1
|
Jindal J, Hill J, Harte J, Dunachie SJ, Kronsteiner B. Starvation and infection: The role of sickness-associated anorexia in metabolic adaptation during acute infection. Metabolism 2024; 161:156035. [PMID: 39326837 DOI: 10.1016/j.metabol.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Sickness-associated anorexia, the reduction in appetite seen during infection, is a widely conserved and well-recognized symptom of acute infection, yet there is very little understanding of its functional role in recovery. Anorexic sickness behaviours can be understood as an evolutionary strategy to increase tolerance to pathogen-mediated illness. In this review we explore the evidence for mechanisms and potential metabolic benefits of sickness-associated anorexia. Energy intake can impact on the immune response, control of inflammation and tissue stress, and on pathogen fitness. Fasting mediators including hormone-sensitive lipase, peroxisome proliferator-activated receptor-alpha (PPAR-α) and ketone bodies are potential facilitators of infection recovery through multiple pathways including suppression of inflammation, adaptation to lipid utilising pathways, and resistance to pathogen-induced cellular stress. However, the effect and benefit of calorie restriction is highly heterogeneous depending on both the infection and the metabolic status of the host, which has implications regarding clinical recommendations for feeding during different infections.
Collapse
Affiliation(s)
- Jessy Jindal
- The Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jennifer Hill
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jodie Harte
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care 2024; 14:147. [PMID: 39298039 DOI: 10.1186/s13613-024-01377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular function. These mechanisms cooperate through multiple organs and systems according to a complex set of long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms in other systems that can induce further damage. Despite the abundance of studies published on organ crosstalk in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. We explored these relationships in terms of the heart-kidney-lung, gut-microbiome-liver-brain, and adipose tissue-muscle-bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- André Borges
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal.
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal.
| | - Luís Bento
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal
| |
Collapse
|
3
|
Zhang T, Shi Y, Li J, Huang P, Chen K, Yao J. Utilize proteomic analysis to identify potential therapeutic targets for combating sepsis and sepsis-related death. Front Endocrinol (Lausanne) 2024; 15:1448314. [PMID: 39387050 PMCID: PMC11463698 DOI: 10.3389/fendo.2024.1448314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Sepsis is an inflammatory disease that leads to severe mortality, highlighting the urgent need to identify new therapeutic strategies for sepsis. Proteomic research serves as a primary source for drug target identification. We employed proteome-wide Mendelian randomization (MR), genetic correlation analysis, and colocalization analysis to identify potential targets for sepsis and sepsis-related death. Methods Genetic data for plasma proteomics were obtained from 35,559 Icelandic individuals and an initial MR analysis was conducted using 13,531 sepsis cases from the FinnGen R10 cohort to identify associations between plasma proteins and sepsis. Subsequently, significant proteins underwent genetic correlation analysis, followed by replication in 54,306 participants from the UK Biobank Pharma Proteomics Project and validation in 11,643 sepsis cases from the UK Biobank. The identified proteins were then subjected to colocalization analysis, enrichment analysis, and protein-protein interaction network analysis. Additionally, we also investigated a MR analysis using plasma proteins on 1,896 sepsis cases with 28-day mortality from the UK Biobank. Results After FDR correction, MR analysis results showed a significant causal relationship between 113 plasma proteins and sepsis. Genetic correlation analysis revealed that only 8 proteins had genetic correlations with sepsis. In the UKB-PPP replication analysis, only 4 proteins were found to be closely associated with sepsis, while validation in the UK Biobank sepsis cases found overlaps for 21 proteins. In total, 30 proteins were identified in the aforementioned analyses, and colocalization analysis revealed that only 2 of these proteins were closely associated with sepsis. Additionally, in the 28-day mortality MR analysis of sepsis, we also found that only 2 proteins were significant. Conclusions The identified plasma proteins and their associated metabolic pathways have enhanced our understanding of the complex relationship between proteins and sepsis. This provides new avenues for the development of drug targets and paves the way for further research in this field.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity And Children Hospital, Yiwu, Zhejiang, China
| | - Jiayue Li
- Department of Anesthesiology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Peiyao Huang
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Kun Chen
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China
| | - Jiali Yao
