHODS retrospective cohort study of data from the Brazilian Influenza Epidemiological Surveillance Information System. Patients under 20 years-old who had severe LRTI with etiological confirmation through RT-PCR between 2020 and 2022 were included. Binary logistic regressions were used to examine associations between pathogens and symptoms. RESULTS 60,657 cases were assessed. The main viral agents detected were Sars-CoV-2 (COV2) (41.2%), Respiratory Syncytial Virus (29.1%), Human Rhinovirus (HRV) (12.1%), and Influenza (FLU) (5.5%). A general mortality rate of 4.3% was observed. The multivariate analysis evidenced that COV2 less likely presented with cough (OR: 0.34; 95%CI: 0.32-0.36), respiratory discomfort (Adjusted Odds Ratio (aOR): 0.61; 95%Confidence Interval (CI): 0.59-0.64), and desaturation (aOR: 0.71; 95%CI: 0.69-0.75). RSV strongly associated with cough (aOR: 2.59; 95%CI: 2.45-2.75) and respiratory discomfort (aOR: 1.54; 95%CI: 1.46-1.62), whereas FLU was linked to fever (aOR: 2.27; 95%CI: 2.06-2.50) and sore throat (aOR: 1.48; 95%CI: 1.34-1.64). CONCLUSIONS The viral agents responsible for severe LRTI have distinct associations with clinical features in children.
Collapse
Affiliation(s)
- Rodrigo C Menezes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), UniFTC, Bahia, Brazil; Universidade Federal da Bahia (UFBA), Bahia, Brazil; Fundação Oswaldo Cruz (FIOCRUZ), Bahia, Brazil
| | - Isabella B B Ferreira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), UniFTC, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública (EBMSP), Bahia, Brazil
| | - Luciana Sobral
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), UniFTC, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública (EBMSP), Bahia, Brazil
| | - Stefania L Garcia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Universidade Salvador, Bahia, Brazil
| | - Hugo N Pustilnik
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Universidade Salvador, Bahia, Brazil
| | - Mariana Araújo-Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), UniFTC, Bahia, Brazil; Universidade Federal da Bahia (UFBA), Bahia, Brazil; Fundação Oswaldo Cruz (FIOCRUZ), Bahia, Brazil
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER Initiative), Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), UniFTC, Bahia, Brazil; Universidade Federal da Bahia (UFBA), Bahia, Brazil; Fundação Oswaldo Cruz (FIOCRUZ), Bahia, Brazil; Universidade Salvador, Bahia, Brazil.
| |
Collapse
|
2
|
Can El Niño-Southern Oscillation Increase Respiratory Infectious Diseases in China? An Empirical Study of 31 Provinces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052971. [PMID: 35270663 PMCID: PMC8910516 DOI: 10.3390/ijerph19052971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/03/2023]
Abstract
Respiratory infectious diseases (RID) are the major form of infectious diseases in China, and are highly susceptible to climatic conditions. Current research mainly focuses on the impact of weather on RID, but there is a lack of research on the effect of El Niño–Southern Oscillation (ENSO) on RID. Therefore, this paper uses the system generalized method of moments (SYS-GMM) and the data of 31 provinces in China from 2007 to 2018 to construct a dynamic panel model to empirically test the causality between ENSO and RID morbidity. Moreover, this paper considers the moderating effects of per capita disposable income and average years of education on this causality. The results show that ENSO can positively and significantly impact RID morbidity, which is 5.842% higher during El Niño years than normal years. In addition, per capita disposable income and average years of education can effectively weaken the relationship between ENSO and RID morbidity. Thus, this paper is of great significance for improving the RID early climate warning system in China and effectively controlling the spread of RID.
