1
|
Chen XJ, Deng Z, Zhang LL, Pan Y, Fu J, Zou L, Bai Z, Xiao X, Sheng F. Therapeutic potential of the medicinal mushroom Ganoderma lucidum against Alzheimer's disease. Biomed Pharmacother 2024; 172:116222. [PMID: 38310653 DOI: 10.1016/j.biopha.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a high-incidence neurodegenerative disorder, characterized by cognitive impairment, memory loss, and psychiatric abnormalities. Ganoderma lucidum is a famous medicinal fungus with a long history of dietary intake, containing various bioactive components, and have been documented to exhibit antioxidant, anti-inflammatory, anti-tumor, anti-aging, and immunomodulatory effects, among others. Recent studies have shown that G. lucidum and its components have promising therapeutic potential against AD from various aspects, which can delay the progression of AD, improve cognitive function and quality of life. The underlying mechanisms mainly include inhibiting tau hyperphosphorylation, inhibiting Aβ formation, affecting activated microglia, regulating NF-κB/MAPK signalling pathway, inhibiting neuronal apoptosis, modulating immune system, and inhibiting acetylcholinesterase, etc. This paper systematically reviewed the relevant studies on the therapeutic potential of G. lucidum and its active components for treatment of AD, key points related with the mechanism studies and clinical trials have been discussed, and further perspectives have been proposed. Totally, as a natural medicinal mushroom, G. lucidum has the potential to be developed as effective adjuvant for AD treatment owing to its therapeutic efficacy against multiple pathogenesis of AD. Further mechanical investigation and clinical trials can help unlock the complete potential of G. lucidum as a therapeutic option for AD.
Collapse
Affiliation(s)
- Xu-Jia Chen
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhou Deng
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Yan Pan
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
Cha S, Bell L, Shukitt-Hale B, Williams CM. A review of the effects of mushrooms on mood and neurocognitive health across the lifespan. Neurosci Biobehav Rev 2024; 158:105548. [PMID: 38246232 DOI: 10.1016/j.neubiorev.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Mushrooms contain bioactive compounds with documented antioxidant and anti-inflammatory actions. Here, we present a systematic evaluation of epidemiological and clinical studies that investigate the role of mushrooms, either as a separate or integral dietary component, on neurocognition and mood. Following a search of four databases, a total of 34 human studies examining the effect of different mushrooms across varying age cohorts and health statuses were selected for inclusion. Epidemiological studies included in this review (n = 24) revealed a significant benefit of dietary patterns that included mushrooms of any species on cognition and mood in both healthy and compromised populations. However, the results obtained from intervention studies (n = 10) were mixed. Studies mainly investigated Lion's Mane (Hericium erinaceus), showing some enhancement of mood and cognitive function in middle-aged and older adults. Further acute and chronic human intervention studies are needed, using adequate sample sizes, employing appropriately sensitive neurocognitive tests, and investigating a range of dietary mushrooms, to confirm the effects of mushroom supplementation on neurocognition and mood in humans.
Collapse
Affiliation(s)
- Sara Cha
- University of Reading, School of Psychology & Clinical Language Sciences, Harry Pitt Building, Whiteknights Road, Earley Gate, Reading RG6 6ES, UK
| | - Lynne Bell
- University of Reading, School of Psychology & Clinical Language Sciences, Harry Pitt Building, Whiteknights Road, Earley Gate, Reading RG6 6ES, UK
| | - Barbara Shukitt-Hale
- Tufts University, Jean Mayer USDA Human Nutrition Research Centre on Aging (HNRCA), 711 Washington Street, Boston, MA 02111, USA
| | - Claire M Williams
- University of Reading, School of Psychology & Clinical Language Sciences, Harry Pitt Building, Whiteknights Road, Earley Gate, Reading RG6 6ES, UK.
