1
|
Schnell A, Schwarz B, Schmidt H, Allabauer I, Schuh W, Regensburger AP, Rauh M, Woelfle J, Hoerning A. Adenosine-generating CD39 + plasmablasts predispose to successful infliximab therapy in pediatric IBD. Life Sci Alliance 2025; 8:e202403055. [PMID: 40199584 PMCID: PMC11979362 DOI: 10.26508/lsa.202403055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
B cells display several immunoregulatory mechanisms including the production of interleukin-10. Ectonucleotidases like CD39 and CD73 influence immune homeostasis by metabolizing eATP and generating immunosuppressive adenosine. The major objective was to examine the expression of those immunoregulatory molecules on B-cell subsets, and, more specifically, to determine their association with an infliximab (IFX) treatment in a pediatric inflammatory bowel disease (IBD) cohort. 42 IBD patients were assessed for IFX response after 12 mo of therapy and compared against 14 healthy controls (HC). Although IL10-producing plasmablasts were decreased in IFX nonresponders (NRS), we detected an up-regulation of CD39 on plasmablasts and increased fractions of CD39/CD73-co-expressing naïve and memory B cells in responding patients (RS). In addition, B cells of responders proved to have superior ATP degradation capacities and adenosine production before therapy initiation compared with NRS and HC. Moreover, IFX nonresponders had a marked deficiency of α4β7hi plasmablasts, whereas both cohorts had fewer CCR9-expressing plasmablasts. Consequently, CD39+ plasmablasts were decreased in biopsies of inflamed mucosal tissues, especially in IFX nonresponders. Our results highlight the regulatory potential of CD39/CD73-expressing B cells in pediatric IBD and suggest CD39+ plasmablasts as a potential determinant of a successful immunosuppressive therapy with IFX.
Collapse
Affiliation(s)
- Alexander Schnell
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Benedikt Schwarz
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Hannah Schmidt
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ida Allabauer
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian P Regensburger
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - André Hoerning
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
2
|
Xu W, Golovchenko NB, Martínez-Vargas IU, Fong A, Rout P, Achi S, Bucar EB, Hsieh JJ, Vidmar KJ, Zhang L, Polydorides AD, Prinz I, Kollias G, Frey MR, Pizarro TT, Verzi MP, Edelblum KL. Dysregulation of γδ intraepithelial lymphocytes precedes Crohn's disease-like ileitis. Sci Immunol 2025; 10:eadk7429. [PMID: 40117343 DOI: 10.1126/sciimmunol.adk7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) provide immunosurveillance of the intestinal barrier but are reduced in patients with active Crohn's disease (CD). Here, we report an underappreciated role for γδ IELs in maintaining immunological tolerance during the onset and progression of CD-like ileitis using TNFΔARE/+ mice. We found that TNF-induced down-regulation of epithelial hepatocyte nuclear factor 4-gamma/butyrophilin is followed by a loss of ileal Vγ7 IELs and impaired barrier surveillance before the histological onset of disease. A reduction of immunoregulatory CD39+ γδ IELs coincided with the influx of immature, peripheral CD39neg γδ T cells into the epithelium, leading to an expansion of induced IELs, whereas an earlier depletion of γδ IELs correlated with accelerated onset of ileal inflammation. Our findings identify multiple layers of γδ IEL dysregulation before ileitis development, indicating that the loss of steady-state immunoregulatory γδ IELs may contribute to the initiation of ileal CD.
Collapse
Affiliation(s)
- Weili Xu
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Natasha B Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irving U Martínez-Vargas
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Fong
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Sajan Achi
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edie B Bucar
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jonathan J Hsieh
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Kaylynn J Vidmar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
| | - Alexandros D Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hanover, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark R Frey
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
4
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
5
|
Belyayev L, Kang J, Sadat M, Loh K, Patil D, Muralidaran V, Khan K, Kaufman S, Subramanian S, Gusev Y, Bhuvaneshwar K, Ressom H, Varghese R, Ekong U, Matsumoto CS, Robson SC, Fishbein TM, Kroemer A. Suppressor T helper type 17 cell responses in intestinal transplant recipients with allograft rejection. Hum Immunol 2024; 85:110773. [PMID: 38494386 DOI: 10.1016/j.humimm.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Intestinal transplant (ITx) rejection is associated with memory T helper type 17 cell (Th17) infiltration of grafted tissues. Modulation of Th17 effector cell response is facilitated by T regulatory (Treg) cells, but a phenotypic characterization of this process is lacking in the context of allograft rejection. METHODS Flow cytometry was performed to examine the expression of surface receptors, cytokines, and transcription factors in Th17 and Treg cells in ITx control (n = 34) and rejection patients (n = 23). To elucidate key pathways guiding the rejection biology, we utilized RNA sequencing (RNAseq) and assessed epigenetic stability through pyrosequencing of the Treg-specific demethylated region (TSDR). RESULTS We found that intestinal allograft rejection is characterized by Treg cellular infiltrates, which are polarized toward Th17-type chemokine receptor, ROR-γt transcription factor expression, and cytokine production. These Treg cell subsets have maintained epigenetic stability, as defined by FoxP3-TSDR methylation status, but displayed upregulation of functional Treg and purinergic signaling genes by RNAseq analysis such as CD39, in keeping with suppressor Th17 properties. CONCLUSION We show that ITx rejection is associated with increased polarized cells that express a Th17-like phenotype concurrent with regulatory purinergic markers.