Collapse
|
3
|
Icard P, Simula L, Rei J, Fournel L, De Pauw V, Alifano M. On the footsteps of Hippocrates, Sanctorius and Harvey to better understand the influence of cold on the occurrence of COVID-19 in European countries in 2020. Biochimie 2021; 191:164-171. [PMID: 34555456 PMCID: PMC8458079 DOI: 10.1016/j.biochi.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
COVID-19 pandemic has been characterized by a pattern of consecutive declines and regrowth in European countries in 2020. After being partially regressed during the summer, the reappearance of the infection during fall 2020 in many temperate countries strongly suggests that temperature and cold may play a role in influencing the infectivity and virulence of SARS-CoV-2. While promoting medicine as an art, Hippocrates interpreted with logical reasoning the occurrence of diseases such as epidemics, as a consequence of environmental factors, in particular climatic variations. During the Renaissance, Sanctorius was one of the first to perform quantitative measurements, and Harvey discovered the circulation of blood by performing experimental procedures in animals. We think that a reasoning mixing various observations, measurements and experiments is fundamental to understand how cold increases infectivity and virulence of SARS-CoV-2. By this review, we provide evidence linking cold, angiotensin-II, vasoconstriction, hypoxia and aerobic glycolysis (the Warburg effect) to explain how cold affects the epidemiology of COVID-19. Also, a low humidity increases virus transmissibility, while a warm atmosphere, a moderate airway humidity, and the production of vasodilator angiotensin 1-7 by ACE2 are less favorable to the virus entry and/or its development. The meteorological and environmental parameters impacting COVID-19 pandemic should be reintegrated into a whole perspective by taking into account the different factors influencing transmissibility, infectivity and virulence of SARS-CoV-2. To understand the modern enigma represented by COVID-19, an interdisciplinary approach is surely essential.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, F-14000, France; INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, CLCC François Baclesse, Caen University, France; Service de Chirurgie Thoracique, Hôpital Cochin, Paris University Hospitals, APHP, France.
| | - Luca Simula
- INSERM U1016, CNRS UMR8104, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris University, Paris, 75014, France
| | - Joana Rei
- Service de Chirurgie Thoracique, Hôpital Cochin, Paris University Hospitals, APHP, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Paris University Hospitals, APHP, France; INSERM U1124, Cellular Homeostasis and Cancer, Paris University, Paris, France
| | - Vincent De Pauw
- Service de Chirurgie Thoracique, Hôpital Cochin, Paris University Hospitals, APHP, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Paris University Hospitals, APHP, France; INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
4
|
Nichols GL, Gillingham EL, Macintyre HL, Vardoulakis S, Hajat S, Sarran CE, Amankwaah D, Phalkey R. Coronavirus seasonality, respiratory infections and weather. BMC Infect Dis 2021; 21:1101. [PMID: 34702177 PMCID: PMC8547307 DOI: 10.1186/s12879-021-06785-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background The survival of coronaviruses are influenced by weather conditions and seasonal coronaviruses are more common in winter months. We examine the seasonality of respiratory infections in England and Wales and the associations between weather parameters and seasonal coronavirus cases. Methods Respiratory virus disease data for England and Wales between 1989 and 2019 was extracted from the Second-Generation Surveillance System (SGSS) database used for routine surveillance. Seasonal coronaviruses from 2012 to 2019 were compared to daily average weather parameters for the period before the patient’s specimen date with a range of lag periods. Results The seasonal distribution of 985,524 viral infections in England and Wales (1989–2019) showed coronavirus infections had a similar seasonal distribution to influenza A and bocavirus, with a winter peak between weeks 2 to 8. Ninety percent of infections occurred where the daily mean ambient temperatures were below 10 °C; where daily average global radiation exceeded 500 kJ/m2/h; where sunshine was less than 5 h per day; or where relative humidity was above 80%. Coronavirus infections were significantly more common where daily average global radiation was under 300 kJ/m2/h (OR 4.3; CI 3.9–4.6; p < 0.001); where average relative humidity was over 84% (OR 1.9; CI 3.9–4.6; p < 0.001); where average air temperature was below 10 °C (OR 6.7; CI 6.1–7.3; p < 0.001) or where sunshine was below 4 h (OR 2.4; CI 2.2–2.6; p < 0.001) when compared to the distribution of weather values for the same time period. Seasonal coronavirus infections in children under 3 years old were more frequent at the start of an annual epidemic than at the end, suggesting that the size of the susceptible child population may be important in the annual cycle. Conclusions The dynamics of seasonal coronaviruses reflect immunological, weather, social and travel drivers of infection. Evidence from studies on different coronaviruses suggest that low temperature and low radiation/sunlight favour survival. This implies a seasonal increase in SARS-CoV-2 may occur in the UK and countries with a similar climate as a result of an increase in the R0 associated with reduced temperatures and solar radiation. Increased measures to reduce transmission will need to be introduced in winter months for COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06785-2.
