1
|
Ren X, Zhou R, Ronan G, Ozcebe SG, Ji J, Senapati S, March KL, Handberg E, Anderson D, Pepine CJ, Chang HC, Liu F, Zorlutuna P. Towards real-time myocardial infarction diagnosis: a convergence of machine learning and ion-exchange membrane technologies leveraging miRNA signatures. LAB ON A CHIP 2024; 24:5203-5214. [PMID: 39415669 PMCID: PMC11484500 DOI: 10.1039/d4lc00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Rapid diagnosis of acute myocardial infarction (AMI) is crucial for optimal patient management. Accurate diagnosis and time of onset of an acute event can influence treatment plans, such as percutaneous coronary intervention (PCI). PCI is most beneficial within 3 hours of AMI onset. MicroRNAs (miRNAs) are promising biomarkers, with potential of early AMI diagnosis, since they are released before cell death and subsequent release of larger molecules [e.g., cardiac troponins (cTn)], and have greater sensitivity and stability in plasma versus cTn regardless of timing of AMI onset. However, miRNA-based AMI diagnosis can result in false positives due to miRNA content overlap between AMI and stable coronary artery disease (CAD). Accordingly, we explored the possibility of using a miRNA profile, rather than a single miRNA, to distinguish between CAD and AMI, as well as different stages following AMI onset. First we screened a library of 800 miRNA using plasma samples from 4 patient cohorts; no known CAD, CAD, ST-segment elevation myocardial infarction (STEMI) and STEMI followed by PCI, using Nanostring miRNA profiling technology. From this screening, based on machine learning SCAD and Lasso algorithms, we identified 9 biomarkers (miR-200b, miR-543, miR-331, miR-3605, miR-301a, miR-18a, miR-423, miR-142, and miR-132) that were differentially expressed in CAD, STEMI and STEMI-PCI and explored them to identify a miRNA profile for rapid and accurate AMI diagnosis. These 9 miRNAs were selected as the most frequently identified targets by SCAD and Lasso, as indicated in the "drum-plot" model in the machine learning approach. We used age-matched patient samples to validate selected 9 miRNA biomarkers using a multiplexed ion-exchange membrane-based miRNA sensor platform, which measures specific miRNAs, and cTn as a control, simultaneously as a point-of-care device. Findings from this study will inform timely and accurate diagnosis of AMI and its stages, which are essential for effective management and optimal patient outcomes.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Ruyu Zhou
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - George Ronan
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - S Gulberk Ozcebe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Jiaying Ji
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Keith L March
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Eileen Handberg
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - David Anderson
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Carl J Pepine
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Ye G, Liu T, Ding C. Bioinformatics analysis of key genes and potential therapeutic agents for vascular calcification in chronic kidney disease. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-19. [PMID: 39556059 DOI: 10.1080/15257770.2024.2423214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Vascular calcification is a common complication of chronic kidney disease (CKD). The molecular mechanisms underlying this condition and the efficacy of potential treatments remain unclear. Bioinformatic methods were employed to analyze gene ontology (GO) annotations and pathway enrichments. Subsequently, an analysis of potential therapeutic agents for vascular calcification in CKD was performed. A total of 76 common genes, 181 enriched GO annotations-comprising 153 biological processes, 10 cellular components, and 18 molecular functions-41 KEGG pathways, 13 REACTOME pathways, and 3 BIOCARTA pathways were identified. Five key genes (PSMC5, TNFSF11, TNFRSF11A, TNFRSF12A, and ICAM1) were isolated. Most notably, the top five potential therapeutic drugs-ENAVATUZUMAB, DENOSUMAB, ALICAFORSEN, BI-505, and ENLIMOMAB PEGOL-were identified for vascular calcification in CKD. However, further molecular biological experiments are required to confirm these findings.
Collapse
Affiliation(s)
- Guojie Ye
- Cardiac Department, Aerospace Center Hospital, Beijing, China
- Cardiac Department, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Tengfei Liu
- Cardiac Department, Aerospace Center Hospital, Beijing, China
- Cardiac Department, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Chunhua Ding
- Cardiac Department, Aerospace Center Hospital, Beijing, China
- Cardiac Department, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
3
|
Andiappan R, Govindan R, Ramasamy T, Poomarimuthu M. Circulating miR-133a-3p and miR-451a as potential biomarkers for diagnosis of coronary artery disease. Acta Cardiol 2024; 79:813-823. [PMID: 39373072 DOI: 10.1080/00015385.2024.2410599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) remains the leading cause of mortality and morbidity around the world. Despite significant progress in the diagnosis and treatment of cardiovascular diseases, still there is a clinical need to identify novel biomarkers for early diagnosis and treatment of CAD. The aim of the study is to investigate circulating miRNAs in CAD patients to identify potential biomarkers for early detection and therapeutic management of CAD. METHODS We assessed the expression of different candidate miRNAs (miR-21-5p, miR-133a-3p, miR-221-3p, miR-451a and miR-584-5p) in plasma from 50 CAD patients and 50 controls by qRT-PCR analysis. RESULTS The expression levels of miR-133a-3p (fold change (FC): 28.05, p < 0.0001), miR-451a (FC: 27.47, p < 0.0001), miR-584-5p (FC: 7.89, p < 0.0001), miR-21-5p (FC: 5.35, p < 0.0001) and miR-221-3p (FC: 5.03, p < 0.0001) were significantly up-regulated in CAD patients compared to controls. Receiver operating characteristic curve analysis showed that miR-133a-3p and miR-451a were powerful biomarkers for detecting CAD. CONCLUSIONS Our results suggested that miR-21-5p, miR-133a-3p, miR-221-3p, miR-451a and miR-584-5p may serve as independent biomarkers for CAD. Further, the combination of miR-133a-3p and miR-451a could be used as a specific signature in CAD diagnosis.
