1
|
Wu X, Wu J, Yuan Y, Yang L, Yu L. Noonan syndrome: rhGH treatment and PTPN11 mutation. Mol Genet Genomic Med 2023; 11:e2266. [PMID: 37525886 PMCID: PMC10655517 DOI: 10.1002/mgg3.2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE To analyze the clinical data and genetic characteristics of Noonan syndrome, both the effect and side effects of recombinant human growth hormone (rhGH) treatment. METHODS We collected clinical data from 8 children with Noonan syndrome diagnosed from November 2017 to June 2021. The diagnosis was clarified by exome second-generation sequencing and parental PCR-NGS validation and interpretation of the preceding evidence, and growth hormone therapy was administered. Of the cases, four males and four females were seen for slow height growth and the median age at diagnosis was 8 years 7 months (1 year 7 months to 12 years 6 months). RESULTS Here, 7 children were treated with rhGH. Compared to the pre-treatment period, the growth rate increased after rhGH treatment [3.7 ± 0.5 cm/year before treatment and 8.0 ± 1.0 cm/year after treatment, p < 0.01], with the maximum growth rate between 3 and 6 months of treatment and decreasing with the duration of treatment thereafter. The growth hormone treatment was discontinued and the orthopedic consultation was ordered with regular follow-up, which was considered to be related to the PTPN11 mutation. CONCLUSION Noonan syndrome is characterized by slow growth, short stature, mental retardation, peculiar facial features, structural heart abnormalities and abnormal bone metabolism. and osteochondroma was found after case 2 rhGH treatment. Genetic examination is mostly caused by PTPN11 mutation. It is recommended to pay attention to bone metabolism abnormalities before growth hormone treatment, especially in children with PTPN11 mutations.
Collapse
Affiliation(s)
- Xian Wu
- Department of Endocrinology, Genetics and MetabolismJiangxi Provincial Children's HospitalNanchangChina
| | - Jiali Wu
- Department of EmergencyJiangxi Provincial Children's HospitalNanchangChina
| | - Yi Yuan
- Department of Endocrinology, Genetics and MetabolismJiangxi Provincial Children's HospitalNanchangChina
| | - Li Yang
- Department of Endocrinology, Genetics and MetabolismJiangxi Provincial Children's HospitalNanchangChina
| | - Lirong Yu
- Department of Endocrinology, Genetics and MetabolismJiangxi Provincial Children's HospitalNanchangChina
| |
Collapse
|
2
|
Zhao Q, Li Y, Shao Q, Zhang C, Kou S, Yang W, Zhang M, Ban B. Clinical and genetic evaluation of children with short stature of unknown origin. BMC Med Genomics 2023; 16:194. [PMID: 37605180 PMCID: PMC10441754 DOI: 10.1186/s12920-023-01626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Short stature is a common human trait. More severe and/or associated short stature is usually part of the presentation of a syndrome and may be a monogenic disease. The present study aimed to identify the genetic etiology of children with short stature of unknown origin. METHODS A total of 232 children with short stature of unknown origin from March 2013 to May 2020 were enrolled in this study. Whole exome sequencing (WES) was performed for the enrolled patients to determine the underlying genetic etiology. RESULTS We identified pathogenic or likely pathogenic genetic variants in 18 (7.8%) patients. All of these variants were located in genes known to be associated with growth disorders. Five of the genes are associated with paracrine signaling or cartilage extracellular matrix in the growth plate, including NPR2 (N = 1), ACAN (N = 1), CASR (N = 1), COMP (N = 1) and FBN1 (N = 1). Two of the genes are involved in the RAS/MAPK pathway, namely, PTPN11 (N = 6) and NF1 (N = 1). Two genes are associated with the abnormal growth hormone-insulin-like growth factor 1 (GH-IGF1) axis, including GH1 (N = 1) and IGF1R (N = 1). Two mutations are located in PROKR2, which is associated with gonadotropin-releasing hormone deficiency. Mutations were found in the remaining two patients in genes with miscellaneous mechanisms: ANKRD11 (N = 1) and ARID1A (N = 1). CONCLUSIONS The present study identified pathogenic or likely pathogenic genetic variants in eighteen of the 232 patients (7.8%) with short stature of unknown origin. Our findings suggest that in the absence of prominent malformation, genetic defects in hormones, paracrine factors, and matrix molecules may be the causal factors for this group of patients. Early genetic testing is necessary for accurate diagnosis and precision treatment.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Medicine, Qingdao University, Qingdao, Shandong, 266071, P.R. China