Collapse
Affiliation(s)
- G L Nichols
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK. .,European Centre for Environment and Human Health, University of Exeter Medical School, C/O Knowledge Spa RCHT, Truro, Cornwall, TR1 3HD, UK. .,School of Environmental Sciences, UEA, Norwich, NR4 7TJ, UK.
| | - E L Gillingham
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK
| | - H L Macintyre
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK.,School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - S Vardoulakis
- European Centre for Environment and Human Health, University of Exeter Medical School, C/O Knowledge Spa RCHT, Truro, Cornwall, TR1 3HD, UK.,National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, 2601, Australia
| | - S Hajat
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - C E Sarran
- Met Office, Fitzroy Road, Exeter, EX1 3PB, UK.,Institute of Health Research, University of Exeter, Saint Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - D Amankwaah
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK
| | - R Phalkey
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK.,Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany.,Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Sobrinho FL, Aragon DC, Carlotti AP. Epidemiology and factors associated with the severity of viral acute lower respiratory infection in children hospitalized in Manaus, Amazonas, in 2017-2018: An observational study. Medicine (Baltimore) 2021; 100:e25799. [PMID: 33950979 PMCID: PMC8104226 DOI: 10.1097/md.0000000000025799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT To investigate the epidemiology and factors associated with the severity of viral acute lower respiratory infection (ALRI) in children hospitalized in Manaus, Amazonas, in 2017 to 2018.Retrospective cohort study of children hospitalized at the Hospital and Emergency Room Delphina Rinaldi Abdel Aziz, in Manaus, from April 01, 2017 to August 31, 2018, with a clinical diagnosis of ALRI and nasopharyngeal aspirates positive for at least 1 respiratory virus.One hundred forty-six children aged 0.2 to 66 months (median 7 months) were included. Patients were divided into 2 groups according to the disease severity classified by an adapted Walsh et al score: moderate disease, score 0-4, n = 66 (45.2%) and severe disease, score 5-7, n = 80 (54.8%). A greater number of viral ALRI cases were observed in the rainiest months. Respiratory syncytial virus was the most prevalent (n = 103, 70.3%), followed by metapneumovirus (n = 24, 16.4%), influenza virus (n = 17, 11.6%), parainfluenza virus (n = 11, 7.5%), and adenovirus (n = 4, 2.7%). Co-detections of 2 to 3 viruses were found in 12 (8.2%) patients. The presence of viral coinfection was an independent risk factor for disease severity (adjusted relative risk [RR] 1.53; 95% CI 1.10-2.14). Twelve patients (8.2%) died, all with severe disease. Risk factors for death were shock (adjusted RR 10.09; 95% CI 2.31-43.90) and need for vasoactive drugs (adjusted RR 10.63; 95% CI 2.44-46.31).There was a higher incidence of viral ALRI in Manaus in the rainy season. Respiratory syncytial virus was the most prevalent virus. The presence of viral coinfection was an independent risk factor for disease severity.
Collapse
Affiliation(s)
| | - Davi C. Aragon
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P.C.P. Carlotti
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Suryadevara M, Domachowske JB. Epidemiology and Seasonality of Childhood Respiratory Syncytial Virus Infections in the Tropics. Viruses 2021; 13:696. [PMID: 33923823 PMCID: PMC8074094 DOI: 10.3390/v13040696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Infections caused by respiratory syncytial virus (RSV) are a major cause of morbidity and mortality in young children worldwide. Understanding seasonal patterns of region-specific RSV activity is important to guide resource allocation for existing and future treatment and prevention strategies. The decades of excellent RSV surveillance data that are available from the developed countries of the world are incredibly instructive in advancing public health initiatives in those regions. With few exceptions, these developed nations are positioned geographically across temperate regions of the world. RSV surveillance across tropical regions of the world has improved in recent years, but remains spotty, and where available, still lacks the necessary longitudinal data to determine the amount of seasonal variation expected over time. However, existing and emerging data collected across tropical regions of the world do indicate that patterns of infection are often quite different from those so well described in temperate areas. Here, we provide a brief summary regarding what is known about general patterns of RSV disease activity across tropical Asia, Africa and South America, then offer additional country-specific details using examples where multiple reports and/or more robust surveillance data have become available.