| |
Collapse
|
3
|
Cha S, Bell L, Williams CM. The Relationship between Mushroom Intake and Cognitive Performance: An Epidemiological Study in the European Investigation of Cancer-Norfolk Cohort (EPIC-Norfolk). Nutrients 2024; 16:353. [PMID: 38337638 PMCID: PMC10857520 DOI: 10.3390/nu16030353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The previous literature suggests that regular consumption of edible mushrooms may confer neuroprotective cognitive health benefits. To further investigate the possible association between mushrooms and brain function during ageing, data from a population-based study of diet and chronic disease (EPIC-Norfolk cohort) were analysed. Changes in mushroom intake were measured using a food frequency questionnaire at three health check (HC) points over an 18-year period, with participants categorised based on their consumption frequency. Cognitive performance was assessed at the final health check (3HC) via a battery of validated tests assessing a range of different cognitive domains. The findings revealed a significant reduction in mushroom intake over time, with 4.12% of the cohort giving up mushrooms after previously consuming them. At 3HC, mushroom consumers displayed better cognitive performance than non-consumers across multiple cognitive domains. This relationship was observed to be dose-dependent, with those consuming 1 or more portions per week showing the highest cognitive scores. These findings suggest that regular mushroom consumption may be beneficial for cognitive function during aging. Further randomised controlled trials will be needed to confirm any potential benefits of mushrooms on long-term cognitive health, alongside public health initiatives to promote mushroom consumption in this older-adult demographic.
Collapse
Affiliation(s)
| | | | - Claire M. Williams
- School of Psychology & Clinical Language Sciences, University of Reading, Whiteknights Road, Earley Gate, Reading RG6 6ES, UK; (S.C.); (L.B.)
| |
Collapse
|
4
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
5
|
β-Glucan ameliorates anxiety-like behavior in mice chronically infected with the Toxoplasma gondii Wh6 strain. Parasitol Res 2022; 121:3513-3521. [PMID: 36163518 DOI: 10.1007/s00436-022-07675-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Chronic Toxoplasma gondii (T. gondii) infection has been revealed to be a risk factor for neuropsychiatric diseases, including anxiety. However, there is no intervention strategy. The present study aimed to investigate the protective effect of β-glucan on T. gondii Wh6 strain-induced anxiety-like behavior in mice. The anxiety mouse model was established by infection with 10 cysts of the T. gondii Wh6 strain. β-Glucan was intraperitoneally administered 2 weeks before infection. Open field and elevated plus maze tests were performed to assess anxiety-like behavior. In the open field test, Wh6-infected mice spent less time in the central zone and had fewer entries into the central zone. In the elevated plus maze test, the infection reduced the frequency and time of head entries in the open arms. These results showed that Wh6 causes anxiety-like behavior in mice. Interestingly, the administration of β-glucan significantly ameliorated anxiety-like behavioral performance. The present study shows that β-glucan can alleviate the anxiety-like behavior induced by chronic T. gondii infection in mice, which indicates that β-glucan may be a potential drug candidate for treating T. gondii-related mental disorders, including anxiety.
Collapse
|
6
|
Ganoderma tsugae prevents cognitive impairment and attenuates oxidative damage in d-galactose-induced aging in the rat brain. PLoS One 2022; 17:e0266331. [PMID: 35390035 PMCID: PMC8989198 DOI: 10.1371/journal.pone.0266331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Lingzhi has long been regarded as having life-prolonging effects. Research in recent years has also reported that Lingzhi possesses anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, and anti-lipogenic effects. The D-galactose (D-gal, 100 mg/kg/day)-induced aging Long-Evans rats were simultaneously orally administered a DMSO extract of Ganoderma tsugae (GTDE, 200 μg/kg/day) for 25 weeks to investigate the effects of GTDE on oxidative stress and memory deficits in the D-galactose-induced aging rats. We found that GTDE significantly improved the locomotion and spatial memory and learning in the aging rats. GTDE alleviated the aging-induced reduction of dendritic branching in neurons of the hippocampus and cerebral cortex. Immunoblotting revealed a significant increase in the protein expression levels of the superoxide dismutase-1 (SOD-1) and catalase, and the brain-derived neurotrophic factor (BDNF) in rats that received GTDE. D-gal-induced increase in the lipid peroxidation product 4-hydroxynonenal (4-HNE) was significantly attenuated after the administration of GTDE, and pyrin domain-containing 3 protein (NLRP3) revealed a significant decrease in NLRP3 expression after GTDE administration. Lastly, GTDE significantly reduced the advanced glycosylation end products (AGEs). In conclusion, GTDE increases antioxidant capacity and BDNF expression of the brain, protects the dendritic structure of neurons, and reduces aging-induced neuronal damage, thereby attenuating cognitive impairment caused by aging.