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Qian Shao
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Shuang Kou
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, 999077, P.R. China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| |
Collapse
|
3
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
4
|
Onesimo R, Giorgio V, Viscogliosi G, Sforza E, Kuczynska E, Margiotta G, Iademarco M, Proli F, Rigante D, Zampino G, Leoni C. Management of nutritional and gastrointestinal issues in RASopathies: A narrative review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:478-493. [PMID: 36515923 DOI: 10.1002/ajmg.c.32019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Noonan, Costello, and cardio-facio-cutaneous syndrome are neurodevelopmental disorders belonging to the RASopathies, a group of syndromes caused by alterations in the RAS/MAPK pathway. They are characterized by similar clinical features, among which feeding difficulties, growth delay, and gastro-intestinal disorders are frequent, causing pain and discomfort in patients. Hereby, we describe the main nutritional and gastrointestinal issues reported in individuals with RASopathies, specifically in Noonan syndrome, Noonan syndrome-related disorders, Costello, and cardio-facio-cutaneous syndromes. Fifty percent of children with Noonan syndrome may experience feeding difficulties that usually have a spontaneous resolution by the second year of life, especially associated to genes different than PTPN11 and SOS1. More severe manifestations often require artificial enteral nutrition in infancy are observed in Costello syndrome, mostly associated to c.34G>A substitution in the HRAS gene. In cardio-facio-cutaneous syndrome feeding issues are usually present (90-100% of cases), especially in individuals carrying variants in BRAF, MAP2K1, and MAP2K2 genes, and artificial enteral intervention, even after scholar age, may be required. Moreover, disorders associated with gastrointestinal dysmotility as gastro-esophageal reflux and constipation are commonly reported in all the above-mentioned syndromes. Given the impact on growth and on the quality of life of these patients, early evaluation and prompt personalized management plans are fundamental.
Collapse
Affiliation(s)
- Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Giorgio
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Germana Viscogliosi
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Elisabetta Sforza
- DIpartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliza Kuczynska
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Gaia Margiotta
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mariella Iademarco
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesco Proli
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,DIpartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,DIpartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Yu C, Lyn N, Li D, Mei S, Liu L, Shang Q. Clinical analysis of Noonan syndrome caused by RRAS2 mutations and literature review. Eur J Med Genet 2022; 66:104675. [PMID: 36460282 DOI: 10.1016/j.ejmg.2022.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Noonan syndrome is a common developmental disorder characterized by distinctive facial dysmorphism, short stature, congenital heart defects, pectus deformity, and developmental delay. It is related to the abnormal activation of genes involved in the RAS-MAPK signaling pathway, more than a dozen of which can be affected. However, mutations of the RRAS2 gene are rare, with only 6 different RRAS2 variants in 13 patients reported to date. In this case report, whole-exome sequencing revealed a novel heterozygous variant in the RRAS2 gene NM_012250: c.212G > A, p.(Gly71Glu). Phenotypically, our patient had typical Noonan syndrome-related clinical manifestations consistent with published reports, such as short stature, facial dysmorphism, short neck, patent foramen ovale, moderate global developmental delay, and hearing impairment. In addition, our patient also had a distal middle finger deformity and hair defect, which have not been reported in previous cases. We analyzed the clinical characteristics of all patients with Noonan syndrome caused by RRAS2 variants and reviewed the literature. This discovery expands the genetic and phenotypic spectrum of Noonan syndrome.