Collapse
Affiliation(s)
- Leonid Belyayev
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20814, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Stuart Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Rency Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Udeme Ekong
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Cal S Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
6
|
Kornberg A, Botella T, Moon CS, Rao S, Gelbs J, Cheng L, Miller J, Bacarella AM, García-Vilas JA, Vargas J, Yu X, Krupska I, Bush E, Garcia-Carrasquillo R, Lebwohl B, Krishnareddy S, Lewis S, Green PH, Bhagat G, Yan KS, Han A. Gluten induces rapid reprogramming of natural memory αβ and γδ intraepithelial T cells to induce cytotoxicity in celiac disease. Sci Immunol 2023; 8:eadf4312. [PMID: 37450575 PMCID: PMC10481382 DOI: 10.1126/sciimmunol.adf4312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4+ T cell activation culminates in intraepithelial T cell (T-IEL)-mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls. Untreated, active, and potential CD were associated with an enrichment of activated intestinal T cell populations, including CD4+ follicular T helper (TFH) cells, regulatory T cells (Tregs), and natural CD8+ αβ and γδ T-IELs. Natural CD8+ αβ and γδ T-IELs expressing activating natural killer cell receptors (NKRs) exhibited a distinct TCR repertoire in CD and persisted in patients on a gluten-free diet without intestinal inflammation. Our data further show that NKR-expressing cytotoxic cells, which appear to mediate intestinal damage in CD, arise from a distinct NKR-expressing memory population of T-IELs. After gluten ingestion, both αβ and γδ T cell clones from this memory population of T-IELs circulated systemically along with gluten-specific CD4+ T cells and assumed a cytotoxic and activating NKR-expressing phenotype. Collectively, these findings suggest that cytotoxic T cells in CD are rapidly mobilized in parallel with gluten-specific CD4+ T cells after gluten ingestion.
Collapse
Affiliation(s)
- Adam Kornberg
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Theo Botella
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Christine S. Moon
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Samhita Rao
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Jared Gelbs
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Pediatrics, Columbia University; New York, NY
| | - Liang Cheng
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Jonathan Miller
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | | | - Javier A. García-Vilas
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
| | - Justin Vargas
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Xuechen Yu
- Celiac Disease Center, Columbia University; New York, NY
| | - Izabela Krupska
- Department of Systems Biology, Columbia University; New York, NY
| | - Erin Bush
- Department of Systems Biology, Columbia University; New York, NY
| | | | - Benjamin Lebwohl
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suneeta Krishnareddy
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suzanne Lewis
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Peter H.R. Green
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Govind Bhagat
- Celiac Disease Center, Columbia University; New York, NY
- Department of Pathology and Cell Biology, Columbia University; New York, NY
| | - Kelley S. Yan
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Arnold Han
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| |
Collapse
|
7
|
Liu Y, Li Z, Zhao X, Xiao J, Bi J, Li XY, Chen G, Lu L. Review immune response of targeting CD39 in cancer. Biomark Res 2023; 11:63. [PMID: 37287049 DOI: 10.1186/s40364-023-00500-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Jing Xiao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
- Department of R&D, OriCell Therapeutics Co. Ltd, No.1227, Zhangheng Rd, Pudong, Shanghai, China.
| | - Guokai Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
8
|
Sharma TT, Rabizadeh RR, Prabhakar VS, Bury MI, Sharma AK. Evolving Experimental Platforms to Evaluate Ulcerative Colitis. Adv Biol (Weinh) 2022; 6:e2200018. [PMID: 35866469 DOI: 10.1002/adbi.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
Ulcerative colitis (UC) is a multifactorial disease defined by chronic intestinal inflammation with idiopathic origins. It has a predilection to affect the mucosal lining of the large intestines and rectum. Management of UC depends upon numerous factors that include disease pathogenesis and severity that are maintained via medical or surgical means. Chronic inflammation that is left untreated or managed poorly from a clinical stance can result in intestinal ulceration accompanied by resulting physiological dysfunction. End-stage UC is mediated by surgical intervention with the resection of diseased tissue. This can lead to numerous health-related quality of life issues but is considered a curative approach. Regimens to treat UC are ever evolving and find their basis within various platforms to evaluate and treat UC. Numerous modeling systems have been examined to delineate potential mechanisms of action. However, UC is a heterogenous disease spanning unknown genetic origins coupled with environmental factors that can influence disease outcomes and related treatment procedures. Unfortunately, there is no one-size-fits-all model to fully assess all facets of UC. Within the context of this review article, the utility of various approaches that have been employed to gain insight into different aspects of UC will be investigated.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Vibhav S Prabhakar
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Urology, Northwestern University, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL, 60208, USA.,Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
9
|
Radygina TV, Petrichuk SV, Kuptsova DG, Potapov AS, Illarionov AS, Anushenko AO, Kurbatova OV, Semikina EL. Content of CD4+ cells expressing CD39/CD73 ectonucleotidases in children with inflammatory bowel diseases. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The regulation of TNF inhibitor therapy-associated immune responses in inflammatory bowel diseases (IBD) in children remains an urgent problem. The study aimed at analyzing the expression of CD39/CD73 endonucleotidases by different subsets of peripheral blood T cells in children with IBD including Crohn's disease (n = 34) and ulcerative colitis (n = 33) having received TNF inhibitors in comparison with conditionally healthy children (n = 45). Lymphocyte subsets including regulatory T cells (Treg, CD4+CD127lowCD25high), activated T cells (Tact, CD4+CD25+CD127high) and Th17 cells (CD4+CD161+CD3+) were studied by flow cytometry. The results are presented as medians (Me) and quartiles (Q25–Q75). In children with IBD the highest and the lowest relative counts of CD39+ cells were found in Treg and Tact subsets — 31% (15–38) and 4% (1–7), respectively. The highest relative counts of CD73+ cells were found in Tact — 13% (8–21). The CD39 and CD73 expression ratio in patients with IBD, and in the control group as well, depended on particular subset. CD39 expression in Treg, Tact and Th17 of patients with IBD was not age-dependent. Patients with acute Crohn's disease revealed decreased expression of CD39 in Treg compared with the control group (12% (9–23) vs 35% (28–39), respectively; р = 10–6). Patients with Crohn's disease in remission revealed increased expression of CD39 in Treg compared with the acute of the disease (31% (27–40) vs 12% (9–23); р = 9.4 × 10–5). Patients with Crohn's disease in remission revealed no significant differences with the control group apart from reduced expression of CD73 by Treg in Crohn's disease. The results indicate significant association of CD39 and CD73 expression levels in particular subsets of CD4+ cells with the phase of the disease (acute vs remission) and, accordingly, with the anti-TNF regimen efficacy.
