1
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Iaquinto G, Aufiero VR, Mazzarella G, Lucariello A, Panico L, Melina R, Iaquinto S, De Luca A, Sellitto C. Pathogens in Crohn's Disease: The Role of Adherent Invasive Escherichia coli. Crit Rev Eukaryot Gene Expr 2024; 34:83-99. [PMID: 38305291 DOI: 10.1615/critreveukaryotgeneexpr.2023050088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In Crohn's disease (CD), gut dysbiosis is marked by the prevalence of pathogenic bacterial species. Although several microbes have been reported as risk factors or causative agents of CD, it is not yet clear which is the real trigger of the disease. Thirty years ago, a new pathovar of Escherichia coli strain was isolated in the ileal mucosa of CD patients. This strain, called adherent invasive E. coli (AIEC), for its ability to invade the intestinal mucosa, could represent the causative agent of the disease. Several authors studied the mechanisms by which the AIEC penetrate and replicate within macrophages, and release inflammatory cytokines sustaining inflammation. In this review we will discuss about the role of AIEC in the pathogenesis of CD, the virulence factors mediating adhesion and invasion of AIEC in mucosal tissue, the environmental conditions improving AIEC survival and replication within macrophages. Finally, we will also give an overview of the new strategies developed to limit AIEC overgrowth.
Collapse
Affiliation(s)
- Gaetano Iaquinto
- Gastroenterology Division, S. Rita Hospital, Atripalda, Avellino, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope," 80100, Naples, Italy
| | - Luigi Panico
- Pathological Anatomy and Histology Unit, Monaldi Hospital, Napoli, Italy
| | - Raffaele Melina
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | | | - Antonio De Luca
- Department of Mental Health and Physics, Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | |
Collapse
|
3
|
Marković KG, Grujović MŽ, Koraćević MG, Nikodijević DD, Milutinović MG, Semedo-Lemsaddek T, Djilas MD. Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11825. [PMID: 36142096 PMCID: PMC9517006 DOI: 10.3390/ijerph191811825] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Enterobacteriaceae are widely present in many environments related to humans, including the human body and the food that they consume, from both plant or animal origin. Hence, they are considered relevant members of the gastrointestinal tract microbiota. On the other hand, these bacteria are also recognized as putative pathogens, able to impair human health and, in food, they are considered indicators for the microbiological quality and hygiene status of a production process. Nevertheless, beneficial properties have also been associated with Enterobacteriaceae, such as the ability to synthesize peptides and proteins, which can have a role in the structure of microbial communities. Among these antimicrobial molecules, those with higher molecular mass are called colicins, while those with lower molecular mass are named microcins. In recent years, some studies show an emphasis on molecules that can help control the development of pathogens. However, not enough data are available on this subject, especially related to microcins. Hence, this review gathers and summarizes current knowledge on colicins and microcins, potential usage in the treatment of pathogen-associated diseases and cancer, as well as putative applications in food biotechnology.
Collapse
Affiliation(s)
- Katarina G. Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Mirjana Ž. Grujović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Maja G. Koraćević
- Innovation Center, University of Niš, 18000 Niš, Serbia
- Faculty of Medicine, Department of Pharmacy, University of Niš, 18000 Niš, Serbia
| | - Danijela D. Nikodijević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milena G. Milutinović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Milan D. Djilas
- Institute for Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Calcuttawala F, Pal A, Nath P, Kar R, Hazra D, Pal R. Structural and functional insights into colicin: a new paradigm in drug discovery. Arch Microbiol 2021; 204:37. [PMID: 34928429 DOI: 10.1007/s00203-021-02689-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Colicins are agents of allelopathic interactions produced by certain enterobacteria which give them a competitive advantage in the environment. These protein molecules are mostly encoded by plasmids. The colicin operon consists of the activity, immunity and the lysis genes. The activity protein is responsible for the killing activity, the immunity protein protects the producer cell from the lethal action of colicin and the lysis protein facilitates its release. Colicins are primarily composed of three domains, namely the receptor-binding domain, the translocation domain and the cytotoxic domain. The protein molecule binds to its cognate receptor on the target cell via the receptor-binding domain and undergoes translocation into the cell either via the Tol system or the Ton system. After gaining entry into the target cell, there are various mechanisms by which colicins exert their lethality. These comprise DNase activity, RNase activity and pore formation in the target cell membrane or peptidoglycan synthesis inhibition. This review gives a detailed insight into the structural and functional aspect of colicins and their mode of action. This knowledge is of immense significance because colicins are being considered as very useful alternatives to conventional antibiotics in the treatment of multidrug-resistant infections. Besides, they also have a negligible harmful impact on the commensals. Thus, before tapping their therapeutic potential, it is imperative to know their structure and mechanism of action in detail.