Collapse
Affiliation(s)
- Chaonan Yu
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Nan Lyn
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Dongxiao Li
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - ShiYue Mei
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lei Liu
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Qing Shang
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
6
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
7
|
Stagi S, Ferrari V, Ferrari M, Priolo M, Tartaglia M. Inside the Noonan "universe": Literature review on growth, GH/IGF axis and rhGH treatment: Facts and concerns. Front Endocrinol (Lausanne) 2022; 13:951331. [PMID: 36060964 PMCID: PMC9434367 DOI: 10.3389/fendo.2022.951331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
Noonan syndrome (NS) is a disorder characterized by a typical facial gestalt, congenital heart defects, variable cognitive deficits, skeletal defects, and short stature. NS is caused by germline pathogenic variants in genes coding proteins with a role in the RAS/mitogen-activated protein kinase signaling pathway, and it is typically associated with substantial genetic and clinical complexity and variability. Short stature is a cardinal feature in NS, with evidence indicating that growth hormone (GH) deficiency, partial GH insensitivity, and altered response to insulin-like growth factor I (IGF-1) are contributing events for growth failure in these patients. Decreased IGF-I, together with low/normal responses to GH pharmacological provocation tests, indicating a variable presence of GH deficiency/resistance, in particular in subjects with pathogenic PTPN11 variants, are frequently reported. Nonetheless, short- and long-term studies have demonstrated a consistent and significant increase in height velocity (HV) in NS children and adolescents treated with recombinant human GH (rhGH). While the overall experience with rhGH treatment in NS patients with short stature is reassuring, it is difficult to systematically compare published data due to heterogeneous protocols, potential enrolment bias, the small size of cohorts in many studies, different cohort selection criteria and varying durations of therapy. Furthermore, in most studies, the genetic information is lacking. NS is associated with a higher risk of benign and malignant proliferative disorders and hypertrophic cardiomyopathy, and rhGH treatment may further increase risk in these patients, especially as dosages vary widely. Herein we provide an updated review of aspects related to growth, altered function of the GH/IGF axis and cell response to GH/IGF stimulation, rhGH treatment and its possible adverse events. Given the clinical variability and genetic heterogeneity of NS, treatment with rhGH should be personalized and a conservative approach with judicious surveillance is recommended. Depending on the genotype, an individualized follow-up and close monitoring during rhGH treatments, also focusing on screening for neoplasms, should be considered.
Collapse
Affiliation(s)
- Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Vittorio Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Marta Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Manuela Priolo
- Medical Genetics Unit, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, Reggio Calabria, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Beltrami B, Cerasani J, Consales A, Villa R, Resta N, Loconte DC, Boito S, Caschera L, Bassi L, Colombo L, Iascone M, Bedeschi MF. Prenatal overgrowth and polydramnios: Would you think about Noonan syndrome? Clin Case Rep 2022; 10:e6256. [PMID: 36017115 PMCID: PMC9393876 DOI: 10.1002/ccr3.6256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
We report on a child with prenatal findings of increased nuchal translucency, polydramnios, ascites, and overgrowth. At birth, she presented length >97° centile, minor facial anomalies, megalencephaly, and Wolff-Parkinson-White syndrome. Whole-exome sequencing showed a pathogenic variant in the NRAS gene, but no mutations were found in PI3K/AKT/mTOR pathway genes.