Collapse
Affiliation(s)
- TV Radygina
- National Medical Research Center for Children's Health, Moscow, Russia
| | - SV Petrichuk
- National Medical Research Center for Children's Health, Moscow, Russia
| | - DG Kuptsova
- National Medical Research Center for Children's Health, Moscow, Russia
| | - AS Potapov
- National Medical Research Center for Children's Health, Moscow, Russia
| | - AS Illarionov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - AO Anushenko
- National Medical Research Center for Children's Health, Moscow, Russia
| | - OV Kurbatova
- National Medical Research Center for Children's Health, Moscow, Russia
| | - EL Semikina
- National Medical Research Center for Children's Health, Moscow, Russia
| |
Collapse
|
10
|
A Review on the Immunomodulatory Mechanism of Acupuncture in the Treatment of Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8528938. [PMID: 35075366 PMCID: PMC8783701 DOI: 10.1155/2022/8528938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/01/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with a high prevalence and canceration rate. The immune disorder is one of the recognized mechanisms. Acupuncture is widely used to treat patients with IBD. In recent years, an increasing number of studies have proven the effectiveness of acupuncture in the treatment of IBD, and some progress has been made in the mechanism. In this paper, we reviewed the studies related to acupuncture for IBD and focused on the immunomodulatory mechanism. We found that acupuncture could regulate the innate and adaptive immunity of IBD patients in many ways. Acupuncture exerts innate immunomodulatory effects by regulating intestinal epithelial barrier, toll-like receptors, NLRP3 inflammasomes, oxidative stress, and endoplasmic reticulum stress and exerts adaptive immunomodulation by regulating the balance of Th17/Treg and Th1/Th2 cells. In addition, acupuncture can also regulate intestinal flora.
Collapse
|
11
|
Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease. J Transl Autoimmun 2022; 4:100130. [PMID: 35005594 PMCID: PMC8716637 DOI: 10.1016/j.jtauto.2021.100130] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are characterized by a failure of tolerance to own body components resulting in tissue damage. Regulatory T cells are gatekeepers of tolerance. This review focusses on the function and pathophysiology of regulatory T cells in the context of autoimmune diseases including rheumatoid and juvenile idiopathic arthritis as well as systemic lupus erythematosus with an overview over current and future therapeutic options to boost Treg function. Regulatory T cells are critical mediators of immune tolerance and critically depend on external IL-2. Tregs are expanded during inflammation, where the local milieu enhances resistance to suppression in T effector cells. Human Tregs are characterized by different markers, which hampers the comparability of studies in patients with autoimmunity.
Collapse
Affiliation(s)
- Anandi Rajendeeran
- RWTH Aachen University, Department of Pediatrics, Pediatric Rheumatology, Pauwelsstr 30, 52074, Aachen, Germany
| | - Klaus Tenbrock
- RWTH Aachen University, Department of Pediatrics, Pediatric Rheumatology, Pauwelsstr 30, 52074, Aachen, Germany
| |
Collapse
|
12
|
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci 2022; 43:43-55. [PMID: 34776241 DOI: 10.1016/j.tips.2021.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Resolution of inflammation requires proresolving molecular pathways triggered as part of the host response during the inflammatory phase. Adenosine and its receptors, which are collectively called the adenosine system, shape inflammatory cell activity during the active phase of inflammation, leading these immune cells toward a functional repolarization, thus contributing to the onset of resolution. Strategies based on the resolution of inflammation have shaped a new area of pharmacology referred to as 'resolution pharmacology' and in this regard, the adenosine system represents an interesting target to design novel pharmacological tools to 'resolve' the inflammatory process. In this review, we outline the role of the adenosine system in driving the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Salem M, Lecka J, Pelletier J, Gomes Marconato D, Dumas A, Vallières L, Brochu G, Robaye B, Jobin C, Sévigny J. NTPDase8 protects mice from intestinal inflammation by limiting P2Y 6 receptor activation: identification of a new pathway of inflammation for the potential treatment of IBD. Gut 2022; 71:43-54. [PMID: 33452178 DOI: 10.1136/gutjnl-2020-320937] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Mabrouka Salem
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Joanna Lecka
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Julie Pelletier
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Danielle Gomes Marconato
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Aline Dumas
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
- Dép de médecine moléculaire, fac de médecine, Université Laval, Quebec City, QC, Canada
| | - Gaetan Brochu
- CHU de Québec - Université Laval, Quebec City, QC, Canada
- Dept. of Surgery, Université Laval, Quebec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Christian Jobin
- Dept of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, USA
| | - Jean Sévigny
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| |
Collapse
|
14
|
Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, Brunetti O, Rahmani S, Shadbad MA, Baghbanzadeh A, Silvestris N, Baradaran B. Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci 2021; 282:119826. [PMID: 34265363 DOI: 10.1016/j.lfs.2021.119826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The immunosuppressive tumor microenvironment has been implicated in attenuating anti-tumoral immune responses and tumor growth in various cancers. Inhibitory immune checkpoints have been introduced as the primary culprits for developing the immunosuppressive tumor microenvironment. Therefore, a better understanding of the cross-talk between inhibitory immune checkpoints in the tumor microenvironment can pave the way for introducing novel approaches for treating affected patients. Growing evidence indicates that CD39 and CD73, as novel checkpoints, can transform adenosine triphosphate (ATP)-mediated pro-inflammatory tumor microenvironment into an adenosine-mediated immunosuppressive one via the purinergic signaling pathway. Indeed, enzymatic processes of CD39 and CD73 have crucial roles in adjusting the extent, intensity, and chemical properties of purinergic signals. This study aims to review the biological function of CD39 and CD73 and shed light on their significance in regulating anti-tumoral immune responses in various cancers.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- IRCCS Bari, Italy, Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO, University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Zhu Y, Zhuang Z, Wu Q, Lin S, Zhao N, Zhang Q, Xie L, Yu S. CD39/CD73/A2a Adenosine Metabolic Pathway: Targets for Moxibustion in Treating DSS-Induced Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:661-676. [PMID: 33683190 DOI: 10.1142/s0192415x21500300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.