Collapse
Affiliation(s)
- Fatema Calcuttawala
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India.
| | - Ankita Pal
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Papri Nath
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Riya Kar
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Debraj Hazra
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Rajat Pal
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| |
Collapse
|
5
|
Amaldoss MJN, Najar IA, Kumar J, Sharma A. Therapeutic efficacy of rifaximin loaded tamarind gum polysaccharide nanoparticles in TNBS induced IBD model Wistar rats. Rep Pract Oncol Radiother 2021; 26:712-729. [PMID: 34760306 DOI: 10.5603/rpor.a2021.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Rifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model rats. Materials and methods The experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported. Results The study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of -26.44 mV and other parameters such as TEM and drug release studies were also reported. Conclusions The therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Swift School of Pharmacy Rajpura, Punjab, India
| | | | | | | |
Collapse
|
6
|
Carpena N, Richards K, Bello Gonzalez TDJ, Bravo-Blas A, Housden NG, Gerasimidis K, Milling SWF, Douce G, Malik DJ, Walker D. Targeted Delivery of Narrow-Spectrum Protein Antibiotics to the Lower Gastrointestinal Tract in a Murine Model of Escherichia coli Colonization. Front Microbiol 2021; 12:670535. [PMID: 34721311 PMCID: PMC8551963 DOI: 10.3389/fmicb.2021.670535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Bacteriocins are narrow-spectrum protein antibiotics that could potentially be used to engineer the human gut microbiota. However, technologies for targeted delivery of proteins to the lower gastrointestinal (GI) tract in preclinical animal models are currently lacking. In this work, we have developed methods for the microencapsulation of Escherichia coli targeting bacteriocins, colicin E9 and Ia, in a pH responsive formulation to allow their targeted delivery and controlled release in an in vivo murine model of E. coli colonization. Membrane emulsification was used to produce a water-in-oil emulsion with the water-soluble polymer subsequently cross-linked to produce hydrogel microcapsules. The microcapsule fabrication process allowed control of the size of the drug delivery system and a near 100% yield of the encapsulated therapeutic cargo. pH-triggered release of the encapsulated colicins was achieved using a widely available pH-responsive anionic copolymer in combination with alginate biopolymers. In vivo experiments using a murine E. coli intestinal colonization model demonstrated that oral delivery of the encapsulated colicins resulted in a significant decrease in intestinal colonization and reduction in E. coli shedding in the feces of the animals. Employing controlled release drug delivery systems such as that described here is essential to enable delivery of new protein therapeutics or other biological interventions for testing within small animal models of infection. Such approaches may have considerable value for the future development of strategies to engineer the human gut microbiota, which is central to health and disease.
Collapse
Affiliation(s)
- Nuria Carpena
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kerry Richards
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Alberto Bravo-Blas
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Konstantinos Gerasimidis
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon W. F. Milling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Douce
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Danish J. Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Shushan A, Kosloff M. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Sci Rep 2021; 11:3789. [PMID: 33589691 PMCID: PMC7884437 DOI: 10.1038/s41598-021-83265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.
Collapse
Affiliation(s)
- Avital Shushan
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
8
|
Chervy M, Barnich N, Denizot J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. Int J Mol Sci 2020; 21:E3734. [PMID: 32466328 PMCID: PMC7279240 DOI: 10.3390/ijms21103734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides genetic polymorphisms and environmental factors, the intestinal microbiota is an important factor in the etiology of Crohn's disease (CD). Among microbiota alterations, a particular pathotype of Escherichia coli involved in the pathogenesis of CD abnormally colonizes the intestinal mucosa of patients: the adherent-invasive Escherichia coli (AIEC) pathobiont bacteria, which have the abilities to adhere to and to invade intestinal epithelial cells (IECs), as well as to survive and replicate within macrophages. AIEC have been the subject of many studies in recent years to unveil some genes linked to AIEC virulence and to understand the impact of AIEC infection on the gut and consequently their involvement in CD. In this review, we describe the lifestyle of AIEC bacteria within the intestine, from the interaction with intestinal epithelial and immune cells with an emphasis on environmental and genetic factors favoring their implantation, to their lifestyle in the intestinal lumen. Finally, we discuss AIEC-targeting strategies such as the use of FimH antagonists, bacteriophages, or antibiotics, which could constitute therapeutic options to prevent and limit AIEC colonization in CD patients.