Collapse
|
7
|
Carbonell-Estrany X, Rodgers-Gray BS, Paes B. Challenges in the prevention or treatment of RSV with emerging new agents in children from low- and middle-income countries. Expert Rev Anti Infect Ther 2020; 19:419-441. [PMID: 32972198 DOI: 10.1080/14787210.2021.1828866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) causes approximately 120,000 deaths annually in children <5 years, with 99% of fatalities occurring in low- and middle-income countries (LMICs). AREAS COVERED There are numerous RSV interventions in development, including long-acting monoclonal antibodies, vaccines (maternal and child) and treatments which are expected to become available soon. We reviewed the key challenges and issues that need to be addressed to maximize the impact of these interventions in LMICs. The epidemiology of RSV in LMICs was reviewed (PubMed search to 30 June 2020 inclusive) and the need for more and better-quality data, encompassing hospital admissions, community contacts, and longer-term respiratory morbidity, emphasized. The requirement for an agreed clinical definition of RSV lower respiratory tract infection was proposed. The pros and cons of the new RSV interventions are reviewed from the perspective of LMICs. EXPERT OPINION We believe that a vaccine (or combination of vaccines, if practicable) is the only viable solution to the burden of RSV in LMICs. A coordinated program, analogous to that with polio, involving governments, non-governmental organizations, the World Health Organization, the manufacturers and the healthcare community is required to realize the full potential of vaccine(s) and end the devastation of RSV in LMICs.
Collapse
Affiliation(s)
- Xavier Carbonell-Estrany
- Neonatology Service, Hospital Clinic, Institut d'Investigacions Biomediques August Pi Suñer (IDIBAPS), Barcelona, Spain
| | | | - Bosco Paes
- Department of Pediatrics (Neonatal Division), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Mollalo A, Vahedi B, Bhattarai S, Hopkins LC, Banik S, Vahedi B. Predicting the hotspots of age-adjusted mortality rates of lower respiratory infection across the continental United States: Integration of GIS, spatial statistics and machine learning algorithms. Int J Med Inform 2020; 142:104248. [PMID: 32871492 PMCID: PMC7442929 DOI: 10.1016/j.ijmedinf.2020.104248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
Abstract
Lower respiratory infections (LRI) are the cause of a significant number of hospitalizations in the US. No previous nationwide study examined geographic variations of LRI mortality rates and their association with underlying factors. There was a shift in the location of LRI hotspots from west coast to southeast over time. Decision tree classifiers could predict LRI mortality hotspots with high accuracies. Higher spring temperature and increased precipitation during winter were among the most substantial predictors of presence or absence of LRI hotspots.
Objective Although lower respiratory infections (LRI) are among the leading causes of mortality in the US, their association with underlying factors and geographic variation have not been adequately examined. Methods In this study, explanatory variables (n = 46) including climatic, topographic, socio-economic, and demographic factors were compiled at the county level across the continentalUS.Machine learning algorithms - logistic regression (LR), random forest (RF), gradient boosting decision trees (GBDT), k-nearest neighbors (KNN), and support vector machine (SVM) - were employed to predict the presence/absence of hotspots (P < 0.05) for elevated age-adjusted LRI mortality rates in a geographic information system framework. Results Overall, there was a historical shift in hotspots away from the western US into the southeastern parts of the country and they were highly localized in a few counties. The two decision tree methods (RF and GBDT) outperformed the other algorithms (accuracies: 0.92; F1-scores: 0.85 and 0.84; area under the precision-recall curve: 0.84 and 0.83, respectively). Moreover, the results of the RF and GBDT indicated that higher spring minimum temperature, increased winter precipitation, and higher annual median household income were among the most substantial factors in predicting the hotspots. Conclusions This study helps raise awareness of public health decision-makers to develop and target LRI prevention programs.