Collapse
Affiliation(s)
- Rathinavel Andiappan
- Department of Cardio Vascular Thoracic Surgery, Madurai Medical College & Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Ramajayam Govindan
- Multidisciplinary Research Unit, Madurai Medical College, Madurai, Tamil Nadu, India
| | - Thirunavukkarasu Ramasamy
- Maternal-Child health Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | |
Collapse
|
4
|
Kim SJ, Mesquita FCP, Hochman-Mendez C. New Biomarkers for Cardiovascular Disease. Tex Heart Inst J 2023; 50:e238178. [PMID: 37846107 PMCID: PMC10658139 DOI: 10.14503/thij-23-8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Early detection and treatment of cardiovascular disease are crucial for patient survival and long-term health. Despite advances in cardiovascular disease biomarkers, the prevalence of cardiovascular disease continues to increase worldwide as the global population ages. To address this problem, novel biomarkers that are more sensitive and specific to cardiovascular diseases must be developed and incorporated into clinical practice. Exosomes are promising biomarkers for cardiovascular disease. These small vesicles are produced and released into body fluids by all cells and carry specific information that can be correlated with disease progression. This article reviews the advantages and limitations of existing biomarkers for cardiovascular disease, such as cardiac troponin and cytokines, and discusses recent evidence suggesting the promise of exosomes as cardiovascular disease biomarkers.
Collapse
Affiliation(s)
- Stephanie J. Kim
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
- Department of Biosciences, Rice University, Houston, Texas
| | | | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
5
|
Bhansali S, Yadav AK, Bakshi C, Dhawan V. Interleukin-35 Mitigates ox-LDL-Induced Proatherogenic Effects via Modulating miRNAs Associated with Coronary Artery Disease (CAD). Cardiovasc Drugs Ther 2023; 37:667-682. [PMID: 35435604 DOI: 10.1007/s10557-022-07335-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Recent emergence of miRNAs as important regulators of processes involving lesion formation and regression has highlighted miRNAs as potent therapeutic targets for the treatment of atherosclerosis. Few studies have reported the atheroprotective role of IL-35, a novel immunosuppressive and anti-inflammatory cytokine; however, miRNA-dependent regulation underlying the anti-atherosclerotic potential of IL-35 remains elusive. METHODS THP-1 macrophages were incubated with human recombinant IL-35 (rIL-35) either in the presence or absence of ox-LDL. qRT-PCR was conducted to validate the expression levels of previously identified miRNAs including miR-197-5p, miR-4442, miR-324-3p, miR-6879-5p, and miR-6069 that were differentially expressed in peripheral blood mononuclear cells of coronary artery disease (CAD) patients vs. controls. Additionally, bioinformatic analysis was performed to predict miRNA-associated targets and their corresponding functional significance in CAD. RESULTS Exogenous IL-35 significantly decreased the average area of ox-LDL-stimulated macrophages, indicating the inhibitory effect of IL-35 on lipid-laden foam cell formation. Furthermore, rIL-35 treatment alleviated the ox-LDL-mediated atherogenic effects by modulating the expression levels of aforementioned CAD-associated miRNAs in the cultured macrophages. Moreover, functional enrichment analysis of these miRNA-related targets revealed their role in the molecular processes affecting different stages of atheroslerotic plaque development, such as macrophage polarization, T cell suppression, lipoprotein metabolism, foam cell formation, and iNOS-mediated inflammation. CONCLUSION Our observations uncover the novel role of IL-35 as an epigenetic modifier as it influences the expression level of miRNAs implicated in the pathogenesis of atherosclerosis. Thus, IL-35 cytokine therapy-mediated miRNA targeting could be an effective therapeutic strategy against the development of early atheromas in asymptomatic high-risk CAD patients.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Chetan Bakshi
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
6
|
Deng Y, Jiang S, Lin X, Wang B, Chen B, Tong J, Shi W, Yu B, Tang J. Differential expression profile of miRNAs between stable and vulnerable plaques of carotid artery stenosis patients. Genes Genet Syst 2023. [PMID: 37121730 DOI: 10.1266/ggs.22-00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Plaque vulnerability is associated with the degree of carotid artery stenosis (CS) and the risk of stroke. MicroRNAs (miRNAs) exert critical functions in disease progression, although only a few miRNAs have been well identified in CS. Therefore, this study aimed to investigate the differential expression profile of miRNAs and their potential functions in plaques of CS patients. Three CS patients with stable plaques and three patients with vulnerable plaques who underwent carotid endarterectomy were enrolled in this study. Differentially expressed miRNAs (DEmiRNAs) between patients with stable and vulnerable plaques were determined using small RNA sequencing. Target genes of DEmiRNAs were predicted and submitted to functional analyses. Validation of dysregulated DEmiRNAs was determined using quantitative real-time polymerase chain reaction (qRT-PCR). After sequencing, 76 DEmiRNAs were identified in vulnerable plaques, including 53 upregulated miRNAs and 23 downregulated miRNAs. Next, 23,495 target genes of the identified DEmiRNAs were predicted and functionally analyzed. This indicated that the target genes of the identified DEmiRNAs were mainly enriched in protein phosphorylation, transcription, nitrogen compound metabolism, endocytosis and autophagy, and related to signaling pathways of Hippo, MAPK, insulin, TGF-β, FoxO, AMPK and p53. Furthermore, qRT-PCR results for six miRNAs showed that five (83%) of them (hsa-miR-511-5p, hsa-miR-150-5p, hsa-miR-378a-5p, hsa-miR-365b-5p and hsa-miR-6511b-5p) were consistent with the sequencing results. Differential expression profiles and potential function of miRNAs associated with plaque stability in CS patients are identified for the first time, which should help to understand the regulatory mechanism of plaque stability in CS.
Collapse
Affiliation(s)
- Ying Deng
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Shuai Jiang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Xueguang Lin
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Bo Wang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Bo Chen
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Weijun Shi
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| |
Collapse
|
7
|
Direct cardiac reprogramming: basics and future challenges. Mol Biol Rep 2023; 50:865-871. [PMID: 36308583 DOI: 10.1007/s11033-022-07913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heart failure is the leading cause of morbidity and mortality worldwide and is characterized by reduced cardiac function. Currently, cardiac transplantation therapy is applied for end-stage heart failure, but it is limited by the number of available donors. METHODS AND RESULTS Following an assessment of available literature, a narrative review was conducted to summarizes the current status and challenges of cardiac reprogramming for clinical application. Scientists have developed different regenerative treatment strategies for curing heart failure, including progenitor cell delivery and pluripotent cell delivery. Recently, a novel strategy has emerged that directly reprograms cardiac fibroblast into a functional cardiomyocyte. In this treatment, transcription factors are first identified to reprogram fibroblast into a cardiomyocyte. After that, microRNA and small molecules show great potential to optimize the reprogramming process. Some challenges regarding cell reprogramming in humans are conversion efficiency, virus utilization, immature and heterogenous induced cardiomyocytes, technical reproducibility issues, and physiological effects of depleted fibroblasts on myocardial tissue. CONCLUSION Several strategies have shown positive results in direct cardiac reprogramming. However, direct cardiac reprogramming still needs improvement if it is used as a mainstay therapy in humans, and challenges need to be overcome before cardiac reprogramming can be considered a viable therapeutic strategy. Further advances in cardiac reprogramming studies are needed in cardiac regenerative therapy.