Collapse
Affiliation(s)
- Yuanbing Zhu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Zhiqi Zhuang
- People's Hospital of Pengzhou, Pengzhou, Sichuan 611930, P. R. China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - Sirui Lin
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Na Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Qun Zhang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Lushuang Xie
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Shuguang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| |
Collapse
|
16
|
Giuliani AL, Sarti AC, Di Virgilio F. Ectonucleotidases in Acute and Chronic Inflammation. Front Pharmacol 2021; 11:619458. [PMID: 33613285 PMCID: PMC7887318 DOI: 10.3389/fphar.2020.619458] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells included, either as plasma membrane-associated or secreted enzymes, are classified into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2) nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell damage or cell death, or regulated processes. Regulated processes include secretory exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC) transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels (VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an important immunosuppressant. Extracellular nucleotides and nucleosides initiate or dampen inflammation via P2 and P1 receptors, respectively. All these agents, depending on their level of expression or activation and on the agonist concentration, are potent modulators of inflammation and key promoters of host defences, immune cells activation, pathogen clearance, tissue repair and regeneration. Thus, their knowledge is of great importance for a full understanding of the pathophysiology of acute and chronic inflammatory diseases. A selection of these pathologies will be briefly discussed here.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Savio LEB, Robson SC, Longhi MS. Ectonucleotidase Modulation of Lymphocyte Function in Gut and Liver. Front Cell Dev Biol 2021; 8:621760. [PMID: 33553158 PMCID: PMC7859358 DOI: 10.3389/fcell.2020.621760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Imbalance between regulatory and effector T lymphocytes contributes to loss of immunotolerance and plays a permissive role in the initiation, perpetuation, and progression of chronic inflammatory diseases and autoimmune disorders. Regulatory/effector cell balance is governed by the CD39 ectonucleotidase, the prototype member of the NTPDase family that hydrolyzes ATP and ADP into AMP, subsequently converted into adenosine by CD73. Generation of adenosine impacts T-cell function as it contributes to the mechanism of suppression of Tregs and confers regulatory properties to pathogenic Th17-cells. CD39 cell distribution, mechanism of regulation and impact on inflammatory and regulatory signaling pathways are also discussed here. Innovative therapeutic strategies to boost CD39 levels and activity by either administering soluble ADPases or interfering with CD39 inhibitory signals are reviewed. Restoration of CD39 levels and function has enormous translational and clinical implications and should be regarded as an additional form of treatment to be deployed in the chronic inflammatory setting. The key role of CD39 in immunoregulation in the context of Crohn's disease, one of the most frequent manifestations of inflammatory bowel disease, and autoimmune hepatitis, an autoimmune disorder of the liver, is reviewed and discussed here.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Longhi MS, Feng L, Robson SC. Targeting ectonucleotidases to treat inflammation and halt cancer development in the gut. Biochem Pharmacol 2021; 187:114417. [PMID: 33460629 DOI: 10.1016/j.bcp.2021.114417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023]
Abstract
CD39 and CD73 control cell immunity by hydrolyzing proinflammatory ATP and ADP (CD39) into AMP, subsequently converted into anti-inflammatory adenosine (CD73). By regulating the balance between effector and regulatory cells, these ectonucleotidases promote immune homeostasis in acute and chronic inflammation; while also appearing to limit antitumor effector immunity in gut cancer. This manuscript focuses on the pivotal role of CD39 and CD73 ectonucleotidase function in shaping immune responses in the gut. We focus on those mechanisms deployed by these critical and pivotal ectoenzymes and the regulation in the setting of gastrointestinal tract infections, inflammatory bowel disease and tumors of the gastrointestinal tract. We will highlight translational and clinical implications of the latest and most innovative basic research discoveries of these important players of the purinergic signaling. Immunotherapeutic strategies that have been developed to either boost or control ectonucleotidase expression and activity in important disease settings are also reviewed and the in vivo effects discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| | - Lili Feng
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| |
Collapse
|
19
|
Harshe RP, Xie A, Vuerich M, Frank LA, Gromova B, Zhang H, Robles RJ, Mukherjee S, Csizmadia E, Kokkotou E, Cheifetz AS, Moss AC, Kota SK, Robson SC, Longhi MS. Endogenous antisense RNA curbs CD39 expression in Crohn's disease. Nat Commun 2020; 11:5894. [PMID: 33208731 PMCID: PMC7676266 DOI: 10.1038/s41467-020-19692-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
CD39 is an ectonucleotidase that initiates conversion of extracellular nucleotides into immunosuppressive adenosine. CD39 is expressed by regulatory T (Treg)-cells, where it mediates immunosuppression, and by a subset of T-helper (Th) 17-cells, where it limits pathogenicity. CD39 is regulated via single-nucleotide-polymorphisms and upon activation of aryl-hydrocarbon-receptor and oxygen-mediated pathways. Here we report a mechanism of CD39 regulation that relies on the presence of an endogenous antisense RNA, transcribed from the 3'-end of the human CD39/ENTPD1 gene. CD39-specific antisense is increased in Treg and Th17-cells of Crohn's disease patients over controls. It largely localizes in the cell nucleus and regulates CD39 by interacting with nucleolin and heterogeneous-nuclear-ribonucleoprotein-A1. Antisense silencing results in CD39 upregulation in vitro and amelioration of disease activity in a trinitro-benzene-sulfonic-acid model of colitis in humanized NOD/scid/gamma mice. Inhibition/blockade of antisense might represent a therapeutic strategy to restore CD39 along with immunohomeostasis in Crohn's disease.