Collapse
Affiliation(s)
- Abolfazl Mollalo
- Department of Public Health and Prevention Science, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA.
| | - Behrooz Vahedi
- Department of Mathematics, University of Trento, Trento, Italy.
| | | | - Laura C Hopkins
- Department of Public Health and Prevention Science, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA.
| | - Swagata Banik
- Department of Public Health and Prevention Science, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA.
| | - Behzad Vahedi
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
9
|
Zhang H, Wen S, Zheng J, Chen X, Lv F, Liu L. Meteorological factors affecting respiratory syncytial virus infection: A time-series analysis. Pediatr Pulmonol 2020; 55:713-718. [PMID: 31909893 DOI: 10.1002/ppul.24629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/17/2019] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) infection is a major cause of hospitalization in children. Meteorological factors are known to influence seasonal RSV epidemics, but the relationship between meteorological factors and RSV infection in children is not well understood. We aimed to explore the relationship between meteorological factors and RSV infections among hospitalized children, using different statistical models. METHODS We conducted a retrospective review concerning children with RSV infections admitted to a tertiary pediatric hospital in Wenzhou, China, between January 2008 and December 2017. The relationship between meteorological factors (average daily temperatures, average daily relative humidity, rainfall, rainfall days, and wind speed) and the incidence of RSV in hospitalized children was analyzed using three time-series models, namely an autoregressive integrated moving average (ARIMA) model, a generalized additive model (GAM), and a least absolute shrinkage and selection operator (LASSO)-based model. RESULTS In total, 15 858 (17.6%) children tested positive for RSV infection. The ARIMA model revealed a marked seasonal pattern in the RSV detection rate, which peaked in winter and spring. The model was a good predictor of RSV incidence (R2 : 83.5%). The GAM revealed that a lower temperature and higher wind speed preceded increases in RSV detection. The LASSO-based model revealed that temperature and relative humidity were negatively correlated with RSV detection. CONCLUSIONS Seasonality of RSV infection in hospitalized children correlated strongly with temperature. The LASSO-based model can be used to predict annual RSV epidemics using weather forecast data.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shunhang Wen
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingwei Zheng
- Department of Clinical Research, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Chen
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Lv
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
de Souza RP, Ribeiro ALR, de Menezes SAF, Machado LFA. Incidence of respiratory syncytial virus infection in children with congenital heart disease undergoing immunoprophylaxis with palivizumab in Pará state, north region of Brazil. BMC Pediatr 2019; 19:299. [PMID: 31462289 PMCID: PMC6714430 DOI: 10.1186/s12887-019-1681-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/21/2019] [Indexed: 12/03/2022] Open
Abstract
Background Palivizumab prophylaxis for the human respiratory syncytial virus (HRSV) has been reported to reduce the risk of hospital admissions related to HRSV in children with congenital heart disease (CHD). These children are at high risk of developing severe lower respiratory tract infection (LRTI) due to HRSV infection. Our goal was to evaluate the incidence of HRSV infection in children with CHD after being submitted to immunoprophylaxis with palivizumab in Pará state, North region of Brazil. Methods A prospective and observational cohort study was performed in children ≤2 years of age with CHD who received palivizumab immunoprophylaxis between January 1 and June 31, 2016. A questionnaire about basic non-medical care measures was applied to parents/legal representatives. Data on patients’ demographic characteristics, household environment, and respiratory infections were evaluated. HRSV infection was determined by qPCR. Results There were 104 children enrolled in this investigation and the results showed a mean age of 10.6 months, an average weight of 7.3 kg and 3.5 doses of palivizumab per children during seasonality of HRSV. Respiratory infection was observed in 27.9% of cases, of which 9.6% were LRTI. No case of children who received palivizumab immunoprophylaxis and developed influenza-like symptoms tested positive for HRSV. Conclusion Although the lack of a control group doesn’t allow to affirm the effectiveness of HRSV passive immunization, the immunoprophylaxis with palivizumab appeared to be totally efficient in preventing respiratory infection by HRSV in children up to two years of age with CHD.