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China
| |
Collapse
|
4
|
Li N, Liao S, Liu L, Wang X, Liang Z, Liu X, Song Y, Zhao S, Wu X, Tian Y, Xu X, Yang Y, Liu Q. Pleiotropic role of endoplasmic reticulum stress in the protection of psoralidin against sepsis-associated encephalopathy. Free Radic Biol Med 2024; 221:203-214. [PMID: 38788982 DOI: 10.1016/j.freeradbiomed.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication that affects the central nervous system and is a leading cause of increased morbidity and mortality in intensive care units. Psoralidin (PSO), a coumarin compound isolated from the traditional Chinese medicine Psoralea corylifolia L., can penetrate the blood-brain barrier and has various pharmacological activities, including anti-inflammation, anti-oxidation and anti-depression. This study aims to explore whether PSO alleviates SAE and delve into the underlying mechanisms. We found that PSO treatment significantly reduced sepsis scores, aspartate transaminase (AST) and aspartate transaminase (LDH), while increased anal temperature and neurological scores in CLP-injured mice. Moreover, PSO treatment ameliorated sepsis-associated cognitive impairment, mood, anxiety disorders, inhibited inflammatory responses, as well as attenuated endoplasmic reticulum stress (ERS). These results were also validated in vitro experiments, PSO treatment reduced ROS, inflammation response, and attenuated ERS in LPS-injured N2a cells. Importantly, tunicamycin (TUN), as ERS agonist, significantly reversed the protective effect of PSO on LPS-injured N2a cells, as evidenced by increased expression levels of IL-6, NLRP3, CHOP, and ATF6. Likewise, ATF6 overexpression also reversed the protective effect of PSO. In conclusion, these results confirmed that PSO has a protective effect on SAE, which was largely attributed to neuroinflammation and ERS. These findings provide new insights into the neuroprotective role of PSO and suggest that PSO is a new therapeutic intervention of SAE.
Collapse
Affiliation(s)
- Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Sha Liao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yuefei Song
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Santana A, Prestes GDS, da Silva MD, Girardi CS, Silva LDS, Moreira JCF, Gelain DP, Westphal GA, Kupek E, Walz R, Dal-Pizzol F, Ritter C. Identification of distinct phenotypes and improving prognosis using metabolic biomarkers in COVID-19 patients. CRITICAL CARE SCIENCE 2024; 36:e20240028en. [PMID: 39109758 PMCID: PMC11321718 DOI: 10.62675/2965-2774.20240028-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the relationship between the levels of adipokines and other endocrine biomarkers and patient outcomes in hospitalized patients with COVID-19. METHODS In a prospective study that included 213 subjects with COVID-19 admitted to the intensive care unit, we measured the levels of cortisol, C-peptide, glucagon-like peptide-1, insulin, peptide YY, ghrelin, leptin, and resistin.; their contributions to patient clustering, disease severity, and predicting in-hospital mortality were analyzed. RESULTS Cortisol, resistin, leptin, insulin, and ghrelin levels significantly differed between severity groups, as defined by the World Health Organization severity scale. Additionally, lower ghrelin and higher cortisol levels were associated with mortality. Adding biomarkers to the clinical predictors of mortality significantly improved accuracy in determining prognosis. Phenotyping of subjects based on plasma biomarker levels yielded two different phenotypes that were associated with disease severity, but not mortality. CONCLUSION As a single biomarker, only cortisol was independently associated with mortality; however, metabolic biomarkers could improve mortality prediction when added to clinical parameters. Metabolic biomarker phenotypes were differentially distributed according to COVID-19 severity but were not associated with mortality.
Collapse
Affiliation(s)
- Andressa Santana
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
| | - Gabriele da Silveira Prestes
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
| | - Marinara Dagostin da Silva
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
| | - Carolina Saibro Girardi
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Lucas dos Santos Silva
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - José Cláudio Fonseca Moreira
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Daniel Pens Gelain
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | | | - Emil Kupek
- Public Health DepartmentUniversidade Federal de Santa CatarinaFlorianópolisSCBrazilPublic Health Department, Universidade Federal de Santa Catarina - Florianópolis (SC), Brazil.
| | - Roger Walz
- Department of Clinical MedicineHospital UniversitárioUniversidade Federal de Santa CatarinaFlorianópolisSCBrazilCenter for Applied Neuroscience, Department of Clinical Medicine, Hospital Universitário, Universidade Federal de Santa Catarina - Florianópolis (SC), Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
- Intensive Care UnitHospital São JoséCriciúmaSCBrazilIntensive Care Unit, Hospital São José - Criciúma (SC), Brazil.
| | - Cristiane Ritter
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
- Intensive Care UnitHospital São JoséCriciúmaSCBrazilIntensive Care Unit, Hospital São José - Criciúma (SC), Brazil.