Collapse
Affiliation(s)
- Benedetta Beltrami
- Medical Genetics UnitFondazione IRCCS Ca'Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Jacopo Cerasani
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community HealthUniversità degli Studi di Milano and Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Alessandra Consales
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community HealthUniversità degli Studi di Milano and Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Roberta Villa
- Medical Genetics UnitFondazione IRCCS Ca'Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical GeneticsUniversity of Bari “Aldo Moro”BariItaly
| | - Daria Carmela Loconte
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical GeneticsUniversity of Bari “Aldo Moro”BariItaly
| | - Simona Boito
- Fetal Medicine and Surgery ServiceFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luca Caschera
- Neuroradiology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Laura Bassi
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community HealthUniversità degli Studi di Milano and Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Lorenzo Colombo
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community HealthUniversità degli Studi di Milano and Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Maria Iascone
- Laboratory of Medical GeneticsOspedale Papa Giovanni XXIIIBergamoItaly
| | | |
Collapse
|
9
|
De Ridder W, Engelen B, Alfen N. Neurological features of Noonan syndrome and related
RASopathies
: Pain and nerve enlargement characterized by nerve ultrasound. Am J Med Genet A 2022; 188:1801-1807. [DOI: 10.1002/ajmg.a.62714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Willem De Ridder
- Department of Neurology, Neuromuscular Reference Centre University Hospital of Antwerp Antwerp Belgium
| | - Baziel Engelen
- Institute Born‐Bunge University of Antwerp Antwerp Belgium
| | - Nens Alfen
- Department of Neurology and Clinical Neurophysiology Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
10
|
Guiffre D, Brien E, Shon W, Geffner ME. A Rare Case of Diffuse-type Tenosynovial Giant Cell Tumor in a Teenager With Noonan Syndrome. J Pediatr Hematol Oncol 2022; 44:e557-e560. [PMID: 34133387 DOI: 10.1097/mph.0000000000002233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Noonan syndrome is a common autosomal dominant disorder associated with an increased risk of malignancy. We report a 16-year-old female with Noonan syndrome (KRAS gene variant, Q22R) and diffuse-type tenosynovial giant cell tumor, a proliferative disorder that has been rarely reported in this population. These tumors may represent a complication of the dysregulated RAS/MAPK signaling pathway that underlies Noonan syndrome. They lack typical clinical features, causing misdiagnosis and delays in management, which could lead to osseous invasion requiring more complicated surgical procedures. Increased awareness of this association will improve the clinical outcomes of patients with Noonan syndrome who develop diffuse-type tenosynovial giant cell tumors.
Collapse
Affiliation(s)
- Danielle Guiffre
- Center For Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles (CHLA), Keck School of Medicine of USC
| | - Earl Brien
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Wonwoo Shon
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mitchell E Geffner
- Center For Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles (CHLA), Keck School of Medicine of USC.,Saban Research Institute, Keck School of Medicine of USC
| |
Collapse
|
11
|
Longo JF, Carroll SL. The RASopathies: Biology, genetics and therapeutic options. Adv Cancer Res 2022; 153:305-341. [PMID: 35101235 DOI: 10.1016/bs.acr.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The RASopathies are a group of genetic diseases in which the Ras/MAPK signaling pathway is inappropriately activated as a result of mutations in genes encoding proteins within this pathway. As their causative mutations have been identified, this group of diseases has expanded to include neurofibromatosis type 1 (NF1), Legius syndrome, Noonan syndrome, CBL syndrome, Noonan syndrome-like disorder with loose anagen hair, Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, gingival fibromatosis and capillary malformation-arteriovenous malformation syndrome. Many of these genetic disorders share clinical features in common such as abnormal facies, short stature, varying degrees of cognitive impairment, cardiovascular abnormalities, skeletal abnormalities and a predisposition to develop benign and malignant neoplasms. Others are more dissimilar, even though their mutations are in the same gene that is mutated in a different RASopathy. Here, we describe the clinical features of each RASopathy and contrast them with the other RASopathies. We discuss the genetics of these disorders, including the causative mutations for each RASopathy, the impact that these mutations have on the function of an individual protein and how this dysregulates the Ras/MAPK signaling pathway. As several of these individual disorders are genetically heterogeneous, we also consider the different genes that can be mutated to produce disease with the same phenotype. We also discuss how our growing understanding of dysregulated Ras/MAPK signaling had led to the development of new therapeutic agents and what work will be critically important in the future to improve the lives of patients with RASopathies.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