Collapse
Affiliation(s)
- Roseane Porfírio de Souza
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Pará, Brazil.,Gaspar Vianna Clinic Hospital Foundation, Belém, Pará, Brazil
| | - Andre Luis Ribeiro Ribeiro
- Postdoctoral fellowship, Cell Culture Laboratory, School of Dentistry, Federal University of Para - UFPA, Belém, Pará, Brazil
| | | | - Luiz Fernando Almeida Machado
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Pará, Brazil. .,Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Correa 1, Guamá, 66.075-110, Belém, Pará, Brazil.
| |
Collapse
|
11
|
Burden of Respiratory Syncytial Virus Disease and Mortality Risk Factors in Argentina: 18 Years of Active Surveillance in a Children's Hospital. Pediatr Infect Dis J 2019; 38:589-594. [PMID: 30672892 DOI: 10.1097/inf.0000000000002271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Respiratory syncytial virus is the leading cause of acute lower respiratory infection in children. We aimed to describe the clinical-epidemiologic pattern and risk factors for mortality associated with RSV infection. METHODS This is a prospective, cross-sectional study of acute lower respiratory infection in children admitted to the Children's Hospital during 2000 to 2017. Viral diagnosis was made by fluorescent antibody techniques or real-time-polymerase chain reaction. We compared clinical-epidemiologic characteristics of RSV infection in nonfatal versus fatal cases. Multiple logistic regression was used to identify independent predictors of mortality. RESULTS Of 15,451 patients with acute lower respiratory infection, 13,033 were tested for respiratory viruses and 5831 (45%) were positive: RSV 81.3% (4738), influenza 7.6% (440), parainfluenza 6.9% (402) and adenovirus 4.3% (251). RSV had a seasonal epidemic pattern coinciding with months of lowest average temperature. RSV cases show a case fatality rate of 1.7% (82/4687). Fatal cases had a higher proportion of prematurity (P < 0.01), perinatal respiratory history (P < 0.01), malnourishment (P < 0.01), congenital heart disease (P < 0.01), chronic neurologic disease (P < 0.01) and pneumonia at clinical presentation (P = 0.014). No significant difference between genders was observed. Most deaths occurred among children who had complications: respiratory distress (80.5%), nosocomial infections (45.7%), sepsis (31.7%) and atelectasis (13.4%). Independent predictors of RSV mortality were moderate-to-severe malnourishment, odds ratio (OR): 3.69 [95% confidence interval (CI): 1.98-6.87; P < 0.0001]; chronic neurologic disease, OR: 4.14 (95% CI: 2.12-8.08; P < 0.0001); congenital heart disease, OR: 4.18 (95% CI: 2.39-7.32; P< 0.0001); and the age less than 6 months, OR: 1.99 (95% CI: 1.24-3.18; P = 0.004). CONCLUSIONS RSV showed an epidemic pattern affecting mostly young children. Malnourishment, chronic neurologic disease, congenital heart disease and the age less than 6 months were the independent risk factors for RSV mortality.
Collapse
|
12
|
Hossain MZ, Bambrick H, Wraith D, Tong S, Khan AF, Hore SK, Hu W. Sociodemographic, climatic variability and lower respiratory tract infections: a systematic literature review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:209-219. [PMID: 30680618 DOI: 10.1007/s00484-018-01654-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Pneumonia is the leading cause of mortality and morbidity in developing countries, particularly for children and elderly. The main objective of this review paper is to review the epidemiological evidence about the effects of sociodemographic and climatic variability on pneumonia and other lower respiratory tract infections. A detailed literature search was conducted in PubMed and Scopus following PRISMA guidelines. The articles, which considered the effect of only climatic or both climatic and sociodemographic factors on pneumonia and other lower respiratory tract infections, included in this review. A total thirty-four relevant articles were reviewed. Of 34 studies, only 14 articles (41%) examined the joint effects of sociodemographic and climate factors on pneumonia and other lower respiratory infections while most of them (59%) assessed climate factors separately. Among these fourteen, only three articles (8.8%) considered detailed sociodemographic factors. All of the reviewed articles suggested different degrees of positive or negative relationship of temperature with pneumonia or other lower respiratory tract infections. Fifteen (44%) articles suggested an association with relative humidity and 13 (38%) with rainfall. Only 3 articles (8.8%) found a relationship with wind speed. Three articles (8.8%) considered other risk factors such as particulate matter 2.5 (PM2.5) and particulate matter 10 (PM10). One study among the reviewed articles used spatial analysis methods but this study did not examine the joint effects. Among the reviewed articles, 18 (53%) articles used different time series models, one article (3%) used spatiotemporal time series model, 8 (23%) studies used other models and rest 7 (21%) studies used simple descriptive analysis. A total of 18 studies (53%) were conducted in Asia, most of them in China. There were 6 studies (17%) in Europe and 8 studies (23%) in America (South, North and Central). In Africa and Oceania, only one study was found for each region. The joint effect of climate and sociodemographic factors on pneumonia and other lower respiratory tract infections remain to be determined and further research is highly recommended for future prevention of this important and common disease.