Collapse
Affiliation(s)
- Rasika P Harshe
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Anyan Xie
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Luiza Abrahão Frank
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Barbora Gromova
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Haohai Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Rene' J Robles
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Samiran Mukherjee
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Efi Kokkotou
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Adam S Cheifetz
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Alan C Moss
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Satya K Kota
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Drescher HK, Bartsch LM, Weiskirchen S, Weiskirchen R. Intrahepatic T H17/T Reg Cells in Homeostasis and Disease-It's All About the Balance. Front Pharmacol 2020; 11:588436. [PMID: 33123017 PMCID: PMC7566778 DOI: 10.3389/fphar.2020.588436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both acute and chronic hepatic inflammation likely result from an imbalance in the TH1/TH2 cell response and can lead to liver fibrosis and end-stage liver disease. More recently, a novel CD4+ T helper cell subset was described, characterized by the production of IL-17 and IL-22. These TH17 cells 50were predominantly implicated in host defense against infections and in autoimmune diseases. Interestingly, studies over the last 10 years revealed that the development of TH17 cells favors pro-inflammatory responses in almost all tissues and there is a reciprocal relationship between TH17 and TReg cells. The balance between TH17and TReg cells is critical for immune reactions, especially in injured liver tissue and the return to immune homeostasis. The pathogenic contribution of TH17 and TReg cells in autoimmunity, acute infection, and chronic liver injury is diverse and varies among disease etiologies. Understanding the mechanisms underlying TH17 cell development, recruitment, and maintenance, along with the suppression of TReg cells, will inform the development of new therapeutic strategies in liver diseases. Active manipulation of the balance between pathogenic and regulatory processes in the liver may assist in the restoration of homeostasis, especially in hepatic inflammation.
Collapse
Affiliation(s)
- Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
21
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
22
|
Vuerich M, Mukherjee S, Robson SC, Longhi MS. Control of Gut Inflammation by Modulation of Purinergic Signaling. Front Immunol 2020; 11:1882. [PMID: 33072065 PMCID: PMC7544737 DOI: 10.3389/fimmu.2020.01882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two of the most common IBD manifestations and are both associated with unfettered inflammation, often refractory to conventional immunosuppressive treatment. In both conditions, imbalance between effector and regulatory cell immune responses has been documented and is thought to contribute to disease pathogenesis. Purinergic signaling is a known modulator of systemic and local inflammation and growing evidences point to extracellular ATP/adenosine imbalance as a key determinant factor in IBD-associated immune dysregulation. In vitro and pre-clinical studies suggest a role for both ATP (P2) and adenosine (P1) receptors in dictating onset and severity of the disease. Moreover, our experimental data indicate ENTPD1/CD39 and CD73 ectoenzymes as pivotal modulators of intestinal inflammation, with clear translational importance. Here we will provide an updated overview of the current knowledge on the role of the purinergic signaling in modulating immune responses in IBD. We will also review and discuss the most promising findings supporting the use of purinergic-based therapies to correct immune dysregulation in CD and UC.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Samiran Mukherjee
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
24
|
Antonioli L, Fornai M, Pellegrini C, Bertani L, Nemeth ZH, Blandizzi C. Inflammatory Bowel Diseases: It's Time for the Adenosine System. Front Immunol 2020; 11:1310. [PMID: 32849492 PMCID: PMC7403190 DOI: 10.3389/fimmu.2020.01310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Lorenzo Bertani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Zoltan H Nemeth
- Department of Surgery, Morristown Medical Center, Morristown, NJ, United States.,Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
26
|
Robles RJ, Mukherjee S, Vuerich M, Xie A, Harshe R, Cowan PJ, Csizmadia E, Wu Y, Moss AC, Chen R, Robson SC, Longhi MS. Modulation of CD39 and Exogenous APT102 Correct Immune Dysfunction in Experimental Colitis and Crohn's Disease. J Crohns Colitis 2020; 14:818-830. [PMID: 31693091 PMCID: PMC7457187 DOI: 10.1093/ecco-jcc/jjz182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD39/ENTPD1 scavenges pro-inflammatory nucleotides, to ultimately generate immunosuppressive adenosine, which has a central role in immune homeostasis. Global deletion of Cd39 increases susceptibility to experimental colitis while single nucleotide polymorphisms within the human CD39 promoter, and aberrant patterns of expression during experimental hypoxia, predispose to Crohn's disease. We aimed to define the impact of transgenic human CD39 [hTG] overexpression in experimental colitis and to model therapeutic effects using the recombinant apyrase APT102 in vivo. We also determined the in vitro effects of APT102 on phenotypic and functional properties of regulatory T-lymphocytes derived from patients with Crohn's disease. METHODS Colitis was induced by administration of dextran sulfate sodium in wild-type [WT] or hTG mice, and, in another model, by adoptive transfer of CD45RBhigh cells with or without WT or hTG regulatory T cells [Treg]. In additional experiments, mice were treated with APT102. The effects of APT102 on phenotype and function of Treg and type-1 regulatory T [Tr1] cells were also evaluated, after purification from peripheral blood and lamina propria of Crohn's disease patients [n = 38]. RESULTS Overexpression of human CD39 attenuated experimental colitis and protected from the deleterious effects of systemic hypoxia, pharmacologically induced by deferoxamine. Administration of APT102 in vivo enhanced the beneficial effects of endogenous Cd39 boosted by the administration of the aryl hydrocarbon receptor [AhR] ligand unconjugated bilirubin [UCB]. Importantly, supplemental APT102 restored responsiveness to AhR stimulation by UCB in Treg and Tr1 cells, obtained from Crohn's disease patients. CONCLUSIONS hCD39 overexpression ameliorated experimental colitis and prevented hypoxia-related damage in vivo. Exogenous administration of APT102 boosted AhR-mediated regulatory effects in vivo while enhancing Treg functions in Crohn's disease in vitro.
Collapse
Affiliation(s)
- René J Robles
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samiran Mukherjee
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anyan Xie
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rasika Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yan Wu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alan C Moss
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simon C Robson
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Correspondence: Maria Serena Longhi, Department of Anesthesia, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA. Tel: 617 735 2905; Fax: 617 735 2930;
| |
Collapse
|
27
|
Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, Zhang S. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:123. [PMID: 32391365 PMCID: PMC7188783 DOI: 10.3389/fmed.2020.00123] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Lin
- Division of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, Galligan JJ, Gulbransen BD. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G314-G332. [PMID: 31188623 PMCID: PMC6774087 DOI: 10.1152/ajpgi.00104.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.