Collapse
|
7
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
8
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Frank J, Kisters K, Stirban OA, Obeid R, Lorkowski S, Wallert M, Egert S, Podszun MC, Eckert GP, Pettersen JA, Venturelli S, Classen HG, Golombek J. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors 2021; 47:522-550. [PMID: 33772908 DOI: 10.1002/biof.1728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
The present demographic changes toward an aging society caused a rise in the number of senior citizens and the incidence and burden of age-related diseases (such as cardiovascular diseases [CVD], cancer, nonalcoholic fatty liver disease [NAFLD], diabetes mellitus, and dementia), of which nearly half is attributable to the population ≥60 years of age. Deficiencies in individual nutrients have been associated with increased risks for age-related diseases and high intakes and/or blood concentrations with risk reduction. Nutrition in general and the dietary intake of essential and nonessential biofactors is a major determinant of human health, the risk to develop age-related diseases, and ultimately of mortality in the older population. These biofactors can be a cost-effective strategy to prevent or, in some cases, even treat age-related diseases. Examples reviewed herein include omega-3 fatty acids and dietary fiber for the prevention of CVD, α-tocopherol (vitamin E) for the treatment of biopsy-proven nonalcoholic steatohepatitis, vitamin D for the prevention of neurodegenerative diseases, thiamine and α-lipoic acid for the treatment of diabetic neuropathy, and the role of folate in cancer epigenetics. This list of potentially helpful biofactors in the prevention and treatment of age-related diseases, however, is not exhaustive and many more examples exist. Furthermore, since there is currently no generally accepted definition of the term biofactors, we here propose a definition that, when adopted by scientists, will enable a harmonization and consistent use of the term in the scientific literature.
Collapse
Affiliation(s)
- Jan Frank
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Klaus Kisters
- Medical Clinic I, St. Anna-Hospital & ESH Excellence Centre, Herne, Germany
| | | | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Sarah Egert
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | - Maren C Podszun
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Jacqueline A Pettersen
- Northern Medical Program, University of Northern British Columbia, Prince George, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sascha Venturelli
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Hans-Georg Classen
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | | |
Collapse
|
10
|
Ganoderma lucidum Effects on Mood and Health-Related Quality of Life in Women with Fibromyalgia. Healthcare (Basel) 2020; 8:healthcare8040520. [PMID: 33265969 PMCID: PMC7712001 DOI: 10.3390/healthcare8040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
Fibromyalgia syndrome is a chronic rheumatic disorder characterized by generalized and widespread musculoskeletal pain. It is associated with several secondary symptoms such as psychological and pain-specific distress, which can directly impact daily functioning and quality of life, like anxiety and depression. The Ganoderma lucidum (GL) mushroom seems to be able to improve fibromyalgia symptoms, including depression and pain. The purpose of the study is to evaluate the effects of GL on happiness, depression, satisfaction with life, and health-related quality of life in women with fibromyalgia. A double-blind, randomized placebo pilot trial was carried out, with one group taking 6 g/day of micro-milled GL carpophores for 6 weeks, during which the second group took a placebo. Our results did not show any statistically significant between-group differences, although a distinct trend of improved levels of happiness and satisfaction with life and reduced depression were evident at the end of treatment compared to the baseline in the GL group. However, due to the limitations of the study protocol, additional studies are necessary to confirm these findings.
Collapse
|
11
|
Yadav SK, Ir R, Jeewon R, Doble M, Hyde KD, Kaliappan I, Jeyaraman R, Reddi RN, Krishnan J, Li M, Durairajan SSK. A Mechanistic Review on Medicinal Mushrooms-Derived Bioactive Compounds: Potential Mycotherapy Candidates for Alleviating Neurological Disorders. PLANTA MEDICA 2020; 86:1161-1175. [PMID: 32663897 DOI: 10.1055/a-1177-4834] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