Collapse
|
8
|
PCSK9 pathway-noncoding RNAs crosstalk: Emerging opportunities for novel therapeutic approaches in inflammatory atherosclerosis. Int Immunopharmacol 2022; 113:109318. [DOI: 10.1016/j.intimp.2022.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
9
|
Mahjoob G, Ahmadi Y, Fatima rajani H, khanbabaei N, Abolhasani S. Circulating microRNAs as predictive biomarkers of coronary artery diseases in type 2 diabetes patients. J Clin Lab Anal 2022; 36:e24380. [PMID: 35349731 PMCID: PMC9102494 DOI: 10.1002/jcla.24380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an increasing metabolic disorder mostly resulting from unhealthy lifestyles. T2DM patients are prone to develop heart conditions such as coronary artery disease (CAD) which is a major cause of death in the world. Most clinical symptoms emerge at the advanced stages of CAD; therefore, establishing new biomarkers detectable in the early stages of the disease is crucial to enhance the efficiency of treatment. Recently, a significant body of evidence has shown alteration in miRNA levels associate with dysregulated gene expression occurring in T2DM and CAD, highlighting significance of circulating miRNAs in early detection of CAD arising from T2DM. Therefore, it seems crucial to establish a link between the miRNAs prognosing value and development of CAD in T2DM. AIM This study provides an overview on the alterations of the circulatory miRNAs in T2DM and various CADs and consider the potentials of miRNAs as biomarkers prognosing CADs in T2DM patients. MATERIALS AND METHODS Literature search was conducted for miRNAs involved in development of T2DM and CAD using the following key words: "miRNAs", "Biomarker", "Diabetes Mellitus Type 2 (T2DM)", "coronary artery diseases (CAD)". Articles written in the English language. RESULT There has been shown a rise in miR-375, miR-9, miR-30a-5p, miR-150, miR-9, miR-29a, miR-30d, miR-34a, miR-124a, miR-146a, miR-27a, and miR-320a in T2DM; whereas, miR-126, miR-21, miR-103, miR-28-3p, miR-15a, miR-145, miR-375, miR-223 have been shown to decrease. In addition to T2DM, some miRNAs such as mirR-1, miR-122, miR-132, and miR-133 play a part in development of subclinical aortic atherosclerosis associated with metabolic syndrome. Some miRNAs increase in both T2DM and CAD such as miR-1, miR-132, miR-133, and miR-373-3-p. More interestingly, some of these miRNAs such as miR-92a elevate years before emerging CAD in T2DM. CONCLUSION dysregulation of miRNAs plays outstanding roles in development of T2DM and CAD. Also, elevation of some miRNAs such as miR-92a in T2DM patients can efficiently prognose development of CAD in these patients, so these miRNAs can be used as biomarkers in this regard.
Collapse
Affiliation(s)
- Golnoosh Mahjoob
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Yasin Ahmadi
- Department of Medical Laboratory SciencesCollege of ScienceKomar University of Science and TechnologySulaimaniIraq
| | - Huda Fatima rajani
- Department of medical biotechnologySchool of advanced sciences in medicineTehran University of medical sciencesTehranIran
| | - Nafiseh khanbabaei
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Sakhavat Abolhasani
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| |
Collapse
|
10
|
Ali W, Mishra S, Rizvi A, Pradhan A, Perrone MA. Circulating microRNA-126 as an Independent Risk Predictor of Coronary Artery Disease: A Case-Control Study. EJIFCC 2021; 32:347-362. [PMID: 34819824 PMCID: PMC8592629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
CONTEXT Circulating microRNAs (miR) have revolutionized the field of molecular biology owing to their potential as a diagnostic as well as a prognostic biomarker of cardiovascular disease and dysfunctions. The present study aims to identify the circulating miR-126 and -122 as an independent risk predictors of coronary artery disease cases. METHODS AND MATERIAL Blood samples were collected from coronary artery disease cases (n=100) and non-CAD cases (n=100). Serum RNA was isolated by Trizol method. MiR levels were measured by quantitative real-time polymerase chain reaction with the specific primer probe set. RESULTS MiR-126 levels were significantly down-regulated in CAD cases compared to non-CAD cases (controls) (80.0% vs. 39.0%, χ2=14.95, p<0.001). The level of miR-122 was significantly up-regulated in CAD cases in comparison to its non-CAD variant (14.0% vs. 63.0%, χ2=21.23, p<0.001). Multivariate analysis found chest pain (OR=37.07, 95% CI=3.21-169.04, p=0.017) and miR-126 (OR=0.01, 95% CI=0.00-0.63, p=0.030) as independent risk predictors of CAD. CONCLUSION The results of our study show the potential of circulating miR-126 as a novel non-invasive biomarker in the risk prediction of CAD. Further unraveling of the role of miR-122 and miR-126 in the pathogenesis and progression of CAD will add to our understanding of the disease process leading to a new diagnostic approach. HIGHLIGHTS Mir-122 and -126 significantly differentiate non CAD cases from angiographically proven CAD casesChest pain and miR-126 might work as an independent risk predictor of coronary artery disease.
