1
|
Zhang J, Toulopoulou T, Li Q, Niu L, Peng L, Dai H, Chen K, Wang X, Huang R, Wei X, Zhang R. Charting brain GABA and glutamate levels across psychiatric disorders by quantitative analysis of 121 1H-MRS studies. Psychol Med 2024:1-12. [PMID: 39564744 DOI: 10.1017/s0033291724001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
BACKGROUND Psychiatric diagnosis is based on categorical diagnostic classification, yet similarities in genetics and clinical features across disorders suggest that these classifications share commonalities in neurobiology, particularly regarding neurotransmitters. Glutamate (Glu) and gamma-aminobutyric acid (GABA), the brain's primary excitatory and inhibitory neurotransmitters, play critical roles in brain function and physiological processes. METHODS We examined the levels of Glu, combined glutamate and glutamine (Glx), and GABA across psychiatric disorders by pooling data from 121 1H-MRS studies and further divided the sample based on Axis I disorders. RESULTS Statistically significant differences in GABA levels were found in the combined psychiatric group compared with healthy controls (Hedge's g = -0.112, p = 0.008). Further analyses based on brain regions showed that brain GABA levels significantly differed across Axis I disorders and controls in the parieto-occipital cortex (Hedge's g = 0.277, p = 0.019). Furthermore, GABA levels were reduced in affective disorders in the occipital cortex (Hedge's g = -0.468, p = 0.043). Reductions in Glx levels were found in neurodevelopmental disorders (Hedge's g = -0.287, p = 0.022). Analysis focusing on brain regions suggested that Glx levels decreased in the frontal cortex (Hedge's g = -0.226, p = 0.025), and the reduction of Glu levels in patients with affective disorders in the frontal cortex is marginally significant (Hedge's g = -0.172, p = 0.052). When analyzing the anterior cingulate cortex and prefrontal cortex separately, reductions were only found in GABA levels in the former (Hedge's g = - 0.191, p = 0.009) across all disorders. CONCLUSIONS Altered glutamatergic and GABAergic metabolites were found across psychiatric disorders, indicating shared dysfunction. We found reduced GABA levels across psychiatric disorders and lower Glu levels in affective disorders. These results highlight the significance of GABA and Glu in psychiatric etiology and partially support rethinking current diagnostic categories.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Qian Li
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haowei Dai
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Keyin Chen
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, PR China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
2
|
Nakamura K, Hoshi H, Kobayashi M, Fukasawa K, Ichikawa S, Shigihara Y. Dorsal brain activity reflects the severity of menopausal symptoms. Menopause 2024; 31:399-407. [PMID: 38626372 PMCID: PMC11465762 DOI: 10.1097/gme.0000000000002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE The severity of menopausal symptoms, despite being triggered by hormonal imbalance, does not directly correspond to hormone levels in the blood; thus, the level of unpleasantness is assessed using subjective questionnaires in clinical practice. To provide better treatments, alternative objective assessments have been anticipated to support medical interviews and subjective assessments. This study aimed to develop a new objective measurement for assessing unpleasantness. METHODS Fourteen participants with menopausal symptoms and two age-matched participants who visited our outpatient section were enrolled. Resting-state brain activity was measured using magnetoencephalography. The level of unpleasantness of menopausal symptoms was measured using the Kupperman Kohnenki Shogai Index. The blood level of follicle-stimulating hormone and luteinizing hormone were also measured. Correlation analyses were performed between the oscillatory power of brain activity, index score, and hormone levels. RESULTS The level of unpleasantness of menopausal symptoms was positively correlated with high-frequency oscillatory powers in the parietal and bordering cortices (alpha; P = 0.016, beta; P = 0.015, low gamma; P = 0.010). The follicle-stimulating hormone blood level was correlated with high-frequency oscillatory powers in the dorsal part of the cortex (beta; P = 0.008, beta; P = 0.005, low gamma; P = 0.017), whereas luteinizing hormone blood level was not correlated. CONCLUSION Resting-state brain activity can serve as an objective measurement of unpleasantness associated with menopausal symptoms, which aids the selection of appropriate treatment and monitors its outcome.