According to the World Health Organization, neurological and neurodegenerative diseases are highly debilitating and pose the greatest threats to public health. Diseases of the nervous system are caused by a particular pathological process that negatively affects the central and peripheral nervous systems. These diseases also lead to the loss of neuronal cell function, which causes alterations in the nervous system structure, resulting in the degeneration or death of nerve cells throughout the body. This causes problems with movement (ataxia) and mental dysfunction (dementia), both of which are commonly observed symptoms in Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. Medicinal mushrooms are higher fungi with nutraceutical properties and are low in calories and fat. They are also a rich source of nutrients and bioactive compounds such as carbohydrates, proteins, fibers, and vitamins that have been used in the treatment of many ailments. Medicinal mushrooms such as Pleurotus giganteus, Ganoderma lucidium, and Hericium erinaceus are commonly produced worldwide for use as health supplements and medicine. Medicinal mushrooms and their extracts have a large number of bioactive compounds, such as polysaccharide β-glucan, or polysaccharide-protein complexes, like lectins, lactones, terpenoids, alkaloids, antibiotics, and metal-chelating agents. This review will focus on the role of the medicinal properties of different medicinal mushrooms that contain bioactive compounds with a protective effect against neuronal dysfunction. This information will facilitate the development of drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonu Kumar Yadav
- Division of Mycobiology and Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Reshma Ir
- Division of Mycobiology and Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ilango Kaliappan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ravindrian Jeyaraman
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Rambabu N Reddi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Jayalakshmi Krishnan
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Siva Sundara Kumar Durairajan
- Division of Mycobiology and Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| |
Collapse
|
12
|
Qin LH, Wang C, Jiang XX, Song Y, Feng Y, Qin LW, Zhang SP. Effects of spore powder of ganoderma lucidum on CaSR and apoptosis-related proteins in hippocampus tissue of epilepsy following dementia: A protocol of systematic review. Medicine (Baltimore) 2020; 99:e21711. [PMID: 32872049 PMCID: PMC7437730 DOI: 10.1097/md.0000000000021711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study will investigate the effects of Spore Powder of Ganoderma Lucidum (SPGL) on CaSR and apoptosis-related proteins (ARP) in hippocampus tissue of epilepsy following dementia. METHODS This study will retrieve all potential studies from both electronic databases (Cochrane Library, EMBASE, MEDLINE, CINAHL, AMED, and CNKI) and other literature sources to assess the effects of SPGL on CaSR and ARP in hippocampus tissue of epilepsy following dementia. We will search all literature sources from the inception to the present. All eligible case-control studies will be included in this study. Two authors will independently carry out literature selection, data collection, and study quality evaluation. Any divergence will be resolved by another author through discussion. RevMan 5.3 software will be employed for data analysis. RESULTS This study will summarize existing evidence to assess the effects of SPGL on CaSR and ARP in hippocampus tissue of epilepsy following dementia. CONCLUSIONS The findings of this study may provide helpful evidence of SPGL on CaSR and ARP in hippocampus tissue of epilepsy following dementia. SYSTEMATIC REVIEW REGISTRATION INPLASY202070041.
Collapse
Affiliation(s)
| | | | | | - You Song
- First Ward of Neurology Department
| | | | - Li-wei Qin
- Department of Physical Diagnosis, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | | |
Collapse
|
13
|
Hilliard A, Mendonca P, Soliman KFA. Involvement of NFƙB and MAPK signaling pathways in the preventive effects of Ganoderma lucidum on the inflammation of BV-2 microglial cells induced by LPS. J Neuroimmunol 2020; 345:577269. [PMID: 32480240 PMCID: PMC7382303 DOI: 10.1016/j.jneuroim.2020.577269] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Ganoderma lucidum extract (GLE) is a potent ancient Asian remedy for the treatment of various diseases. This study investigated GLE preventive effects on LPS-stimulated inflammation of BV-2 microglial cells. The results show that pre-treatment with GLE decreased expression of pro-inflammatory cytokines: G-CSF, IL1-α, MCP-5, MIP3α, and, with a higher effect in MIP3α. In RT-PCR assays, pre-treatment with GLE decreased mRNA expression of CHUK, NFκB1/p150, and IKBKE (NFƙB signaling), which may be associated with the neuropathology of Alzheimer's disease. The data show GLE inhibiting ability on pro-inflammatory mediators' release and suggest a potential role of GLE in neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Aaron Hilliard
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Patricia Mendonca
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America.