Collapse
Affiliation(s)
- Wahid Ali
- Department of Pathology, King George’s Medical University, Lucknow, U. P., India
| | - Sridhar Mishra
- Department of Pathology, King George’s Medical University, Lucknow, U. P., India
- Department of Pathology, Dr, Ram Manohar Lohia Institute of Medical Sciences, Lucknow, U. P., India
| | - Aliya Rizvi
- Department of Pathology, King George’s Medical University, Lucknow, U. P., India
| | - Akshaaya Pradhan
- Lari Cardiology Centre, Department of Cardiology, King George’s Medical University, Lucknow, U. P., India
| | - Marco A. Perrone
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Tu HF, Chang KW, Lin SC, Hung WW, Ji SH, Wu HL, Liu CJ. Aberrant miR-10b, miR-372, and miR-375 expression in the cytobrushed samples from oral potentially malignant disorders. J Dent Sci 2021; 17:688-695. [PMID: 35756791 PMCID: PMC9201535 DOI: 10.1016/j.jds.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background/purpose MicroRNA (miRNA) alterations play important roles in the neoplastic process of oral squamous cell carcinoma (OSCC). Upregulation of miR-10b and miR-372 and downregulation of miR-375 are frequent events in OSCC. The aberrances of these miRNAs in oral potentially malignant lesions (OPMD) were studied to determine their status during the establishment of OSCC. Materials and methods Cytobrushed sampling was used to collect epithelial cells from 11 OSCC and 34 OPMD lesions and matched normal mucosa. The expression levels of miR-10b, miR-372, and miR-375 were analyzed using quantitative reverse transcription polymerase chain reaction analysis. The clinical implications of these aberrances were further investigated. Results Both miR-10b and miR-372 were upregulated in OPMD, but only miR-10b expression was upregulated in OSCC comparing to control. miR-375 was downregulated in OPMD and tended to be downregulated in OSCC. Dysplastic OPMD could be distinguished based on miR-372 expression level; miR-375 expression levels facilitated discrimination between OPMD and OSCC. The combined analysis of miR-375 and miR-372 remarkably enhanced the accuracy of differentiating OPMD from OSCC. Conclusion Aberrant miR-10b. miR-372, and miR-375 expression occurs early during oral carcinogenesis. The detection of miR-372 and miR-375 expression using cytobrush samples may assist in differentiating between OPMD and OSCC.
Collapse
|
12
|
MiR-467a-5p aggravates myocardial infarction by modulating ZEB1 expression in mice. J Mol Histol 2021; 52:767-780. [PMID: 33997926 DOI: 10.1007/s10735-021-09978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is a great threat to patients all over the word. MicroRNAs (miRNAs) are a group of non-coding RNAs and can regulate initiation and progression of MI. The current research aimed to investigate the role of miR-467a-5p in MI. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to detective relative expression of miR-467a-5p in cardiac tissues and mouse cardiomyocytes (MCMs). Hematoxylin and eosin staining was used to reveal the histology of the myocardium. Echocardiography was utilized to reveal cardiac function of mice. Flow cytometer analysis was used to reveal cell apoptosis. Luciferase reporter assay was applied for determining the binding capacity between molecules. We discovered that the level of miR-467a-5p was up-regulated in MI mice and in MCMs induced by H2O2 or hypoxia. Functionally, an elevation of left ventricular end-diastolic diameter and left ventricular end-systolic diameter, as well as a decrease of left ventricular ejection fraction and left ventricular fractional shortening were observed in MI mice. In addition, deficiency of miR-467a-5p improved MI in mice by increasing the contents of lactate dehydrogenase, creatine kinase and malondialdehyde and reducing the activity of superoxide dismutase in serum. Moreover, silencing of miR-467a-5p reversed hypoxia-induced apoptosis of MCMs. Mechanistically, zinc finger E-box binding homeobox 1 (ZEB1) was confirmed as the target of miR-467a-5p. Moreover, miR-467a-5p negatively regulated ZEB1 level in MI mice and MCMs. Finally, the promotive effect of miR-467a-5p inhibition on cell apoptosis was reversed by knockdown of ZEB1. All the experimental results demonstrate that miR-467a-5p aggravates MI by modulating ZEB1 expression in mice, which may provide a novel therapeutic strategy for MI.
Collapse
|
13
|
Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the Pathogenesis of Coronary Artery Disease. Front Cardiovasc Med 2021; 8:632392. [PMID: 33912599 PMCID: PMC8072222 DOI: 10.3389/fcvm.2021.632392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is the main reason of cardiovascular mortalities worldwide. This condition is resulted from atherosclerotic occlusion of coronary arteries. MicroRNAs (miRNAs) are implicated in the regulation of proliferation and apoptosis of endothelial cells, induction of immune responses and different stages of plaque formation. Up-regulation of miR-92a-3p, miR-206, miR-216a, miR-574-5p, miR-23a, miR-499, miR-451, miR-21, miR-146a, and a number of other miRNAs has been reported in CAD patients. In contrast, miR-20, miR-107, miR-330, miR-383-3p, miR-939, miR-4306, miR-181a-5p, miR-218, miR-376a-3p, and miR-3614 are among down-regulated miRNAs in CAD. Differential expression of miRNAs in CAD patients has been exploited to design diagnostic or prognostic panels for evaluation of CAD patients. We appraise the recent knowledge about the role of miRNAs in the development of diverse clinical subtypes of CAD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wang XJ, Gao J, Wang Z, Yu Q. Identification of a Potentially Functional microRNA-mRNA Regulatory Network in Lung Adenocarcinoma Using a Bioinformatics Analysis. Front Cell Dev Biol 2021; 9:641840. [PMID: 33681226 PMCID: PMC7930498 DOI: 10.3389/fcell.2021.641840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a common lung cancer with a high mortality, for which microRNAs (miRNAs) play a vital role in its regulation. Multiple messenger RNAs (mRNAs) may be regulated by miRNAs, involved in LUAD tumorigenesis and progression. However, the miRNA-mRNA regulatory network involved in LUAD has not been fully elucidated. METHODS Differentially expressed miRNAs and mRNA were derived from the Cancer Genome Atlas (TCGA) dataset in tissue samples and from our microarray data in plasma (GSE151963). Then, common differentially expressed (Co-DE) miRNAs were obtained through intersected analyses between the above two datasets. An overlap was applied to confirm the Co-DEmRNAs identified both in targeted mRNAs and DEmRNAs in TCGA. A miRNA-mRNA regulatory network was constructed using Cytoscape. The top five miRNA were identified as hub miRNA by degrees in the network. The functions and signaling pathways associated with the hub miRNA-targeted genes were revealed through Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The key mRNAs in the protein-protein interaction (PPI) network were identified using the STRING database and CytoHubba. Survival analyses were performed using Gene Expression Profiling Interactive Analysis (GEPIA). RESULTS The miRNA-mRNA regulatory network consists of 19 Co-DEmiRNAs and 760 Co-DEmRNAs. The five miRNAs (miR-539-5p, miR-656-3p, miR-2110, let-7b-5p, and miR-92b-3p) in the network were identified as hub miRNAs by degrees (>100). The 677 Co-DEmRNAs were targeted mRNAs from the five hub miRNAs, showing the roles in the functional analyses of the GO analysis and KEGG pathways (inclusion criteria: 836 and 48, respectively). The PPI network and Cytoscape analyses revealed that the top ten key mRNAs were NOTCH1, MMP2, IGF1, KDR, SPP1, FLT1, HGF, TEK, ANGPT1, and PDGFB. SPP1 and HGF emerged as hub genes through survival analysis. A high SPP1 expression indicated a poor survival, whereas HGF positively associated with survival outcomes in LUAD. CONCLUSION This study investigated a miRNA-mRNA regulatory network associated with LUAD, exploring the hub miRNAs and potential functions of mRNA in the network. These findings contribute to identify new prognostic markers and therapeutic targets for LUAD patients in clinical settings.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Gao