Collapse
Affiliation(s)
- Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| |
Collapse
|
9
|
Martinez-Medina M, Strozzi F, Ruiz Del Castillo B, Serrano-Morillas N, Ferrer Bustins N, Martínez-Martínez L. Antimicrobial Resistance Profiles of Adherent Invasive Escherichia coli Show Increased Resistance to β-Lactams. Antibiotics (Basel) 2020; 9:antibiotics9050251. [PMID: 32414140 PMCID: PMC7277491 DOI: 10.3390/antibiotics9050251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The adherent invasive Escherichia coli (AIEC) pathotype has been associated with the aetiology of Crohn’s disease (CD). Scarce reports have shown the antimicrobial resistance (AMR) profiles of AIEC. Despite antibiotics not being recommended to treat CD, antimicrobial therapy could be useful in stratified patients, such as AIEC carriers. We examined the antimicrobial resistance profiles of AIEC strains to identify which therapies could be effective or confer a risk for such patients. Phenotypic resistance to 30 antimicrobials was tested according to CLSI standards. AIEC (n = 22) and non-pathogenic E. coli (non-AIEC) strains (n = 37) isolated from the gut mucosa of 31 CD patients and 18 controls were studied. De novo genome sequencing was carried out for 39 of the 59 strains, and AMR genes were searched using the DeepARG database in these genomes and 33 additional AIEC publicly available genomes. The strains isolated from CD and controls showed similar phenotypic AMR profiles. The genomic analysis did not reveal an increased prevalence of AMR genes. However, AIEC strains were more frequently resistant to β-lactams than non-AIEC strains (11 AIEC (50%) and 5 non-AIEC (22%) strains were resistant to at least one β-lactam; p < 0.042). Two AIEC strains were resistant to expanded-spectrum cephalosporins. One strain carried a plasmid-mediated AmpC β-lactamase (CMY-69), and the other presented mutations in the promotor of the intrinsic chromosomal AmpC related to the hyperproduction of this enzyme. The rest of the strains were resistant to β-lactams not including expanded-spectrum cephalosporins. The majority carried TEM-related β-lactamases. Genomic analysis including external AIEC revealed that the gene sul1 encoding for sulphonamide resistance was more frequent in AIEC strains than non-AIEC strains (34.6% vs. 9.5%, p = 0.030). AMR in AIEC is a matter of concern regarding the putative implication of the pathotype in CD. The high proportion of AIEC resistant to β-lactams warrants caution about the risk there may be in the use of these antimicrobials in AIEC-colonized CD patients.
Collapse
Affiliation(s)
- Margarita Martinez-Medina
- Microbiology of Intestinal Disease Group, Biology Department, University of Girona, 17003 Girona, Spain; (N.S.-M.); (N.F.B.)
- Correspondence: ; Tel.: +34-972-418261
| | - Francesco Strozzi
- Data Science Departement, Enterome Biosciences S.A., 75011 Paris, France;
| | - Belén Ruiz Del Castillo
- Service of Microbiology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain;
| | - Natalia Serrano-Morillas
- Microbiology of Intestinal Disease Group, Biology Department, University of Girona, 17003 Girona, Spain; (N.S.-M.); (N.F.B.)
| | - Nuria Ferrer Bustins
- Microbiology of Intestinal Disease Group, Biology Department, University of Girona, 17003 Girona, Spain; (N.S.-M.); (N.F.B.)