| |
Collapse
|
6
|
Cocea AC, Stoica CI. Interactions and Trends of Interleukins, PAI-1, CRP, and TNF-α in Inflammatory Responses during the Perioperative Period of Joint Arthroplasty: Implications for Pain Management-A Narrative Review. J Pers Med 2024; 14:537. [PMID: 38793119 PMCID: PMC11122505 DOI: 10.3390/jpm14050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation during the perioperative period of joint arthroplasty is a critical aspect of patient outcomes, influencing both the pathophysiology of pain and the healing process. This narrative review comprehensively evaluates the roles of specific cytokines and inflammatory biomarkers in this context and their implications for pain management. Inflammatory responses are initiated and propagated by cytokines, which are pivotal in the development of both acute and chronic postoperative pain. Pro-inflammatory cytokines play essential roles in up-regulating the inflammatory response, which, if not adequately controlled, leads to sustained pain and impaired tissue healing. Anti-inflammatory cytokines work to dampen inflammatory responses and promote resolution. Our discussion extends to the genetic and molecular influences on cytokine production, which influence pain perception and recovery rates post-surgery. Furthermore, the role of PAI-1 in modulating inflammation through its impact on the fibrinolytic system highlights its potential as a therapeutic target. The perioperative modulation of these cytokines through various analgesic and anesthetic techniques, including the fascia iliac compartment block, demonstrates a significant reduction in pain and inflammatory markers, thus underscoring the importance of targeted therapeutic strategies. Our analysis suggests that a nuanced understanding of the interplay between pro-inflammatory and anti-inflammatory cytokines is required. Future research should focus on individualized pain management strategies.
Collapse
Affiliation(s)
- Arabela-Codruta Cocea
- Faculty of Medicine, Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Ioan Stoica
- Orthopedics, Anaesthesia Intensive Care Unit, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
8
|
Nateqi M, Baliga V, Hegde V. Infection and obesity: Two sides of the same coin. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:73-85. [DOI: 10.1016/b978-0-323-85730-7.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Bruno A, Ferrante G, Di Vincenzo S, Pace E, La Grutta S. Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection? Front Physiol 2022; 12:776963. [PMID: 35002761 PMCID: PMC8727443 DOI: 10.3389/fphys.2021.776963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and short-isoforms of leptin receptors are widely expressed in many peripheral tissues and organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune system and may interfere with lung health through the bidirectional crosstalk called the “gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves further investigations. This review aimed to summarize the available evidence about: (i) the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Pediatric Division, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
10
|
Larsson A, Lipcsey M, Hultström M, Frithiof R, Eriksson M. Plasma Leptin Is Increased in Intensive Care Patients with COVID-19-An Investigation Performed in the PronMed-Cohort. Biomedicines 2021; 10:biomedicines10010004. [PMID: 35052684 PMCID: PMC8773415 DOI: 10.3390/biomedicines10010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
COVID-19 has shaken the world and intensive care units (ICU) have been challenged by numerous patients suffering from a previously unknown disease. Leptin is a polypeptide pleiotropic hormone, mainly expressed by adipocytes. It acts as a proinflammatory cytokine and is associated with several conditions, known to increase the risk of severe COVID-19. Very little is known about leptin in severe viral disorders. Plasma leptin was analyzed in 222 out of 229 patients with severe COVID-19 on admission to an ICU at Uppsala University Hospital, a tertiary care hospital in Sweden, and compared to plasma leptin in 25 healthy blood donors. COVID-19 was confirmed by positive PCR. Leptin levels were significantly higher in patients with COVID-19 (18.3 ng × mL−1; IQR = 30.4), than in healthy controls (7.8 ng × mL−1; IQR = 6.4). Women had significantly higher leptin values (22.9 ng × mL−1; IQR = 29.8) than men (17.5 ng × mL−1; IQR = 29.9). Mortality at 30 days was 23% but was not associated with increased leptin levels. Neither median duration of COVID-19 before admission to ICU (10 days; IQR = 4) or median length of ICU stay (8 days; IQR = 11) correlated with the plasma leptin levels. Leptin levels in COVID-19 were higher in females than in males. Both treatment (e.g., use of corticosteroids) and prophylaxis (vaccines) have been improved since the start of the COVID-19 pandemic, which may contribute to some difficulties in deciphering relations between COVID-19 and leptin.
Collapse
Affiliation(s)
- Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186114271
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
| | - Mats Eriksson
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
| |
Collapse
|