Collapse
Affiliation(s)
- Vladimir Grubišić
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Alberto L. Perez-Medina
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - David E. Fried
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Jean Sévigny
- 3Centre de recherche du CHU de Québec–Université Laval, Québec City, Quebec, Canada,4Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Quebec, Canada
| | - Simon C. Robson
- 5Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James J. Galligan
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
29
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
30
|
Lu Y, Cheng L, Li F, Ji L, Shao X, Wu B, Zhan Y, Liu C, Min Z, Ke Y, Sun L, Chen H, Cheng Y. The abnormal function of CD39 + regulatory T cells could be corrected by high-dose dexamethasone in patients with primary immune thrombocytopenia. Ann Hematol 2019; 98:1845-1854. [PMID: 31154474 DOI: 10.1007/s00277-019-03716-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
Primary immune thrombocytopenia is an autoimmune disease, characterized with decreased platelet and increased risk of bleeding. Recent studies have shown the reduction and dysfunction of regulatory T (Treg) cells in ITP patients. CD39 is highly expressed on the surface of Treg cells. It degrades ATP to AMP and CD73 dephosphorylates AMP into adenosine. Then adenosine binds with adenosine receptor and suppresses immune response by activating Treg cells and inhibiting the release of inflammatory cytokines from effector T (Teff) cells. Adenosine receptor has several subtypes and adenosine A2A receptor (A2AR) plays a crucial role especially within lymphocytes. The CD39+ Treg cells and the expression of A2AR showed abnormality in some autoimmune disease. But knowledge of CD39+ Treg cells and A2AR which are crucial in the adenosine immunosuppressive pathway is still limited in ITP. Thirty-one adult patients with newly diagnosed ITP were enrolled in this study. CD39 and A2AR expression was measured by flow cytometry and RT-PCR. The function of CD39 was reflected by the change of ATP concentration detected by CellTiter-Glo Luminescent Cell Viability Assay. CD39 expression within CD4+CD25+ Treg cells in ITP patients was decreased compared to normal controls. After high-dose dexamethasone therapy, response (R) group showed increased CD39 expression within Treg cells while non-response (NR) group did not show any difference in contrast to those before treatment. The expression of A2AR in CD4+CD25- Teff and CD4+CD25+ Treg cells was both lower in ITP patients than that of normal controls. After therapy, CD4+CD25- Teff cells had higher A2AR expression while CD4+CD25+ Treg cells did not show any difference in comparison to that before treatment. The enzymatic activity of CD39 was damaged in ITP patients and improved after high-dose dexamethasone therapy. In ITP, there was not only numerical decrease but also impaired enzymatic activity in CD39+ Treg cells. After high-dose dexamethasone treatment, these two defects could be reversed. Our results also suggested that ITP patients had reduced A2AR expression in both CD4+CD25+ Treg cells and CD4+CD25- Teff cells. CD4+CD25- Teff cells had increased A2AR expression after treatment.
Collapse
MESH Headings
- Adenosine/immunology
- Adenosine/metabolism
- Adenosine Triphosphate/immunology
- Adenosine Triphosphate/metabolism
- Adult
- Aged
- Apyrase/genetics
- Apyrase/immunology
- Case-Control Studies
- Dexamethasone/therapeutic use
- Female
- Gene Expression
- Humans
- Immunophenotyping
- Immunosuppressive Agents/therapeutic use
- Lymphocyte Count
- Male
- Middle Aged
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/enzymology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Yumeng Lu
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan Universiy, Shanghai, 201700, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Xia Shao
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Chanjuan Liu
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, 200032, China
| | - Yang Ke
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan Universiy, Shanghai, 201700, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, 200031, China.
- Institute of Clinical Science, Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan Universiy, Shanghai, 201700, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, 200032, China.
| |
Collapse
|
31
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Vuerich M, Harshe RP, Robson SC, Longhi MS. Dysregulation of Adenosinergic Signaling in Systemic and Organ-Specific Autoimmunity. Int J Mol Sci 2019; 20:ijms20030528. [PMID: 30691212 PMCID: PMC6386992 DOI: 10.3390/ijms20030528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Exact causes for autoimmune diseases remain unclear and no cures are available. Breakdown of immunotolerance could set the stage for unfettered immune responses that target self-antigens. Impaired regulatory immune mechanisms could have permissive roles in autoreactivity. Abnormal regulatory immune cell function, therefore, might be a major determinant of the pathogenesis of autoimmune disease. All current treatments are associated with some level of clinical toxicity. Treatment to specifically target dysregulated immunity in these diseases would be a great advance. Extracellular adenosine is a signaling mediator that suppresses inflammation through activation of P1 receptors, most active under pathological conditions. Mounting evidence has linked alterations in the generation of adenosine from extracellular nucleotides by ectonucleotidases, and associated perturbations in purinergic signaling, to the immunological disruption and loss of immunotolerance in autoimmunity. Targeted modulation of the purinergic signaling by either targeting ectonucleotidases or modulating P1 purinergic receptors could therefore restore the balance between autoreactive immune responses; and thereby allow reestablishment of immunotolerance. We review the roles of CD39 and CD73 ectoenzymes in inflammatory states and with the dysregulation of P1 receptor signaling in systemic and organ-specific autoimmunity. Correction of such perturbations could be exploited in potential therapeutic applications.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Rasika P Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Stevens TW, Matheeuwsen M, Lönnkvist MH, Parker CE, Wildenberg ME, Gecse KB, D'Haens GR. Systematic review: predictive biomarkers of therapeutic response in inflammatory bowel disease-personalised medicine in its infancy. Aliment Pharmacol Ther 2018; 48:1213-1231. [PMID: 30378142 DOI: 10.1111/apt.15033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/19/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterised by substantial heterogeneity in treatment response. With an expanding number of therapeutic agents, identifying optimal treatment at the patient level remains a major challenge. AIM To systematically review the available literature on predictive biomarkers of therapeutic response in IBD. METHODS An electronic literature search was performed on 30 January 2018 using MEDLINE, EMBASE and the Cochrane Library. Retrospective, prospective, uncontrolled and controlled studies reporting on biomarkers predicting therapeutic response in paediatric and adult IBD populations were eligible for inclusion. The methodological quality of the included studies was assessed using the QUIPS tool. Due to anticipated heterogeneity and limited data, a qualitative, rather than quantitative, assessment was planned. RESULTS Of the 10 638 citations identified, 92 articles met the inclusion criteria. Several potential DNA, mRNA and protein markers were evaluated as predictive biomarkers. Most studies focused on predicting response to anti-TNF agents. Substantial between-study heterogeneity was identified with respect to both the biomarkers studied and the definition of response. None of the included studies received a low risk of bias rating for all six domains. Currently, none of the biomarkers is sufficiently predictive for clinical use. CONCLUSIONS The search for predictive biomarkers is still in its infancy and current evidence is limited. Future research efforts should take into account the high patient heterogeneity within prospective trials with objective response assessment. Predictive models will most likely comprise a combination of several molecular markers from integrated omics-levels and clinical characteristics.