| | - Luis Martínez-Martínez
- Unit of Microbiology, University Hospital Reina Sofia, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute, 14004 Córdoba, Spain
- Department of Agricultural Chemistry and Microbiology, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
10
|
Vashist A, Atluri V, Raymond A, Kaushik A, Parira T, Huang Z, Durygin A, Tomitaka A, Nikkhah-Moshaie R, Vashist A, Agudelo M, Chand HS, Saytashev I, Ramella-Roman JC, Nair M. Development of Multifunctional Biopolymeric Auto-Fluorescent Micro- and Nanogels as a Platform for Biomedical Applications. Front Bioeng Biotechnol 2020; 8:315. [PMID: 32426338 PMCID: PMC7203429 DOI: 10.3389/fbioe.2020.00315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
The emerging field of theranostics for advanced healthcare has raised the demand for effective and safe delivery systems consisting of therapeutics and diagnostics agents in a single monarchy. This requires the development of multi-functional bio-polymeric systems for efficient image-guided therapeutics. This study reports the development of size-controlled (micro-to-nano) auto-fluorescent biopolymeric hydrogel particles of chitosan and hydroxyethyl cellulose (HEC) synthesized using water-in-oil emulsion polymerization technique. Sustainable resource linseed oil-based polyol is introduced as an element of hydrophobicity with an aim to facilitate their ability to traverse the blood-brain barrier (BBB). These nanogels are demonstrated to have salient features such as biocompatibility, stability, high cellular uptake by a variety of host cells, and ability to transmigrate across an in vitro BBB model. Interestingly, these unique nanogel particles exhibited auto-fluorescence at a wide range of wavelengths 450-780 nm on excitation at 405 nm whereas excitation at 710 nm gives emission at 810 nm. In conclusion, this study proposes the developed bio-polymeric fluorescent micro- and nano- gels as a potential theranostic tool for central nervous system (CNS) drug delivery and image-guided therapy.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Venkata Atluri
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Andrea Raymond
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Ajeet Kaushik
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
- Division of Sciences, Art, and Sciences, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, United States
| | - Tiyash Parira
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Zaohua Huang
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL, United States
| | - Andriy Durygin
- CeSMEC, Florida International University, Miami, FL, United States
| | - Asahi Tomitaka
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Roozbeh Nikkhah-Moshaie
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Science, New Delhi, India
| | - Marisela Agudelo
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Ilyas Saytashev
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Cellular Biology, Pharmacology and Ophthalmology, Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Jessica C. Ramella-Roman
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Cellular Biology, Pharmacology and Ophthalmology, Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| |
Collapse
|
11
|
Camprubí-Font C, Ewers C, Lopez-Siles M, Martinez-Medina M. Genetic and Phenotypic Features to Screen for Putative Adherent-Invasive Escherichia coli. Front Microbiol 2019; 10:108. [PMID: 30846972 PMCID: PMC6393329 DOI: 10.3389/fmicb.2019.00108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023] Open
Abstract
To date no molecular tools are available to identify the adherent-invasive Escherichia coli (AIEC) pathotype, which has been associated with Crohn’s disease and colonizes the intestine of different hosts. Current techniques based on phenotypic screening of isolates are extremely time-consuming. The aim of this work was to search for signature traits to assist in rapid AIEC identification. The occurrence of at least 54 virulence genes (VGs), the resistance to 30 antibiotics and the distribution of FimH and ChiA amino acid substitutions was studied in a collection of 48 AIEC and 56 non-AIEC isolated from the intestine of humans and animals. χ2 test was used to find frequency differences according to origin of isolation, AIEC phenotype and phylogroup. Mann–Whitney test was applied to test association with adhesion and invasion indices. Binary logistic regression was performed to search for variables of predictive value. Animal strains (N = 45) were enriched in 12 VGs while 7 VGs were more predominant in human strains (N = 59). The prevalence of 15 VGs was higher in AIEC (N = 49) than in non-AIEC (N = 56) strains, but only pic gene was still differentially distributed when analyzing human and animal strains separately. Among human strains, three additional VGs presented higher frequency in AIEC strains (papGII/III, iss and vat; N = 22) than in non-AIEC strains (N = 37). No differences