Collapse
Affiliation(s)
- Kohei Nakamura
- From the Department of Gynecology, Kumagaya General Hospital, 4 Chome-5-1 Nakanishi, Kumagaya, Saitama, 360-8567, Japan
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan
| | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, 4 Chome-5-1 Nakanishi, Kumagaya, Saitama, 360-8567, Japan
| | - Keisuke Fukasawa
- Clinical Laboratory, Kumagaya General Hospital, 4 Chome-5-1 Nakanishi, Kumagaya, Saitama, 360-8567, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, 4 Chome-5-1 Nakanishi, Kumagaya, Saitama, 360-8567, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan
- Precision Medicine Centre, Kumagaya General Hospital, 4 Chome-5-1 Nakanishi, Kumagaya, Saitama, 360-8567, Japan
| |
Collapse
|
3
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
4
|
Simmonite M, Steeby CJ, Taylor SF. Medial Frontal Cortex GABA Concentrations in Psychosis Spectrum and Mood Disorders: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2023; 93:125-136. [PMID: 36335069 PMCID: PMC10184477 DOI: 10.1016/j.biopsych.2022.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Abnormalities of GABAergic (gamma-aminobutyric acidergic) systems may play a role in schizophrenia and mood disorders. Magnetic resonance spectroscopy allows for noninvasive in vivo quantification of GABA; however, studies of GABA in schizophrenia have yielded inconsistent findings. This may stem from grouping together disparate voxels from functionally heterogeneous regions. METHODS We searched PubMed for magnetic resonance spectroscopy studies of GABA in the medial frontal cortex (MFC) in patients with schizophrenia, bipolar disorder, and depression and in individuals meeting criteria for ultra-high risk for psychosis. Voxel placements were classified as rostral-, rostral-mid-, mid-, or posterior MFC, and meta-analyses were conducted for each group for each subregion. RESULTS Of 341 screened articles, 23 studies of schizophrenia, 6 studies of bipolar disorder, 20 studies of depression, and 7 studies of ultra-high risk met the inclusion criteria. Meta-analysis revealed lower mid- (standardized mean difference [SMD] = -0.28, 95% CI, -0.48 to -0.07, p < .01) and posterior (SMD = -0.29, 95% CI, -0.49 to -0.09, p < .01) MFC GABA in schizophrenia and increased rostral MFC GABA in bipolar disorder (SMD = 0.76, 95% CI, 0.25 to -1.25, p < .01). In depression, reduced rostral MFC GABA (SMD = -0.36, 95% CI, -0.64 to -0.08, p = .01) did not survive correction for multiple comparisons. We found no evidence for GABA differences in individuals at ultra-high risk for psychosis. CONCLUSIONS While limited by small numbers of published studies, these results substantiate the relevance of GABA in the pathophysiology of psychosis spectrum and mood disorders and underline the importance of voxel placement.
Collapse
Affiliation(s)
- Molly Simmonite
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan.
| | - Clara J Steeby
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Tran KH, Luki J, Hanstock S, Hanstock CC, Seres P, Aitchison K, Shandro T, Le Melledo JM. Decreased GABA+ Levels in the Medial Prefrontal Cortex of Perimenopausal Women: A 3T 1H-MRS Study. Int J Neuropsychopharmacol 2022; 26:32-41. [PMID: 36146906 PMCID: PMC9850658 DOI: 10.1093/ijnp/pyac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Perimenopause is associated with an increased risk of developing a major depressive (MD) episode. A significant number of women develop their first MD episode during perimenopause, suggesting a unique pathophysiology of perimenopausal (PM) depression. Previous research has shown that depression is associated with decreased gamma-aminobutyric acid (GABA) levels in the medial prefrontal cortex (MPFC) of MD patients. The objective of this study was to compare MPFC GABA+ levels in healthy reproductive-aged (RD) and PM women. METHODS A total of 18 healthy PM and 20 RD women were included in the study. MPFC GABA+ levels, which include homocarnosine and macromolecules, were measured via magnetic resonance spectroscopy using a 3 Tesla magnet. MPFC GABA+ levels were referenced to creatine + phosphocreatine (Cr+PCr). Absence of current or past psychiatric diagnosis was confirmed via a structured interview. RD participants were scanned during the early follicular phase of the menstrual cycle. PM women were scanned outside of ovulatory cycles. RESULTS Mean MPFC GABA+ concentrations (relative to Cr+PCr) were decreased in the PM group compared with the RD group (PM mean = 0.08 ± 0.02, RD mean = 0.09 ± 0.02, t = -2.03, df = 36, P = .05) even after correcting for in percentage in gray matter (GM). Because PM women were inherently older than RD women (aged 48.8 ± 3.55 and 31.5 ± 9.66 years, respectively), the age difference between the 2 groups was statistically significant (P < .001). When age was treated as an independent covariate and included in the model, the difference in GABA+ between PM and RD women was no longer significant (P = .092). CONCLUSION Perimenopause is associated with decreased MPFC GABA+/Cr+PCr levels, which may contribute to the increased risk of experiencing a MD episode during PM.