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Pulmonary Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zhuo Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Pathology Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2021; 116:1113-1124. [PMID: 31782762 DOI: 10.1093/cvr/cvz302] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The aim of this systematic review was to assess dysregulated miRNA biomarkers in coronary artery disease (CAD). Dysregulated microRNA (miRNAs) have been shown to be linked to cardiovascular pathologies including CAD and may have utility as diagnostic and prognostic biomarkers. We compared miRNAs identified in acute coronary syndrome (ACS) compared with stable CAD and control populations. We conducted a systematic search of controlled vocabulary and free text terms related to ACS, stable CAD and miRNA in Biosis Previews (OvidSP), The Cochrane Library (Wiley), Embase (OvidSP), Global Health (OvidSP), Medline (PubMed and OvidSP), Web of Science (Clarivate Analytics), and ClinicalTrials.gov which yielded 7370 articles. Of these, 140 original articles were appropriate for data extraction. The most frequently reported miRNAs in any CAD (miR-1, miR-133a, miR-208a/b, and miR-499) are expressed abundantly in the heart and play crucial roles in cardiac physiology. In studies comparing ACS cases with stable CAD patients, miR-21, miR-208a/b, miR-133a/b, miR-30 family, miR-19, and miR-20 were most frequently reported to be dysregulated in ACS. While a number of miRNAs feature consistently across studies in their expression in both ACS and stable CAD, when compared with controls, certain miRNAs were reported as biomarkers specifically in ACS (miR-499, miR-1, miR-133a/b, and miR-208a/b) and stable CAD (miR-215, miR-487a, and miR-502). Thus, miR-21, miR-133, and miR-499 appear to have the most potential as biomarkers to differentiate the diagnosis of ACS from stable CAD, especially miR-499 which showed a correlation between the level of their concentration gradient and myocardial damage. Although these miRNAs are potential diagnostic biomarkers, these findings should be interpreted with caution as the majority of studies conducted predefined candidate-driven assessments of a limited number of miRNAs (PROSPERO registration: CRD42017079744).
Collapse
Affiliation(s)
- Amanpreet Kaur
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada
| | - Sharon T Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kenny Schlosser
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fui Lin Wong
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Malik Elharram
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Natalie Dayan
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Tara Landry
- Medical Library, Montreal General Hospital, McGill University Health Centre, Montreal, Canada
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
16
|
Du H, Zhao Y, Yin Z, Wang DW, Chen C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci 2021; 17:402-416. [PMID: 33613101 PMCID: PMC7893589 DOI: 10.7150/ijbs.53419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose and lipids are important nutrients that provide the majority of energy for each organ to maintain homeostasis of the body. With the continuous improvement in living standards, the incidence of metabolic disorder-associated diseases, such as diabetes, hyperlipidemia, and atherosclerosis, is increasing worldwide. Among them, diabetes, which could be induced by both glucose and lipid metabolic disorders, is one of the five diseases with the highest incidence and mortality worldwide. However, the detailed molecular mechanisms underlying glucose and lipid metabolism disorders and target-organ damage are still not fully defined. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which usually affect their target mRNAs in the cytoplasm by post-transcriptional regulation. Previously, we have found that miR-320 contributed to glucose and lipid metabolism via different signaling pathways. Most importantly, we identified that nuclear miR-320 mediated diabetes-induced cardiac dysfunction by activating the transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Here, we reviewed the roles of miR-320 in glucose and lipid metabolism and target-organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Duică F, Condrat CE, Dănila CA, Boboc AE, Radu MR, Xiao J, Li X, Creţoiu SM, Suciu N, Creţoiu D, Predescu DV. MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Front Oncol 2020; 10:591181. [PMID: 33194751 PMCID: PMC7646292 DOI: 10.3389/fonc.2020.591181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence on the clinical roles of microRNAs (miRNAs) in cancer prevention and control has revealed the emergence of new genetic techniques that have improved the understanding of the mechanisms essential for pathology induction and progression. Comprehension of the modifications and individual differences of miRNAs and their interactions in the pathogenesis of gynecological malignancies, together with an understanding of the phenotypic variations have considerably improved the management of the diagnosis and personalized treatment for different forms of cancer. In recent years, miRNAs have emerged as signaling molecules in biological pathways involved in different categories of cancer and it has been demonstrated that these molecules could regulate cancer-relevant processes, our focus being on malignancies of the gynecologic tract. The aim of this paper is to summarize novel research findings in the literature regarding the parts that miRNAs play in cancer-relevant processes, specifically regarding gynecological malignancy, while emphasizing their pivotal role in the disruption of cancer-related signaling pathways.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănila
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Sanda Maria Creţoiu
- Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Obstetrics, Gynecology and Neonatology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş-Valentin Predescu
- Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
18
|
Fazmin IT, Achercouk Z, Edling CE, Said A, Jeevaratnam K. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules 2020; 10:E1354. [PMID: 32977454 PMCID: PMC7598281 DOI: 10.3390/biom10101354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of sudden cardiac death in adults, and new methods of predicting disease and risk-stratifying patients will help guide intervention in order to reduce this burden. Current CAD detection involves multiple modalities, but the consideration of other biomarkers will help improve reliability. The aim of this narrative review is to help researchers and clinicians appreciate the growing relevance of miRNA in CAD and its potential as a biomarker, and also to suggest useful miRNA that may be targets for future study. We sourced information from several databases, namely PubMed, Scopus, and Google Scholar, when collating evidentiary information. MicroRNAs (miRNA) are short, noncoding RNAs that are relevant in cardiovascular physiology and pathophysiology, playing roles in cardiac hypertrophy, maintenance of vascular tone, and responses to vascular injury. CAD is associated with changes in miRNA expression profiles, and so are its risk factors, such as abnormal lipid metabolism and inflammation. Thus, they may potentially be biomarkers of CAD. Nevertheless, there are limitations in using miRNA. These include cost and the presence of several confounding factors that may affect miRNA profiles. Furthermore, there is difficulty in the normalisation of miRNA values between published studies, due to pre-analytical variations in samples.