Collapse
Affiliation(s)
- Mohammad Zahid Hossain
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Hilary Bambrick
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Darren Wraith
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shilu Tong
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
| | - Al Fazal Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Samar Kumar Hore
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Kurskaya O, Ryabichenko T, Leonova N, Shi W, Bi H, Sharshov K, Kazachkova E, Sobolev I, Prokopyeva E, Kartseva T, Alekseev A, Shestopalov A. Viral etiology of acute respiratory infections in hospitalized children in Novosibirsk City, Russia (2013 - 2017). PLoS One 2018; 13:e0200117. [PMID: 30226876 PMCID: PMC6143185 DOI: 10.1371/journal.pone.0200117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory infections (ARIs) cause a considerable morbidity and mortality worldwide especially in children. However, there are few studies of the etiological structure of ARIs in Russia. In this work, we analyzed the etiology of ARIs in children (0–15 years old) admitted to Novosibirsk Children’s Municipal Clinical Hospital in 2013–2017. Methods We tested nasal and throat swabs of 1560 children with upper or lower respiratory infection for main respiratory viruses (influenza viruses A and B, parainfluenza virus types 1–4, respiratory syncytial virus, metapneumovirus, four human coronaviruses, rhinovirus, adenovirus and bocavirus) using a RT-PCR Kit. Results We detected 1128 (72.3%) samples were positive for at least one virus. The most frequently detected pathogens were respiratory syncytial virus (358/1560, 23.0%), influenza virus (344/1560, 22.1%), and rhinovirus (235/1560, 15.1%). Viral co-infections were found in 163 out of the 1128 (14.5%) positive samples. We detected significant decrease of the respiratory syncytial virus-infection incidence in children with increasing age, while the reverse relationship was observed for influenza viruses. Conclusions We evaluated the distribution of respiratory viruses in children with ARIs and showed the prevalence of respiratory syncytial virus and influenza virus in the etiological structure of infections. This study is important for the improvement and optimization of diagnostic tactics, control and prevention of the respiratory viral infections.
Collapse
Affiliation(s)
- Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Ryabichenko
- Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Natalya Leonova
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital №6, Novosibirsk, Russia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, Shandong, China
| | - Hongtao Bi
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, Xining, China
| | - Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Eugenia Kazachkova
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Prokopyeva
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Tatiana Kartseva
- Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
14
|
Gregianini TS, Seadi CF, Menegolla I, Martins LG, Ikuta N, Wolf JM, Lunge VR. Human metapneumovirus in Southern Brazil. Rev Soc Bras Med Trop 2018. [DOI: 10.1590/0037-8682-0435-2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Madi N, Al-Nakib W, Mustafa AS, Habibi N. Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait. J Med Virol 2017; 90:412-420. [PMID: 29083040 PMCID: PMC7167075 DOI: 10.1002/jmv.24984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Abstract
A metagenomic approach based on target independent next‐generation sequencing has become a known method for the detection of both known and novel viruses in clinical samples. This study aimed to use the metagenomic sequencing approach to characterize the viral diversity in respiratory samples from patients with respiratory tract infections. We have investigated 86 respiratory samples received from various hospitals in Kuwait between 2015 and 2016 for the diagnosis of respiratory tract infections. A metagenomic approach using the next‐generation sequencer to characterize viruses was used. According to the metagenomic analysis, an average of 145, 019 reads were identified, and 2% of these reads were of viral origin. Also, metagenomic analysis of the viral sequences revealed many known respiratory viruses, which were detected in 30.2% of the clinical samples. Also, sequences of non‐respiratory viruses were detected in 14% of the clinical samples, while sequences of non‐human viruses were detected in 55.8% of the clinical samples. The average genome coverage of the viruses was 12% with the highest genome coverage of 99.2% for respiratory syncytial virus, and the lowest was 1% for torque teno midi virus 2. Our results showed 47.7% agreement between multiplex Real‐Time PCR and metagenomics sequencing in the detection of respiratory viruses in the clinical samples. Though there are some difficulties in using this method to clinical samples such as specimen quality, these observations are indicative of the promising utility of the metagenomic sequencing approach for the identification of respiratory viruses in patients with respiratory tract infections.