| |
Collapse
|
14
|
Li Z, Shi Y, Zhang X, Xu J, Wang H, Zhao L, Wang Y. Screening Immunoactive Compounds of Ganoderma lucidum Spores by Mass Spectrometry Molecular Networking Combined With in vivo Zebrafish Assays. Front Pharmacol 2020; 11:287. [PMID: 32256359 PMCID: PMC7093641 DOI: 10.3389/fphar.2020.00287] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Ganoderma lucidum is a well-known herbal remedy widely used for treating various chronic diseases. Traditionally, the fruiting body is regarded as the medicinal part of this fungus, while recently, the therapeutic potentials of Ganoderma lucidum spore (GLS) is gaining increasing interests. However, detailed knowledge of chemical compositions and biological activities of the spore is still lacking. In this study, high-resolution mass spectrometry and molecular networking were employed for in-depth chemical profiling of GLS, sporoderm-broken GLS (BGLS) and sporoderm-removed GLS (RGLS), leading to the characterization of 109 constituents. The result also showed that RGLS contained more triterpenoids with much higher contents than BGLS and GLS. Moreover, the immunomodulatory activities of BGLS and RGLS were investigated in the zebrafish models of neutropenia or macrophage deficiency. RGLS exhibited more potent activities in alleviating vinorelbine-induced neutropenia or macrophage deficiency, and significantly enhanced phagocytic function of macrophages, which indicated the immunomodulatory activity of GLS was positively correlated with the content of triterpenoids. Further correlation analysis of chemical profiles of GLS and corresponding bioactivities by partial least squares regression identified the potential immunoactive compounds of GLS, including 20-hydroxylganoderic acid G, elfvingic acid A and ganohainanic acid C. Our findings suggest that combining mass spectrometry molecular networking with zebrafish-based bioassays and chemometrics is a feasible strategy to reveal complex chemical compositions of herbal medicines, as well as to discover their potential active constituents.
Collapse
Affiliation(s)
- Zhenhao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Research Center of Rare Medicinal Plants, Hangzhou, China
| | - Yingqiu Shi
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Xu
- Zhejiang Engineering Research Center of Rare Medicinal Plants, Hangzhou, China
| | - Hanbo Wang
- Zhejiang Shouxiangu Institute of Rare Medicine Plant, Wuyi, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Qin LH, Wang C, Qin LW, Liang YF, Wang GH. Spore powder of Ganoderma lucidum for Alzheimer's disease: A protocol for systematic review. Medicine (Baltimore) 2019; 98:e14382. [PMID: 30702632 PMCID: PMC6380698 DOI: 10.1097/md.0000000000014382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have reported that spore powder of Ganoderma lucidum (SPGL) may be effective for the treatment of Alzheimer's disease (AD). However, its efficacy is still inconclusive. Thus, this systematic review will aim to assess its efficacy and safety for AD. METHODS We will search the electronic databases of Cochrane Central Register of Controlled Trials, EMBASE, MEDILINE, the Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, and Chinese Biomedical Literature Database to assess the efficacy and safety of SPGL for patients with AD from their inceptions to the present. All case-control studies and randomized controlled trials will be considered for inclusion in this study. Two review authors will independently perform the study selection, data extraction, and risk of bias evaluation. RESULTS The primary outcome includes the cognitive status for patients. The secondary outcomes consist of the quality of life, AD symptoms, and adverse events. CONCLUSIONS This systematic review will present the existing evidence for the efficacy and safety of SPGL for treating patients with AD. DISSEMINATION AND ETHICS The results of this systematic review will be disseminated by through peer-reviewed journals. It does not needs ethic approval, because it does not involve individual patient data. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019119426.
Collapse
Affiliation(s)
| | | | - Li-Wei Qin
- Department of Physical Diagnosis, First Affiliated Hospital of Jiamusi University
| | - Yan-Feng Liang
- Department of Pathophysiology, Jiamusi University School of Basic Medicine, Jiamusi, China
| | | |
Collapse
|
16
|
Cui X, Zhang Y. Neuropharmacological Effect and Clinical Applications of Ganoderma (Lingzhi). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:143-157. [PMID: 31777017 DOI: 10.1007/978-981-32-9421-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ganoderma lucidum (G. lucidum, Lingzhi) is a kind of medical mushroom with various pharmacological compounds. It has been used for clinical applications for thousands of years as a highly nutritious and significantly effective medicinal herb. Compared with its immunomodulatory effect, there are a few studies on the neuropharmacological actions of Ganoderma, and the mechanism has not been fully elucidated. As far as we know, Ganoderma regulate the central nervous system (CNS) at least in part through its immunomodulatory activity. The neuropharmacological effects of G. lucidum mainly include but not limited to sedative and hypnotic, neuroprotective, antinociceptive and analgesic, antiepileptic, and antidepressant effects. Clinical trials of G. lucidum in the patients with these disorders are still rare. To date, there are no Ganoderma-related drugs approved by the US Food and Drug Administration (FDA). In this chapter, we will summarize and elucidate recent progress of such effects of Ganoderma and its ingredients from both the preclinical and clinical points of view.
Collapse
Affiliation(s)
- Xiangyu Cui
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yonghe Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|