12
|
Tiemens DK, van Haaften L, Leenders E, van Wegberg AMJ, Gunther Moor B, Geelen J, Draaisma JMT. Feeding Problems in Patients with Noonan Syndrome: A Narrative Review. J Clin Med 2022; 11:754. [PMID: 35160209 PMCID: PMC8836779 DOI: 10.3390/jcm11030754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 01/16/2023] Open
Abstract
Noonan syndrome (NS) belongs to the group of Noonan syndrome spectrum disorders (NSSD), which is a group of phenotypically related conditions. Feeding problems are often present not only in infancy but also in childhood, and even beyond that period. We describe the different aspects of feeding problems using a (theoretical) concept proposed in 2019. More than 50% of infants with NS develop feeding problems, and up to half of these infants will be tube-dependent for some time. Although, in general, there is a major improvement between the age of 1 and 2 years, with only a minority still having feeding problems after the age of 2 years, as long as the feeding problems continue, the impact on the quality of life of both NS infants and their caregivers may be significant. Feeding problems in general improve faster in children with a pathogenic PTPN11 or SOS1 variant. The mechanism of the feeding problems is complex, and may be due to medical causes (gastroesophageal reflux disease and delayed gastric emptying, cardiac disease and infections), feeding-skill dysfunction, nutritional dysfunction with increased energy demand, or primary or secondary psychosocial dysfunction. Many of the underlying mechanisms are still unknown. The treatment of the feeding problems may be a medical challenge, especially when the feeding problems are accompanied by feeding-skill dysfunction and psychosocial dysfunction. This warrants a multidisciplinary intervention including psychology, nutrition, medicine, speech language pathology and occupational therapy.
Collapse
Affiliation(s)
- Dagmar K. Tiemens
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children’s Hospital, 6500 HB Nijmegen, The Netherlands; (D.K.T.); (J.G.)
- Dutch Noonan Syndrome Foundation, Stationsweg 6b, 3862 CG Nijkerk, The Netherlands
| | - Leenke van Haaften
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Erika Leenders
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Annemiek M. J. van Wegberg
- Department of Gastroenterology and Hepatology-Dietetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Bregtje Gunther Moor
- Department of Medical Psychology, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children’s Hospital, 6500 HB Nijmegen, The Netherlands;
| | - Joyce Geelen
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children’s Hospital, 6500 HB Nijmegen, The Netherlands; (D.K.T.); (J.G.)
| | - Jos M. T. Draaisma
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children’s Hospital, 6500 HB Nijmegen, The Netherlands; (D.K.T.); (J.G.)
| |
Collapse
|
13
|
Siano MA, Pivonello R, Salerno M, Falco M, Mauro C, De Brasi D, Klain A, Sestito S, De Luca A, Pinna V, Simeoli C, Concolino D, Mainolfi CG, Mannarino T, Strisciuglio P, Tartaglia M, Melis D. Endocrine system involvement in patients with RASopathies: A case series. Front Endocrinol (Lausanne) 2022; 13:1030398. [PMID: 36483002 PMCID: PMC9724702 DOI: 10.3389/fendo.2022.1030398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Endocrine complications have been described in patients affected by RASopathies but no systematic assessment has been reported. In this study, we investigate the prevalence of endocrine disorders in a consecutive unselected cohort of patients with RASopathies. STUDY DESIGN 72 patients with a genetically confirmed RASopathy (Noonan syndrome [NS], N=53; 29 LEOPARD syndrome [LS], N=2; cardiofaciocutaneous syndrome [CFCS], N=14; subjects showing co-occurring pathogenic variants in PTPN11 and NF1, N=3) and an age- and sex-matched healthy controls were included in the study. Endocrine system involvement was investigated by assessing the thyroid function, pubertal development, auxological parameters, adrenal function and bone metabolism. RESULTS Short stature was detected in 40% and 64% of the NS and CFCS subcohorts, respectively. Patients showed lower Z-scores at DXA than controls (p<0.05) when considering the entire case load and both NS and CFCS groups. Vitamin D and Calcitonin levels were significantly lower (p< 0.01), Parathormone levels significantly higher (p<0.05) in patients compared to the control group (p<0.05). Patients with lower BMD showed reduced physical activity and joint pain. Finally, anti-TPO antibody levels were significantly higher in patients than in controls when considering the entire case load and both NS and CFCS groups. CONCLUSIONS The collected data demonstrate a high prevalence of thyroid autoimmunity, confirming an increased risk to develop autoimmune disorders both in NS and CFCS. Reduced BMD, probably associated to reduced physical activity and inflammatory cytokines, also occurs. These findings are expected to have implications for the follow-up and prevention of osteopenia/osteoporosis in both NS and CFCS.