Collapse
Affiliation(s)
- Toer W Stevens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mijntje Matheeuwsen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria H Lönnkvist
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Krisztina B Gecse
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert R D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
McRae JL, Chia JS, Pommey SA, Dwyer KM. Evaluation of CD4 + CD25 +/- CD39 + T-cell populations in peripheral blood of patients following kidney transplantation and during acute allograft rejection. Nephrology (Carlton) 2018; 22:505-512. [PMID: 27517975 DOI: 10.1111/nep.12894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/29/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
Abstract
AIM Regulatory T cells (Treg) are important in mediating immune tolerance and outcomes of allotransplantation. CD4+ CD25+ CD39+ co-expression identifies memory Treg; CD4+ CD25- CD39+ memory T effectors. We sought to determine CD4+ CD25+/- CD39+ expression from the peripheral blood of patients with end stage renal failure, following transplantation and during episodes of acute cellular rejection. METHODS CD4+ T cells were isolated from peripheral blood leucocytes and analysed for CD25 and CD39 expression by flow cytometry. Treg suppressive function was measured by suppression of autologous effector T-cell proliferation by Treg in co-culture. RESULTS CD4+ CD25+/- CD39+ T-cell subsets were tracked longitudinally in the peripheral blood of 17 patients following renal transplantation. Patients with acute T-cell-mediated rejection diagnosed on biopsy had reduced CD4+ CD25+ CD39+ mTreg (P < 0.05) and CD4+ CD25- CD39+ mTeff (P < 0.01) cells compared with non-rejecting patients. CD4+ CD25+ CD39+ mTreg (P < 0.05) and CD4+ CD25- CD39+ mTeff (P = 0.057) were reduced in long-term transplant patients (>1 year) compared with non-immunosuppressed controls. Interestingly, remaining CD4+ CD25+ CD39+ mTreg in the stable transplant patients displayed more potent suppressive capacity compared with non-immunosuppressed controls (83.2% ± 3.1% vs 45.7% ± 8.0%, nTeff:Treg ratio 8:1, P < 0.01). CONCLUSION CD4+ CD25+ CD39+ mTreg and CD4+ CD25- CD39+ mTeff in peripheral blood can be tracked in renal transplant patients. Acute cellular rejection was accompanied by reduced mTreg and mTeff. Determining changes in these T-cell subsets may help to identify patients with, or at high risk of, renal allograft rejection.
Collapse
Affiliation(s)
- Jennifer L McRae
- Immunology Research Centre, Parkville, Melbourne, Victoria, Australia
| | - Joanne Sj Chia
- Immunology Research Centre, Parkville, Melbourne, Victoria, Australia
| | - Sandra A Pommey
- Immunology Research Centre, Parkville, Melbourne, Victoria, Australia
| | - Karen M Dwyer
- Immunology Research Centre, Parkville, Melbourne, Victoria, Australia.,Department of Nephrology, St. Vincent's Hospital, Parkville, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Safinia N, Grageda N, Scottà C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol 2018. [PMID: 29535728 PMCID: PMC5834909 DOI: 10.3389/fimmu.2018.00354] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5). As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8). However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9). As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs) identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Niloufar Safinia
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Faculty of Medicine, Division of Digestive Disease, Imperial College London, London, United Kingdom
| | - Nathali Grageda
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Cristiano Scottà
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sarah Thirkell
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Laura J Fry
- Clinical Research Facility GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Trishan Vaikunthanathan
- The Blizard Institute of Cell and Molecular Science, Queen Mary University of London, London, United Kingdom
| | - Robert I Lechler
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Durand M, Dubois F, Dejou C, Durand E, Danger R, Chesneau M, Brosseau C, Guerif P, Soulillou JP, Degauque N, Eliaou JF, Giral M, Bonnefoy N, Brouard S. Increased degradation of ATP is driven by memory regulatory T cells in kidney transplantation tolerance. Kidney Int 2018; 93:1154-1164. [PMID: 29455908 DOI: 10.1016/j.kint.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function.
Collapse
Affiliation(s)
- Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Florian Dubois
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Cécile Dejou
- OREGA Biotech, Ecully, France; IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Pierrick Guerif
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jean-François Eliaou
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France; Département d'Immunologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier, France
| | - Magali Giral
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France.
| |
Collapse
|
37
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
38
|
Abstract
The human gastrointestinal tract is populated by a diverse, highly mutualistic microbial flora, which is known as the microbiome. Disruptions to the microbiome have been shown to be associated with severe pathologies of the host, including metabolic disease, cancer, and inflammatory bowel disease. Mood and behavior are also susceptible to alterations in the gut microbiota. A particularly striking example of the symbiotic effects of the microbiome is the immune system, whose cells depend critically on a diverse array of microbial metabolites for normal development and behavior. This includes metabolites that are produced by bacteria from dietary components, metabolites that are produced by the host and biochemically modified by gut bacteria, and metabolites that are synthesized de novo by gut microbes. In this review, we highlight the role of the intestinal microbiome in human metabolic and inflammatory diseases and focus in particular on the molecular mechanisms that govern the gut-immune axis.