Collapse
Affiliation(s)
- Kim H Tran
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Jessica Luki
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Sarah Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Christopher C Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Peter Seres
- University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Katherine Aitchison
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Medical Genetics, Edmonton, AB, Canada,University of Alberta, Neuroscience and Mental Health Institute, Edmonton, AB, Canada,Northern Ontario School of Medicine, Division of Clinical Sciences, Psychiatry Section, Thunder Bay, ON, Canada
| | - Tami Shandro
- Lois Hole Hospital for Women, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Jean-Michel Le Melledo
- Correspondence: Jean-Michel Le Melledo, MD, Department of Psychiatry, Room 1E7.14, 8440 112 Street, Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7 ()
| |
Collapse
|
6
|
Hormonal Agents for the Treatment of Depression Associated with the Menopause. Drugs Aging 2022; 39:607-618. [PMID: 35908135 PMCID: PMC9355926 DOI: 10.1007/s40266-022-00962-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Perimenopause marks the transition from a woman’s reproductive stage to menopause. Usually occurring between 42 and 52 years of age, it is determined clinically by the onset of irregular menstrual cycles or variable cycle lengths. Women are at an increased risk of depression and anxiety during perimenopause and the menopausal transition. Depressive symptoms experienced in perimenopause are often more severe compared to pre- and post-menopause. During menopausal transition, the impact of fluctuating estrogen in the central nervous system (CNS) can have negative psychological effects for some women. Traditional first-line management of menopausal depression involves antidepressants, with modest outcomes. The positive effects of estrogen treatment in the CNS are becoming increasingly recognised, and hormonal therapy (HT) with estrogen may have a role in the treatment of menopausal depression. In this review we will outline the prevalence, impact and neurochemical basis of menopausal-associated depression, as well as hormone-based approaches that have increasing promise as effective treatments.
Collapse
|
7
|
Thalamocortical bistable switch as a theoretical model of fibromyalgia pathogenesis inferred from a literature survey. J Comput Neurosci 2022; 50:471-484. [PMID: 35816263 PMCID: PMC9666334 DOI: 10.1007/s10827-022-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Fibromyalgia (FM) is an unsolved central pain processing disturbance. We aim to provide a unifying model for FM pathogenesis based on a loop network involving thalamocortical regions, i.e., the ventroposterior lateral thalamus (VPL), the somatosensory cortex (SC), and the thalamic reticular nucleus (TRN). The dynamics of the loop have been described by three differential equations having neuron mean firing rates as variables and containing Hill functions to model mutual interactions among the loop elements. A computational analysis conducted with MATLAB has shown a transition from monostability to bistability of the loop behavior for a weakening of GABAergic transmission between TRN and VPL. This involves the appearance of a high-firing-rate steady state, which becomes dominant and is assumed to represent pathogenic pain processing giving rise to chronic pain. Our model is consistent with a bulk of literature evidence, such as neuroimaging and pharmacological data collected on FM patients, and with correlations between FM and immunoendocrine conditions, such as stress, perimenopause, chronic inflammation, obesity, and chronic dizziness. The model suggests that critical targets for FM treatment are to be found among immunoendocrine pathways leading to GABA/glutamate imbalance having an impact on the thalamocortical system.
Collapse
|
8
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
9
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
11
|
Total Polysaccharides of Lily Bulb Ameliorate Menopause-Like Behavior in Ovariectomized Mice: Multiple Mechanisms Distinct from Estrogen Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6869350. [PMID: 31428228 PMCID: PMC6683782 DOI: 10.1155/2019/6869350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
Our previous study has demonstrated the effects of aqueous extract of lily bulb in alleviating menopause-related psychiatric symptoms in ovariectomized (OVX) mice. This study sought to further investigate the psychotropic effects of total polysaccharides of lily bulb (TPLB) against anxiety, depression, and cognitive deterioration and the underlying mechanisms in OVX mice using behavioral, neurochemical, molecular, and proteomic approaches in comparison with estrogen therapy. While TPLB and estradiol showed similar effects in reducing OVX-induced anxiety, depression, and cognitive impairment, the psychotropic effects of TPLB were more closely associated with the predominant activation of estrogen receptors (ERs) and regulation of brain regional neurotransmitters and neurotrophins with minor effects on the uterus. Estradiol had similar potencies in binding affinity at ERα and ERβ, which caused widespread genetic and epigenetic effects. In contrast, TPLB displayed a higher affinity at ERβ than ERα, triggering the specific Ras/Akt/ERK/CREB signaling pathway without affecting any epigenetic activity. TPLB additionally modulated multiple proteins associated with mitochondrial oxidative stress, but estradiol did not. These results indicate that TPLB has comparable efficacy in reducing menopause-associated neuropsychological symptoms with a better safety profile compared to estrogen therapy. We suggest that TPLB could serve as a novel agent for menopause syndrome.