Collapse
Affiliation(s)
- M. A. Siano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - R. Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - M. Salerno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Falco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - C. Mauro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - D. De Brasi
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - A. Klain
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - S. Sestito
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - A. De Luca
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - V. Pinna
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - C. Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - D. Concolino
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - Ciro Gabriele Mainolfi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - T. Mannarino
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - P. Strisciuglio
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Tartaglia
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - D. Melis
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: D. Melis,
| |
Collapse
|
14
|
Rodríguez F, Gaete X, Cassorla F. Etiology and Treatment of Growth Delay in Noonan Syndrome. Front Endocrinol (Lausanne) 2021; 12:691240. [PMID: 34149626 PMCID: PMC8212989 DOI: 10.3389/fendo.2021.691240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Noonan syndrome is characterized by multiple phenotypic features, including growth retardation, which represents the main cause of consultation to the clinician. Longitudinal growth during childhood and adolescence depends on several factors, among them an intact somatotrophic axis, which is characterized by an adequate growth hormone (GH) secretion by the pituitary, subsequent binding to its receptor, proper function of the post-receptor signaling pathway for this hormone (JAK-STAT5b and RAS/MAPK), and ultimately by the production of its main effector, insulin like growth factor 1 (IGF-1). Several studies regarding the function of the somatotrophic axis in patients with Noonan syndrome and data from murine models, suggest that partial GH insensitivity at a post-receptor level, as well as possible derangements in the RAS/MAPK pathway, are the most likely causes for the growth failure in these patients. Treatment with recombinant human growth hormone (rhGH) has been used extensively to promote linear growth in these patients. Numerous treatment protocols have been employed so far, but the published studies are quite heterogeneous regarding patient selection, length of treatment, and dose of rhGH utilized, so the true benefit of GH therapy is somewhat difficult to establish. This review will discuss the possible etiologies for the growth delay, as well as the outcomes following rhGH treatment in patients with Noonan syndrome.
Collapse
Affiliation(s)
- Fernando Rodríguez
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Ximena Gaete
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
- Pediatrics Department, Hospital Clínico San Borja – Arriarán, Santiago, Chile
| | - Fernando Cassorla
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| |
Collapse
|
15
|
Zhao X, Li Z, Wang L, Lan Z, Lin F, Zhang W, Su Z. A Chinese family with Noonan syndrome caused by a heterozygous variant in LZTR1: a case report and literature review. BMC Endocr Disord 2021; 21:2. [PMID: 33407364 PMCID: PMC7788825 DOI: 10.1186/s12902-020-00666-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Noonan syndrome is an inherited disease involving multiple systems. More than 15 related genes have been discovered, among which LZTR1 was discovered recently. However, the pathogenesis and inheritance pattern of LZTR1 in Noonan syndrome have not yet been elucidated. CASE PRESENTATION We herein describe a family with LZTR1-related Noonan syndrome. In our study, the proband, sister, mother, maternal aunt and grandmother and female cousin showed the typical or atypical features of Noonan syndrome. Only 3 patients underwent the whole-exome sequencing analysis and results showed that the proband as well as her sister inherited the same heterozygous LZTR1 variant (c.1149 + 1G > T) from their affected mother. Moreover, the proband accompanied by growth hormone deficiency without other associated variants. CONCLUSION In a Chinese family with Noonan syndrome, we find that the c.1149 + 1G > T variant in LZTR1 gene shows a different autosomal dominant inheritance from previous reports, which changes our understanding of its inheritance and improves our understanding of Noonan syndrome.