Collapse
Affiliation(s)
- Thomas Siegmund Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
39
|
Abstract
The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system.
Collapse
|
40
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
42
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017; 276:121-144. [PMID: 28258700 PMCID: PMC5338647 DOI: 10.1111/imr.12528] [Citation(s) in RCA: 669] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - Simon C. Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
43
|
Qian X, Hu C, Han S, Lin Z, Xiao W, Ding Y, Zhang Y, Qian L, Jia X, Zhu G, Gong W. NK1.1 - CD4 + NKG2D + T cells suppress DSS-induced colitis in mice through production of TGF-β. J Cell Mol Med 2017; 21:1431-1444. [PMID: 28224733 PMCID: PMC5487917 DOI: 10.1111/jcmm.13072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
CD4+NKG2D+ T cells are associated with tumour, infection and autoimmune diseases. Some CD4+NKG2D+ T cells secrete IFN‐γ and TNF‐α to promote inflammation, but others produce TGF‐β and FasL to facilitate tumour evasion. Here, murine CD4+NKG2D+ T cells were further classified into NK1.1−CD4+NKG2D+ and NK1.1+CD4+NKG2D+ subpopulations. The frequency of NK1.1−CD4+NKG2D+ cells decreased in inflamed colons, whereas more NK1.1+CD4+NKG2D+ cells infiltrated into colons of mice with DSS‐induced colitis. NK1.1−CD4+NKG2D+ cells expressed TGF‐β and FasL without secreting IFN‐γ, IL‐21 and IL‐17 and displayed no cytotoxicity. The adoptive transfer of NK1.1−CD4+NKG2D+ cells suppressed DSS‐induced colitis largely dependent on TGF‐β. NK1.1−CD4+NKG2D+ cells did not expressed Foxp3, CD223 (LAG‐3) and GITR. The subpopulation was distinct from NK1.1+CD4+NKG2D+ cells in terms of surface markers and RNA transcription. NK1.1−CD4+NKG2D+ cells also differed from Th2 or Th17 cells because the former did not express GATA‐3 and ROR‐γt. Thus, NK1.1−CD4+NKG2D+ cells exhibited immune regulatory functions, and this T cell subset could be developed to suppress inflammation in clinics.
Collapse
Affiliation(s)
- Xingxing Qian
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Chunxia Hu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Sen Han
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Li Qian
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoqing Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
44
|
Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 2016; 41:317-323. [PMID: 27833451 PMCID: PMC5099390 DOI: 10.5114/ceji.2016.63133] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Heat shock proteins (HSPs) belong to the family of conservative polypeptides with a high homology of the primary structure. The uniqueness of this family lies in their ability to interact with a large number of different proteins and provide protection from cellular and environmental stress factors as molecular chaperones to keep protein homeostasis. While intracellular HSPs play a mainly protective role, extracellular or membrane-bound HSPs mediate immunological functions and immunomodulatory activity. In immune system are subsets of cells including regulatory T cells (Tregs) with suppressive functions. HSPs are implicated in the function of innate and adaptive immune systems, stimulate T lymphocyte proliferation and immunomodulatory functions, increase the effectiveness of cross-presentation of antigens, and induce the secretion of cytokines. HSPs are also important in the induction, proliferation, suppressive function, and cytokine production of Tregs, which are a subset of CD4+ T cells maintaining peripheral tolerance. Together HSPs and Tregs are potential tools for future clinical interventions in autoimmune disease.
Collapse
Affiliation(s)
- Tomasz Koliński
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Janusz Siebert
- Department of Family Medicine, Medical University of Gdansk, Poland
| |
Collapse
|
45
|
Apostolova P, Zeiser R. The Role of Purine Metabolites as DAMPs in Acute Graft-versus-Host Disease. Front Immunol 2016; 7:439. [PMID: 27818661 PMCID: PMC5073102 DOI: 10.3389/fimmu.2016.00439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) causes high mortality in patients undergoing allogeneic hematopoietic cell transplantation. An early event in the classical pathogenesis of acute GvHD is tissue damage caused by the conditioning treatment or infection that consecutively leads to translocation of bacterial products [pathogen-associated molecular patterns (PAMPs)] into blood or lymphoid tissue, as well as danger-associated molecular patterns (DAMPs), mostly intracellular components that act as pro-inflammatory agents, once they are released into the extracellular space. A subtype of DAMPs is nucleotides, such as adenosine triphosphate released from dying cells that can activate the innate and adaptive immune system by binding to purinergic receptors. Binding to certain purinergic receptors leads to a pro-inflammatory microenvironment and promotes allogeneic T cell priming. After priming, T cells migrate to the acute GvHD target organs, mainly skin, liver, and the gastrointestinal tract and induce cell damage that further amplifies the release of intracellular components. This review summarizes the role of different purinergic receptors in particular P2X7 and P2Y2 as well as nucleotides in the pathogenesis of GvHD.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| |
Collapse
|
46
|
Muqaku B, Tahir A, Klepeisz P, Bileck A, Kreutz D, Mayer RL, Meier SM, Gerner M, Schmetterer K, Gerner C. Coffee consumption modulates inflammatory processes in an individual fashion. Mol Nutr Food Res 2016; 60:2529-2541. [DOI: 10.1002/mnfr.201600328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Besnik Muqaku
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| | - Ammar Tahir
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| | - Philip Klepeisz
- Institute of Cancer Research, Department of Medicine I; Medical University of Vienna, Vienna; Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| | - Dominique Kreutz
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| | - Rupert L. Mayer
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| | - Samuel M. Meier
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| | - Marlene Gerner
- Department of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry; University of Vienna, Vienna; Austria
| |
Collapse
|
47
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|