between AIEC/non-AIEC were found in FimH variants. In contrast, the ChiA sequence of LF82 was shared with the 35.5% of AIEC studied (N = 31) and only with the 7.4% of non-AIEC strains (N = 27; p = 0.027). Binary logistic regression analysis, using as input variables all the VGs and antibiotic resistances tested, revealed that typifying E. coli isolates using pic gene and ampicillin resistance was useful to correctly classify strains according to the phenotype with a 75.5% of accuracy. Although there is not a molecular signature fully specific and sensitive to identify the AIEC pathotype, we propose two features easy to be tested that could assist in AIEC screening. Future work using additional strain collections would be required to assess the applicability of this method.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Mireia Lopez-Siles
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | | |
Collapse
|
12
|
Levine A, Kori M, Kierkus J, Sigall Boneh R, Sladek M, Escher JC, Wine E, Yerushalmi B, Amil Dias J, Shaoul R, Veereman Wauters G, Boaz M, Abitbol G, Bousvaros A, Turner D. Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn's disease : a randomised controlled trial. Gut 2019; 68:239-247. [PMID: 29420227 DOI: 10.1136/gutjnl-2017-315199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Crohn's disease (CD) pathogenesis associated with dysbiosis and presence of pathobionts in the lumen, intracellular compartments and epithelial biofilms. Azithromycin is active in all three compartments. Our goal was to evaluate if azithromycin-based therapy can improve response and induce remission compared with metronidazole alone in paediatric CD. DESIGN This blinded randomised controlled trial allocated children 5-18 years with 10<Pediatric Crohn's Disease Activity Index (PCDAI)≤40 to azithromycin 7.5 mg/kg, 5 days/week for 4 weeks and 3 days/week for another 4 weeks with metronidazole 20 mg/kg/day (group 1) or metronidazole alone (group 2), daily for 8 weeks. Failures from group 2 were offered azithromycin as open label. The primary end point was response defined by a decrease in PCDAI>12.5 or remission using intention to treat analysis. RESULTS 73 patients (mean age 13.8±3.1 years) were enrolled, 35 to group 1 and 38 to group 2. Response and remission rates at week 8 were identical 23/35 (66%) in group 1 and 17/38 (45%) and 15/38 (39%) in group 2 (P=0.07 and P=0.025, respectively). The needed to treat for remission was 3.7. Faecal calprotectin declined significantly in group 1 (P=0.003) but not in group 2 (p=0.33), and was lower at week 8 (P=0.052). Additional therapy was required in 6/35(17%) from group 1 versus 16/38(42%) in group 2 (P=0.027) by week 8. Among 12 failures in group 2, open-label azithromycin led to remission in 10/12 (83%). CONCLUSIONS The combination of azithromycin and metronidazole failed to improve response but was superior for induction of remission and reduction in calprotectin. TRIAL REGISTRATION NUMBER NCT01596894.
Collapse
Affiliation(s)
- Arie Levine
- Pediatric Gastroenterology and Nutrition Unit, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kori
- Pediatric Day Care Unit, Kaplan Medical Center, Rehovot, Israel
| | - Jarek Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Rotem Sigall Boneh
- Pediatric Gastroenterology and Nutrition Unit, Wolfson Medical Center, Holon, Israel
| | - Malgorzata Sladek
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow, Poland
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center, Beersheba, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | | | - Ron Shaoul
- Pediatric Gastroenterology Unit, Ruth Children's Hospital, Rambam Medical Center, Brussels, Belgium
| | | | - Mona Boaz
- Department of Nutrition School of Health Sciences, Ariel University, Ariel, Israel.,Epidemiology and Research Unit, E. Wolfson Medical Center, Holon, Israel
| | - Guila Abitbol
- Pediatric Gastroenterology Lab, The Juliet Keidan Institute of Paediatric Gastroenterology, Hepatology, and Nutrition, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Athos Bousvaros
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Abstract
Despite the revolution in inflammatory bowel disease (IBD) treatment over the past two decades with the advent of biological therapies, there remains a substantial proportion of patients with inadequate or unsustained response to existent therapies. The overwhelming focus of IBD therapeutics has been targeting mucosal immunity, however with the developing evidence base pointing to the role of gut microbes in the inflammatory process, renewed focus should be placed on the impact of manipulating the microbiome in IBD management. This review provides an overview of the evidence implicating bacteria in the pathogenesis of gut inflammation in IBD and provides an overview of the evidence of antibiotics in IBD treatment. We also suggest a potential role of antibiotics in clinical practice based on available evidence and clinical experience.