Collapse
Affiliation(s)
- Xiu Zhao
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China
| | - Zhuoguang Li
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China
| | - Li Wang
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Feifei Lin
- Radiology Department, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Zhe Su
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China.
| |
Collapse
|
16
|
Libraro A, D’Ascanio V, Cappa M, Chiarito M, Digilio MC, Einaudi S, Grandone A, Maghnie M, Mazzanti L, Mussa A, Patti G, Scarano E, Spinuzza A, Vannelli S, Wasniewska MG, Ferrero GB, Faienza MF. Growth in Children With Noonan Syndrome and Effects of Growth Hormone Treatment on Adult Height. Front Endocrinol (Lausanne) 2021; 12:761171. [PMID: 35002956 PMCID: PMC8730290 DOI: 10.3389/fendo.2021.761171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Growth impairment is a common manifestation in Noonan syndrome (NS). Recombinant human GH (rhGH) treatment has been shown to increase growth and adult height (AH) in a few studies. We aimed to evaluate the growth trajectory towards the AH, and the effects of rhGH treatment in a large cohort of NS children. METHODS Retrospective, multicenter, cohort study including subjects with genetic diagnosis of NS. A total of 228 NS patients, 154 with PTPN11 mutations, 94 who reached AH, were recruited. Auxological data were collected at 2, 5, and 10 years, at pubertal onset, at AH. Sixty-eight NS subjects affected with GH deficiency (GHD) were treated with rhGH at a mean dose of 0.24 mg/kg per week until AH achievement. RESULTS ANOVA analysis showed a significant difference between birth length and height standard deviation scores (HSDS) at the different key ages (p<0.001), while no significant differences were found between HSDS measurements at 2, 5, and 10 years, at pubertal onset, and at AH. HSDS increased from -3.10 ± 0.84 to -2.31 ± 0.99 during rhGH treatment, with a total height gain of 0.79 ± 0.74, and no significant difference between untreated and treated NS at AH. CONCLUSIONS rhGH treatment at the standard dose used for children with GH idiopathic deficiency is effective in improving growth and AH in NS with GHD. Further studies are needed to assess genotype-specific response to rhGH treatment in the different pathogenic variants of PTPN11 gene and in the less common genotypes.
Collapse
Affiliation(s)
- Annachiara Libraro
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari “A. Moro”, Bari, Italy
| | - Vito D’Ascanio
- National Research Council–Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari “A. Moro”, Bari, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Einaudi
- Department of Pediatric Endocrinology and Diabetology, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Anna Grandone
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health–University of Genova, Genoa, Italy
| | - Laura Mazzanti
- Pediatric Rare Diseases Unit, Department of Pediatrics, St. Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Giuseppa Patti
- Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health–University of Genova, Genoa, Italy
| | - Emanuela Scarano
- Pediatric Rare Diseases Unit, Department of Pediatrics, St. Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Antonietta Spinuzza
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Gaetano Martino University Hospital, University of Messina, Messina, Italy
| | - Silvia Vannelli
- Department of Pediatric Endocrinology and Diabetology, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Malgorzata Gabriela Wasniewska
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Gaetano Martino University Hospital, University of Messina, Messina, Italy
| | | | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari “A. Moro”, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| |
Collapse
|
17
|
Seok EM, Park HK, Rho JG, Kum CD, Lee HS, Hwang JS. Effectiveness of growth hormone therapy in children with Noonan syndrome. Ann Pediatr Endocrinol Metab 2020; 25:182-186. [PMID: 32871657 PMCID: PMC7538297 DOI: 10.6065/apem.1938154.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Recombinant human growth hormone (rhGH) has been used to improve growth in children with Noonan syndrome (NS). This study aimed to investigate the efficacy of rhGH therapy in Korean children with NS. METHODS Seventeen prepubertal children (10 boys, 7 girls) with NS who received rhGH therapy for at least 3 years between 2008 and 2017 were included. To compare the response, age- and sex-matched children with GH deficiency (GHD; n=31) were included. Height and growth velocity before and during treatment were analyzed. RESULTS The mean age of NS patients was 6.34±2.32 years. After treatment, the height standard deviation score (SDS) increased from -2.93±0.81 to -1.51±1.00 in patients with NS and from -2.45±0.42 to -1.09±0.47 in patients with GHD. There were no significant differences in growth velocity or change in height SDS between patients with NS and GHD. Growth velocity in the first year of treatment was higher in patients with PTPN11 mutations than those without PTPN11 mutations, but the change in height SDS was not significantly different between those 2 groups. CONCLUSION rhGH therapy can increase linear growth in prepubertal children with NS. The growth response between patients with NS and patients with GHD was not significantly different. Furthermore, we observed that lower doses of growth hormone have a similar effect on height compared to previous studies in patients with NS. Our study indicates that rhGH treatment is useful for growth promotion.