Collapse
Affiliation(s)
- Ibrahim T. Fazmin
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Zakaria Achercouk
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Charlotte E. Edling
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Asri Said
- School of Medicine, University Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| |
Collapse
|
19
|
Mujalli A, Banaganapalli B, Alrayes NM, Shaik NA, Elango R, Al-Aama JY. Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics 2020; 112:5072-5085. [PMID: 32920122 DOI: 10.1016/j.ygeno.2020.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023]
Abstract
Myocardial infarction (MI) is the most prevalent coronary heart disease caused by the complex molecular interactions between multiple genes and environment. Here, we aim to identify potential biomarkers for the disease development and for prognosis of MI. We have used gene expression dataset (GSE66360) generated from 51 healthy controls and 49 patients experiencing acute MI and analyzed the differentially expressed genes (DEGs), protein-protein interactions (PPI), gene network-clusters to annotate the candidate pathways relevant to MI pathogenesis. Bioinformatic analysis revealed 810 DEGs. Their functional annotations have captured several MI targeting biological processes and pathways like immune response, inflammation and platelets degranulation. PPI network identify seventeen hub and bottleneck genes, whose involvement in MI was further confirmed by DisGeNET database. OpenTarget Platform reveal unique bottleneck genes as potential target for MI. Our findings identify several potential biomarkers associated with early stage MI providing a new insight into molecular mechanism underlying the disease.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Mohammad Alrayes
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Karthika CL, Ahalya S, Radhakrishnan N, Kartha CC, Sumi S. Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases. Mol Cell Biochem 2020; 476:125-143. [PMID: 32844345 DOI: 10.1007/s11010-020-03890-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Endothelium of blood vessels is continuously exposed to various hemodynamic forces. Flow-mediated epigenetic plasticity regulates vascular endothelial function. Recent studies have highlighted the significant role of mechanosensing-related epigenetics in localized endothelial dysfunction and the regional susceptibility for lesions in vascular diseases. In this article, we review the epigenetic mechanisms such as DNA de/methylation, histone modifications, as well as non-coding RNAs in promoting endothelial dysfunction in major arterial and venous diseases, consequent to hemodynamic alterations. We also discuss the current challenges and future prospects for the use of mechanoepigenetic mediators as biomarkers of early stages of vascular diseases and dysregulated mechanosensing-related epigenetic regulators as therapeutic targets in various vascular diseases.
Collapse
Affiliation(s)
- C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - S Ahalya
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - N Radhakrishnan
- St.Thomas Institute of Research on Venous Diseases, Changanassery, Kerala, India
| | - C C Kartha
- Society for Continuing Medical Education & Research (SOCOMER), Kerala Institute of Medical Sciences, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
21
|
Non-coding RNAs and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32285417 DOI: 10.1007/978-981-15-1671-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The Ischemic Heart Disease (IHD) is considered a clinical condition characterized by myocardial ischemia causing an imbalance between myocardial blood supply and demand, leading to morbidity and mortality across the worldwide. Prompt diagnostic and prognostic represents key factors for the treatment and reduction of the mortality rate. Therefore, one of the newest frontiers in cardiovascular research is related to non-coding RNAs (ncRNAs), which prompted a huge interest in exploring ncRNAs candidates for utilization as potential therapeutic targets for diagnostic and prognostic and/or biomarkers in IHD. However, there are undoubtedly many more functional ncRNAs yet to be discovered and characterized. Here we will discuss our current knowledge and we will provide insight on the roles and effects elicited by some ncRNAs related to IHD.