Collapse
Affiliation(s)
- Nada Madi
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Widad Al-Nakib
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Abu Salim Mustafa
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Nazima Habibi
- Research Core Facility and OMICS Research Unit, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
16
|
Bouzas ML, Oliveira JR, Fukutani KF, Borges IC, Barral A, Van der Gucht W, Wollants E, Van Ranst M, de Oliveira CI, Van Weyenbergh J, Nascimento-Carvalho CM. Respiratory syncytial virus a and b display different temporal patterns in a 4-year prospective cross-sectional study among children with acute respiratory infection in a tropical city. Medicine (Baltimore) 2016; 95:e5142. [PMID: 27741144 PMCID: PMC5072971 DOI: 10.1097/md.0000000000005142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of childhood respiratory infections globally. Information on seasonality of different antigenic groups is scarce. We aimed to describe the frequency, seasonality, and age of children infected by RSV antigenic groups A (RSVA) and B (RSVB) among children with ARI in a 4-year period.Children (6-23 months old) with respiratory infection for ≤7 days were enrolled in a prospective cross-sectional study, from September, 2009 to October, 2013, in Salvador, in a tropical region of Brazil. Upon recruitment, demographic, clinical data, and nasopharyngeal aspirates (NPA) were collected. A multiplex quantitative real-time polymerase chain reaction (RT-PCR) with a group-specific primer and probeset for RSVA and RSVB was used. Seasonal distribution of infection by RSV different antigenic groups was evaluated by Prais-Wisten regression.Of 560 cases, the mean age was 11.4 ± 4.5 months and there were 287 (51.3%) girls. Overall, RSV was detected in 139 (24.8%; 95% CI: 21.4%-28.5%) cases, RSVA in 74 (13.2%; 95% CI: 10.6%-16.2%) cases, and RSVB in 67 (12.0%; 95% CI: 9.5%-14.9%) cases. Two (0.4%; 95% CI: 0.06%-1.2%) cases had coinfection. RSVA frequency was 9.6%, 18.4%, 21.6%, and 3.1% in 2010, 2011, 2012, and 2013, respectively. RSVB frequency was 19.2%, 0.7%, 1.4%, and 35.4% in the same years. RSVA was more frequently found from August to January than February to July (18.2% vs. 6.4%, P < 0.001). RSVB was more frequently found (P < 0.001) between March and June (36.0%) than July to October (1.0%) or November to February (1.6%). RSVB infection showed seasonal distribution and positive association with humidity (P = 0.02) whereas RSVA did not. RSVA was more common among children ≥1-year-old (17.8% vs. 1.8%; P = 0.02), as opposed to RSVB (11.5% vs. 12.2%; P = 0.8).One quarter of patients had RSV infection. RSVA compromised more frequently children aged ≥1 year. RSVA predominated in 2011 and 2012 whereas RSVB predominated in 2010 and 2013. In regard to months, RSVA was more frequent from August to January whereas RSVB was more often detected between March and June. Markedly different monthly as well as yearly patterns for RSVA and RSVB reveal independent RSV antigenic groups' epidemics.
Collapse
Affiliation(s)
- Maiara L Bouzas
- Postgraduate Program in Health Sciences, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil Department of Pathology, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU, Leuven, Belgium Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|