Collapse
Affiliation(s)
- Eun mi Seok
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hong Kyu Park
- Department of Pediatrics, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Jung Gi Rho
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Change Dae Kum
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea,Address for correspondence: Hae Sang Lee, PhD Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, 164 World cupro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-4454 Faxl: +82-31-219-5169 E-mail:
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
Noonan syndrome: genetic and clinical update and treatment options. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.anpede.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Carcavilla A, Suárez-Ortega L, Rodríguez Sánchez A, Gonzalez-Casado I, Ramón-Krauel M, Labarta JI, Quinteiro Gonzalez S, Riaño Galán I, Ezquieta Zubicaray B, López-Siguero JP. [Noonan syndrome: genetic and clinical update and treatment options]. An Pediatr (Barc) 2020; 93:61.e1-61.e14. [PMID: 32493603 DOI: 10.1016/j.anpedi.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Noonan syndrome (NS) is a relatively common genetic condition characterised by short stature, congenital heart defects, and distinctive facial features. NS and other clinically overlapping conditions such as NS with multiple lentigines (formerly called LEOPARD syndrome), cardiofaciocutaneous syndrome, or Costello syndrome, are caused by mutations in genes encoding proteins of the RAS-MAPKinases pathway. Because of this shared mechanism, these conditions have been collectively termed «RASopathies». Despite the recent advances in molecular genetics, nearly 20% of patients still lack a genetic cause, and diagnosis is still made mainly on clinical grounds. NS is a clinically and genetically heterogeneous condition, with variable expressivity and a changing phenotype with age, and affects multiple organs and systems. Therefore, it is essential that physicians involved in the care of these patients are familiarised with their manifestations and the management recommendations, including management of growth and development. Data on growth hormone treatment efficacy are sparse, and show a modest response in height gains, similar to that observed in Turner syndrome. The role of RAS/MAPK hyper-activation in the pathophysiology of this group of disorders offers a unique opportunity for the development of targeted approaches.
Collapse
Affiliation(s)
- Atilano Carcavilla
- Servicio de Endocrinología Pediátrica, Hospital Universitario La Paz, Madrid, España
| | - Larisa Suárez-Ortega
- Servicio de Endocrinología Pediátrica, Hospital Sant Joan de Déu, Esplugues del Llobregat, Barcelona, España
| | | | | | - Marta Ramón-Krauel
- Servicio de Endocrinología Pediátrica, Hospital Sant Joan de Déu, Esplugues del Llobregat, Barcelona, España
| | | | - Sofia Quinteiro Gonzalez
- Servicio de Endocrinología Pediátrica, Complejo Universitario Insular, Gran Canaria, Las Palmas de Gran Canaria, España
| | - Isolina Riaño Galán
- Servicio de Endocrinología Pediátrica, Hospital Central de Asturias, Oviedo/Uviéu, España
| | | | - Juan Pedro López-Siguero
- Servicio de Endocrinología Pediátrica, Hospital Regional Universitario de Málaga, Málaga, España.
| |
Collapse
|
20
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Cai J, Li H. A novel RIT1 mutation causes deterioration of Noonan syndrome-associated cardiac hypertrophy. EBioMedicine 2019; 42:6-7. [PMID: 30904604 PMCID: PMC6491714 DOI: 10.1016/j.ebiom.2019.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430072, China; Basic Medical School, Wuhan University, Wuhan 430071, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430072, China; Basic Medical School, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|