Collapse
|
22
|
Cheng X, Ander BP, Jickling GC, Zhan X, Hull H, Sharp FR, Stamova B. MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. J Cereb Blood Flow Metab 2020; 40:775-786. [PMID: 30966854 PMCID: PMC7168793 DOI: 10.1177/0271678x19839501] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
Previous studies showed changes in mRNA levels in whole blood of rats and humans, and in miRNA in whole blood of rats following intracerebral hemorrhage (ICH). Thus, this study assessed miRNA and their putative mRNA targets in whole blood of humans following ICH. Whole transcriptome profiling identified altered miRNA and mRNA levels in ICH patients compared to matched controls. Target mRNAs of the differentially expressed miRNAs were identified, and functional analysis of the miRNA-mRNA targets was performed. Twenty-nine miRNAs (22 down, 7 up) and 250 target mRNAs (136 up, 114 down), and 7 small nucleolar RNA changed expression after ICH compared to controls (FDR < 0.05, and fold change ≥ |1.2|). These included Let7i, miR-146a-5p, miR210-5p, miR-93-5p, miR-221, miR-874, miR-17-3p, miR-378a-5p, miR-532-5p, mir-4707, miR-4450, mir-1183, Let-7d-3p, miR-3937, miR-4288, miR-4741, miR-92a-1-3p, miR-4514, mir-4658, mir-3689d-1, miR-4760-3p, and mir-3183. Pathway analysis showed regulated miRNAs/mRNAs were associated with toll-like receptor, natural killer cell, focal adhesion, TGF-β, phagosome, JAK-STAT, cytokine-cytokine receptor, chemokine, apoptosis, vascular smooth muscle, and RNA degradation signaling. Many of these pathways have been implicated in ICH. The differentially expressed miRNA and their putative mRNA targets and associated pathways may provide diagnostic biomarkers as well as point to therapeutic targets for ICH treatments in humans.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
- Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, CA, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
- Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, CA, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
23
|
Carofino BL, Dinshaw KM, Ho PY, Cataisson C, Michalowski AM, Ryscavage A, Alkhas A, Wong NW, Koparde V, Yuspa SH. Head and neck squamous cancer progression is marked by CLIC4 attenuation in tumor epithelium and reciprocal stromal upregulation of miR-142-3p, a novel post-transcriptional regulator of CLIC4. Oncotarget 2019; 10:7251-7275. [PMID: 31921386 PMCID: PMC6944452 DOI: 10.18632/oncotarget.27387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a tumor suppressor implicated in processes including growth arrest, differentiation, and apoptosis. CLIC4 protein expression is diminished in the tumor parenchyma during progression in squamous cell carcinoma (SCC) and other neoplasms, but the underlying mechanisms have not been identified. Data from The Cancer Genome Atlas suggest this is not driven by genomic alterations. However, screening and functional assays identified miR-142-3p as a regulator of CLIC4. CLIC4 and miR-142-3p expression are inversely correlated in head and neck (HN) SCC and cervical SCC, particularly in advanced stage cancers. In situ localization revealed that stromal immune cells, not tumor cells, are the predominant source of miR-142-3p in HNSCC. Furthermore, HNSCC single-cell expression data demonstrated that CLIC4 is lower in tumor epithelial cells than in stromal fibroblasts and endothelial cells. Tumor-specific downregulation of CLIC4 was confirmed in an SCC xenograft model concurrent with immune cell infiltration and miR-142-3p upregulation. These findings provide the first evidence of CLIC4 regulation by miRNA. Furthermore, the distinct localization of CLIC4 and miR-142-3p within the HNSCC tumor milieu highlight the limitations of bulk tumor analysis and provide critical considerations for both future mechanistic studies and use of miR-142-3p as a HNSCC biomarker.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kayla M. Dinshaw
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Pui Yan Ho
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathan W. Wong
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
24
|
Balashanmugam MV, Shivanandappa TB, Nagarethinam S, Vastrad B, Vastrad C. Analysis of Differentially Expressed Genes in Coronary Artery Disease by Integrated Microarray Analysis. Biomolecules 2019; 10:biom10010035. [PMID: 31881747 PMCID: PMC7022900 DOI: 10.3390/biom10010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of end-stage cardiac disease. Although profound efforts have been made to illuminate the pathogenesis, the molecular mechanisms of CAD remain to be analyzed. To identify the candidate genes in the advancement of CAD, microarray dataset GSE23766 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and pathway and gene ontology (GO) enrichment analyses were performed. The protein-protein interaction network was constructed and the module analysis was performed using the Biological General Repository for Interaction Datasets (BioGRID) and Cytoscape. Additionally, target genes-miRNA regulatory network and target genes-TF regulatory network were constructed and analyzed. There were 894 DEGs between male human CAD samples and female human CAD samples, including 456 up regulated genes and 438 down regulated genes. Pathway enrichment analyses revealed that DEGs (up and down regulated) were mostly enriched in the superpathway of steroid hormone biosynthesis, ABC transporters, oxidative ethanol degradation III and Complement and coagulation cascades. Similarly, geneontology enrichment analyses revealed that DEGs (up and down regulated) were mostly enriched in the forebrain neuron differentiation, filopodium membrane, platelet degranulation and blood microparticle. In the PPI network and modules (up and down regulated), MYC, NPM1, TRPC7, UBC, FN1, HEMK1, IFT74 and VHL were hub genes. In the target genes-miRNA regulatory network and target genes—TF regulatory network (up and down regulated), TAOK1, KHSRP, HSD17B11 and PAH were target genes. In conclusion, the pathway and GO ontology enriched by DEGs may reveal the molecular mechanism of CAD. Its hub and target genes, MYC, NPM1, TRPC7, UBC, FN1, HEMK1, IFT74, VHL, TAOK1, KHSRP, HSD17B11 and PAH were expected to be new targets for CAD. Our finding provided clues for exploring molecular mechanism and developing new prognostics, diagnostic and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Meenashi Vanathi Balashanmugam
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Thippeswamy Boreddy Shivanandappa
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Sivagurunathan Nagarethinam
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET’S College of Pharmacy, Dharwad, Karnataka 580002, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka
- Correspondence: ; Tel.: +91-9480-073398
| |
Collapse
|
25
|
Zheng F, Wang F, Xu Z. MicroRNA-98-5p prevents bone regeneration by targeting high mobility group AT-Hook 2. Exp Ther Med 2019; 18:2660-2666. [PMID: 31555368 DOI: 10.3892/etm.2019.7835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (mRNAs or miRs) serve an important role in the regulation of gene expression. In the present study, the role of miR-98-5p in bone regeneration was determined. Three osteoblast cell models were established, including primary human stem cells (BMMSC), mouse BMMSC's and MC3T3-E1 cells. miR-98-5p expression was determined using reverse transcription-quantitative (RT-q)PCR. Osteoblast markers, including alkaline phosphatase, runt related transcription factor 2 and transcription factor Sp7, were determined using RT-qPCR and western blot analysis, respectively. Alkaline phosphatase activity was determined in the present study and cell proliferation and apoptosis assays were performed. Furthermore, an association between miR-98-5p and high mobility group AT-Hook 2 (HMGA2) was revealed. This association was determined using TargetScan and a dual luciferase reporter assay. The current study demonstrated that miR-98-5p was downregulated during osteogenic differentiation and further demonstrated that HMGA2 may be a direct target of miR-98-5p. The results also demonstrated that miR-98-5p upregulation significantly inhibited the osteogenic differentiation of MC3T3-E1 cells, an effect that was reversed by an increased HMGA2 expression. Additionally, the results revealed that miR-98-5p upregulation inhibited MC3T3-E1 cell viability and induced cell apoptosis and these effects were eliminated by HMGA2 overexpression. In conclusion, miR-98-5p may prevent bone regeneration through inhibiting osteogenic differentiation and osteoblast growth by targeting HMGA2.