Collapse
|
12
|
Wang D, Wang X, Luo MT, Wang H, Li YH. Gamma-Aminobutyric Acid Levels in the Anterior Cingulate Cortex of Perimenopausal Women With Depression: A Magnetic Resonance Spectroscopy Study. Front Neurosci 2019; 13:785. [PMID: 31481863 PMCID: PMC6710535 DOI: 10.3389/fnins.2019.00785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
Objective The anterior cingulate cortex (ACC) is associated with the processing of negative emotions. Gamma-aminobutyric acid (GABA) metabolism plays an important role in the pathogenesis of mental disorders. We aimed to determine the changes in GABA levels in the ACC of perimenopausal women with depression. Methods We recruited 120 perimenopausal women, who were followed up for 18-24 months. After reaching menopause, the participants were divided into a control group (n = 71), an anxiety group (n = 30), and a depression group (n = 19). The participants were examined using proton magnetic resonance spectroscopy (MRS). TARQUIN software was used to calculate the GABA concentrations in the ACC before and after menopause. The relationship of the GABA levels with the patients' scores on the 14-item Hamilton Anxiety Scale and 17-item Hamilton Depression Scale was determined. Results GABA decreased with time. The postmenopausal GABA levels were significantly lower in the depression group than in the anxiety group and were significantly lower in both these groups than in the normal group. The postmenopausal GABA levels were significantly lower than the premenopausal levels in the normal, anxiety, and depression groups (P = 0.014, <0.001, and <0.001, respectively). The premenopausal GABA levels did not significantly differ between the normal vs. anxiety group (P = 0.907), normal vs. depression group (P = 0.495), and anxiety vs. depression group. The postmenopausal GABA levels were significantly lower in the depression group than in the anxiety group and were significantly lower in both these groups than in the normal group, normal vs. anxiety group (P = 0.022), normal vs. depression group (P < 0.001), and anxiety vs. depression group (P = 0.047). Conclusion Changes in GABA concentrations in the anterior cingulate cortex are related with the pathophysiological mechanism and symptoms of perimenopausal depression.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Ting Luo
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Flores-Ramos M, Alcauter S, López-Titla M, Bernal-Santamaría N, Calva-Coraza E, Edden RAE. Testosterone is related to GABA+ levels in the posterior-cingulate in unmedicated depressed women during reproductive life. J Affect Disord 2019; 242:143-149. [PMID: 30195172 PMCID: PMC6484862 DOI: 10.1016/j.jad.2018.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The role of testosterone (T) in the pathophysiology of affective disorders and anxiety is broadly supported. Evidence suggests that T has anxiolytic and antidepressant properties. One proposed route for the central effects of T is its interaction with the gamma-aminobutyric acid (GABA) system. We explored the relationship between T levels and GABA+ levels in anterior-cingulate (ACC) and the posterior-cingulate (PCC) regions in depressed women, using magnetic resonance spectroscopy (1H-MRS). METHODS Twenty-one depressed patients with regularly cycling who were not taking hormonal or psychotropic drugs were recruited. We assessed severity of depression using the Hamilton Depression Rating Scale (HDRS). Blood samples were taken for quantification of free (FT) and total testosterone (TT) on the day of the magnetic resonance (MR) scan. We evaluated GABA+ levels in the PCC and ACC, using the Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) sequence. Pearson correlations were used to evaluate the association between FT, TT, GABA+ concentrations, and HDRS scores. RESULTS TT and FT levels were positively correlated with GABA+ levels in the PCC. No correlation was observed between T levels and GABA+ levels in the ACC. The HDRS total scores correlated negatively with FT levels. LIMITATIONS Limitations include the cross-sectional evaluation and the lack of a comparative healthy group. CONCLUSIONS Our findings suggest that the potential anxiolytic and antidepressant properties of T are related to increased GABA+ levels in the PCC. This observation may contribute to increased understanding of the role of T in depressive and anxiety symptoms in women.