Collapse
Affiliation(s)
- Oren Ledder
- Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Abstract
Lectin-like bacteriocins (LlpAs) are secreted by proteobacteria and selectively kill strains of their own or related species, and they are composed of two B-lectin domains with divergent sequences. In Pseudomonas spp., initial binding of these antibacterial proteins to cells is mediated by the carboxy-terminal domain through d-rhamnose residues present in the common polysaccharide antigen of their lipopolysaccharide, whereas the amino-terminal domain accounts for strain selectivity of killing. Here, we show that spontaneous LlpA-resistant mutants carry mutations in one of three surface-exposed moieties of the essential β-barrel outer membrane protein insertase BamA, the core component of the BAM complex. Polymorphism of this loop in different Pseudomonas groups is linked to LlpA susceptibility, and targeted cells all share the same signature motif in this loop. Since heterologous expression of such a bamA gene confers LlpA susceptibility upon a resistant strain, BamA represents the primary bacteriocin selectivity determinant in pseudomonads. Contrary to modular bacteriocins that require uptake via the Tol or Ton system, parasitism of BamA as an LlpA receptor advocates a novel bacteriocin killing mechanism initiated by impairment of the BAM machinery. Bacteria secrete a variety of molecules to eliminate microbial rivals. Bacteriocins are a pivotal group of peptides and proteins that assist in this fight, specifically killing related bacteria. In Gram-negative bacteria, these antibacterial proteins often comprise distinct domains for initial binding to a target cell’s surface and subsequent killing via enzymatic or pore-forming activity. Here, we show that lectin-like bacteriocins, a family of bacteriocins that lack the prototypical modular toxin architecture, also stand out by parasitizing BamA, the core component of the outer membrane protein assembly machinery. A particular surface-exposed loop of BamA, critical for its function, serves as a key discriminant for cellular recognition, and polymorphisms in this loop determine whether a strain is susceptible or immune to a particular bacteriocin. These findings suggest a novel mechanism of contact-dependent killing that does not require cellular uptake. The evolutionary advantage of piracy of an essential cellular compound is highlighted by the observation that contact-dependent growth inhibition, a distinct antagonistic system, can equally take advantage of this receptor.
Collapse
|
15
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-587. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
16
|
Cohen LJ, Han S, Huang YH, Brady SF. Identification of the Colicin V Bacteriocin Gene Cluster by Functional Screening of a Human Microbiome Metagenomic Library. ACS Infect Dis 2018; 4:27-32. [PMID: 28810737 DOI: 10.1021/acsinfecdis.7b00081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The forces that shape human microbial ecology are complex. It is likely that human microbiota, similarly to other microbiomes, use antibiotics as one way to establish an ecological niche. In this study, we use functional metagenomics to identify human microbial gene clusters that encode for antibiotic functions. Screening of a metagenomic library prepared from a healthy patient stool sample led to the identification of a family of clones with inserts that are 99% identical to a region of a virulence plasmid found in avian pathogenic Escherichia coli. Characterization of the metagenomic DNA sequence identified a colicin V biosynthetic cluster as being responsible for the observed antibiotic effect of the metagenomic clone against E. coli. This study presents a scalable method to recover antibiotic gene clusters from humans using functional metagenomics and highlights a strategy to study bacteriocins in the human microbiome which can provide a resource for therapeutic discovery.
Collapse
Affiliation(s)
- Louis J. Cohen
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1069, New York, New York 10029, United States
| | - Sun Han
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1069, New York, New York 10029, United States
| | - Yun-Han Huang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
17
|
The therapeutic potential of bacteriocins as protein antibiotics. Emerg Top Life Sci 2017; 1:65-74. [PMID: 33525816 PMCID: PMC7243282 DOI: 10.1042/etls20160016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
The growing incidence of antibiotic-resistant Gram-negative bacterial infections poses a serious threat to public health. Molecules that have yet to be exploited as antibiotics are potent protein toxins called bacteriocins that are produced by Gram-negative bacteria during competition for ecological niches. This review discusses the state of the art regarding the use for therapeutic purposes of two types of Gram-negative bacteriocins: colicin-like bacteriocins (CLBs) and tailocins. In addition to in vitro data, the potency of eight identified CLBs or tailocins has been demonstrated in diverse animal models of infection with no adverse effects for the host. Although the characteristics of bacteriocins will need further study, results obtained thus far regarding their in vivo potency, immunogenicity and low levels of resistance are encouraging. This leads the way for the development of novel treatments using bacteriocins as protein antibiotics.
Collapse
|