Collapse
Affiliation(s)
- Feng Zheng
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Furong Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zhe Xu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
26
|
Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet 2019; 10:626. [PMID: 31379918 PMCID: PMC6656856 DOI: 10.3389/fgene.2019.00626] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules that can be secreted into the circulation and exist in remarkably stable forms. Like intercellular miRNAs, circulating miRNAs participate in numerous regulations of biological process and expressed aberrantly under abnormal or pathological status. The quality and quantity changes of circulating miRNAs are associated with the initiation and progression of cancer and can be easily detected by basic molecular biology techniques. Consequently, considerable effort has been devoted to identify suitable extracellular miRNAs for noninvasive biomarkers in cancer. However, several challenges need to be overcome before the practical application. In this review, we discuss several issues of circulating miRNAs: biological function and basic transport carriers; extracellular cell communication process; roles as reliable cancer biomarkers and usage in targeted cancer therapy; and challenges for clinical application.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongdan Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Veerappan I, Sankareswaran SK, Palanisamy R. Morin Protects Human Respiratory Cells from PM 2.5 Induced Genotoxicity by Mitigating ROS and Reverting Altered miRNA Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2389. [PMID: 31284452 PMCID: PMC6651735 DOI: 10.3390/ijerph16132389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Chronic fine particulate matter (PM2.5) exposure causes oxidative stress and leads to many diseases in human like respiratory and cardiovascular disorders, and lung cancer. It is known that toxic responses elicited by PM2.5 particles depend on its physical and chemical characteristics that are greatly influenced by the source. Dietary polyphenolic compounds that possess antioxidant and free radical scavenging properties could be used for therapeutic or preventive approaches against air pollution related health hazards. This study evaluates characteristics and toxicity of PM2.5 collected from rural, urban, industrial, and traffic regions in and around Coimbatore City, Tamilnadu, India. Traffic PM2.5 particles contained higher amounts of metals and polycyclic aromatic hydrocarbons (PAHs). It also possessed higher levels of oxidative potential, induced more intracellular reactive oxygen species (ROS), and caused more levels of cell death and DNA damage in human respiratory cells. Its exposure up regulated DNA damage response related miR222, miR210, miR101, miR34a, and miR93 and MycN and suppressed Rad52. Pre-treatment with morin significantly decreased the PM2.5 induced toxicity and conferred protection against PM2.5 induced altered miRNA expression. Results of this study showed that cytoprotective effect of morin is due to its antioxidative and free radical scavenging activity.
Collapse
Affiliation(s)
- Indhumathi Veerappan
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India
| | | | - Rajaguru Palanisamy
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India.
| |
Collapse
|
28
|
Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, Li P. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p Are Novel Biomarkers for Diagnosis of Acute Myocardial Infarction. Front Physiol 2019; 10:123. [PMID: 30833907 PMCID: PMC6387945 DOI: 10.3389/fphys.2019.00123] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart disease including myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. In order to manage the acute myocardial infarction (AMI) outbreaks, novel biomarkers for risk prediction are needed. Recent studies have shown that circulating microRNAs (miRNAs) are promising biomarkers for cardiovascular diseases prediction. This study aimed to determine the possibility of circulating miRNAs used as biomarkers for AMI. The dynamic expression levels of miRNAs were examined before and after percutaneous coronary intervention (PCI) in patients. Circulating miR-17-5p, miR-126-5p, and miR-145-3p were selected and validated in 29 patients with AMI and 21 matched controls by quantitative real-time PCR. The expression levels of plasma miR-17-5p, miR-126-5p, and miR-145-3p were significantly increased in AMI patients. Receiver Operating Characteristic (ROC) analysis indicated that miR-17-5p, miR-126-5p, and miR-145-3p showed considerable diagnostic efficiency for AMI. Furthermore, we demonstrated that the combination of these three miRNAs managed to provide more accurate diagnosing of AMI.
Collapse
Affiliation(s)
- Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Dacheng Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhe Su
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Liwei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changyong Zhou
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Zhong Z, Wu H, Zhang Q, Zhong W, Zhao P. Characteristics of T cell receptor repertoires of patients with acute myocardial infarction through high-throughput sequencing. J Transl Med 2019; 17:21. [PMID: 30634977 PMCID: PMC6330436 DOI: 10.1186/s12967-019-1768-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 01/19/2023] Open
Abstract
Background T cells are key regulators of immunity and one of the cells recruited in atherosclerosis and participated in various stages of the development of atherosclerosis. Characterizing T-cell receptor (TCR) repertoires is a priority of great scientific interest and potential clinical utility for the early diagnosis, risk stratification and prognostic evaluation of acute myocardial infarction (AMI). Methods The TCR repertoires in 21 subjects including 7 patients with non-ST-segment elevation myocardial infarction (NSTEMI), 6 patients with ST-segment elevation myocardial infarction (STEMI) and 8 subjects with normal coronary artery (NCA) as control were characterized by using high-throughput sequencing. Bioinformatics analysis were performed. Results Patients with NSTEMI displayed more diverse TCR sequences than NCA controls, but they had lower percentage of top 200 TCR sequences. However, no significant differences were observed between the patients with STEMI and NCA controls, but STEMI group had lower percentage of top 200 TCR sequences. T cells from patients with AMI and NCA controls showed a differential V and J gene usage, especially, significant difference was observed in frequencies of V gene (TRBV2, TRBV29-1, TRBV30 and TRBV12-3) and J gene (TRBJ2-1) usage. Furthermore, significantly differences in average overlap was observed in groups of AMI and NCA control. The results showed that patients with AMI had distinct TCR repertoires which revealed the association between cardiovascular condition and T-cell clonotypes. Conclusions Our findings revealed the differences of TCR repertoires between patients with AMI and NCA controls, which might be potential biomarkers for evaluating risk stratification or diagnosis of acute coronary syndrome. Electronic supplementary material The online version of this article (10.1186/s12967-019-1768-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Heming Wu
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Qifeng Zhang
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Pingsen Zhao
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China. .,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China. .,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China. .,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China. .,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China.
| |
Collapse
|