Collapse
Affiliation(s)
- M Flores-Ramos
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Avenida Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de México, México; Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, México.
| | - S Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, México
| | - M López-Titla
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, México; Universidad Veracruzana, División de estudios de Posgrado. Veracruz, Veracruz. México
| | - N Bernal-Santamaría
- Departamento de Servicio Social, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000. Ciudad de México, México
| | - Edgar Calva-Coraza
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, México
| | - R A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
14
|
Godfrey KEM, Gardner AC, Kwon S, Chea W, Muthukumaraswamy SD. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J Psychiatr Res 2018; 105:33-44. [PMID: 30144668 DOI: 10.1016/j.jpsychires.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of gamma-aminobutyric acid (GABA) and/or glutamate neurotransmitter systems have increasingly been implicated in the aetiology of Major Depressive Disorder (MDD). It has been proposed that alterations in GABA and/or glutamate result in an imbalance of inhibition and excitation. In a review of the current literature, we identified studies using Magnetic Resonance Spectroscopy (MRS) to examine the neurotransmitters GABA, glutamate, and the composite glutamate/glutamine measure Glx in patients diagnosed with MDD and healthy controls. Results showed patients with MDD had significantly lower GABA levels compared to controls (-0.35 [-0.61,-0.10], p = 0.007). No significant difference was found between levels of glutamate. Sub-analyses were performed, including only studies where the Anterior Cingulate Cortex (ACC) was the region of interest. GABA and Glx levels were lower in the ACC of MDD patients (-0.56 [-0.93,-0.18] p = 0.004, and 0.40 [-0.81,0.01] p = 0.05). This review indicates widespread cortical reduction of GABA in MDD, with a trend towards a localised reduction of Glx in the ACC. However, given both GABA and glutamate appear decreased a simple interpretation in terms of an imbalance of overall excitation-inhibition is not feasible.
Collapse
Affiliation(s)
- Kate E M Godfrey
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand.
| | - Abby C Gardner
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | - Sarah Kwon
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | - William Chea
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | | |
Collapse
|
15
|
Gong T, Xiang Y, Saleh MG, Gao F, Chen W, Edden RAE, Wang G. Inhibitory motor dysfunction in parkinson's disease subtypes. J Magn Reson Imaging 2017; 47:1610-1615. [PMID: 28960581 DOI: 10.1002/jmri.25865] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is divided into postural instability gait difficulty (PIGD) and tremor-dominant (TD) subtypes. Increasing evidence has suggested that the GABAergic neurotransmitter system is involved in the pathogenesis of PD. PURPOSE To evaluate the differences of GABA levels between PD motor subtypes using MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS). STUDY TYPE COHORT.: SUBJECTS: PD patients were classified into PIGD (n = 13) and TD groups (n = 9); 16 age- and sex-matched healthy controls were also recruited. All subjects were right-handed. SEQUENCE All subjects underwent an magnetic resonance spectroscopy scan including MEGA-PRESS at 3.0T. ASSESSMENT The detected GABA signal also contains signal from macromolecules (MM) and homocarnosine, so it is referred to as GABA+. GABA + levels and Creatine (Cr) levels were quantified in the left basal ganglia (BG) using Gannet 2.0 by Tao Gong. STATISTICAL TESTS Differences in GABA + levels between the three groups were analyzed using analysis of covariance. The relationship between GABA levels and a unified PD rating scale (UPDRS) was also analyzed. RESULTS GABA + levels were significantly lower in left BG regions of PD patients compared with healthy controls (P < 0.001). In PD patients, the GABA concentration was lower in the TD group than the PIGD group (P = 0.019). Cr levels in PIGD and TD were lower than controls (P = 0.020; P = 0.002). A significant negative correlation was found in PIGD between GABA levels and UPDRS (r = -0.572, P = 0.041), while no correlation was found in TD (r = -0.339, P = 0.372). DATA CONCLUSION Low BG GABA levels in PD patients, and differences between PIGD/TD patients, suggest that GABAergic dysfunction may play an important role in the pathogenesis of Parkinson's disease. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1610-1615.
Collapse
Affiliation(s)
- Tao Gong
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| | - Yuanyuan Xiang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Muhammad G Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Fei Gao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| | - Weibo Chen
- Philips Healthcare, Shanghai, P.R. China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Guangbin Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|