1
|
Tracicaru RV, Bräuer L, Döllinger M, Hînganu D, Paulsen F, Hînganu MV. Muscular and neuronal control of voice production - forgotten findings, current concepts, and new developments. Ann Anat 2024; 255:152283. [PMID: 38763330 DOI: 10.1016/j.aanat.2024.152283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/07/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Voice production has been an area of interest in science since ancient times, and although advancing research has improved our understanding of the anatomy and function of the larynx, there is still little general consensus on these two topics. This review aims to outline the main developments in this field and highlight the areas where further research is needed. The most important hypotheses are presented and discussed highlighting the four main lines of research in the anatomy of the human larynx and their most important findings: (1) the arrangement of the muscle fibers of the thyroarytenoid muscle is not parallel to the vocal folds in the internal part (vocalis muscle), leading to altered properties during contraction; (2) the histological structure of the human vocal cords differs from other striated muscles; (3) there is a specialized type of heavy myosin chains in the larynx; and (4) the neuromuscular system of the larynx has specific structures that form the basis of an intrinsic laryngeal nervous system. These approaches are discussed in the context of current physiological models of vocal fold vibration, and new avenues of investigation are proposed.
Collapse
Affiliation(s)
- Rareş-Vasile Tracicaru
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Morphofunctional Sciences, Chair of Anatomy and Embryology, Grigore T Popa University of Medicine and Pharmacy Iași, University street No 16, Iași 700115, Romania.
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Döllinger
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck Surgery, Laboratory for Computational Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Delia Hînganu
- Department of Morphofunctional Sciences, Chair of Anatomy and Embryology, Grigore T Popa University of Medicine and Pharmacy Iași, University street No 16, Iași 700115, Romania
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marius Valeriu Hînganu
- Department of Morphofunctional Sciences, Chair of Anatomy and Embryology, Grigore T Popa University of Medicine and Pharmacy Iași, University street No 16, Iași 700115, Romania
| |
Collapse
|
2
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Smerdu V. Expression of MyHC-15 and -2x in human muscle spindles: An immunohistochemical study. J Anat 2023; 243:826-841. [PMID: 37420120 PMCID: PMC10557391 DOI: 10.1111/joa.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
To build on the existing data on the pattern of myosin heavy chain (MyHC) isoforms expression in the human muscle spindles, we aimed to verify whether the 'novel' MyHC-15, -2x and -2b isoforms are co-expressed with the other known isoforms in the human intrafusal fibres. Using a set of antibodies, we attempted to demonstrate nine isoforms (15, slow-tonic, 1, α, 2a, 2x, 2b, embryonic, neonatal) in different regions of intrafusal fibres in the biceps brachii and flexor digitorum profundus muscles. The reactivity of some antibodies with the extrafusal fibres was also tested in the masseter and laryngeal cricothyreoid muscles. In both upper limb muscles, the expression of slow-tonic isoform was a reliable marker for differentiating positive bag fibres from negative chain fibres. Generally, bag1 and bag2 fibres were distinguished in isoform 1 expression; the latter consistently expressed this isoform over their entire length. Although isoform 15 was not abundantly expressed in intrafusal fibres, its expression was pronounced in the extracapsular region of bag fibres. Using a 2x isoform-specific antibody, this isoform was demonstrated in the intracapsular regions of some intrafusal fibres, particularly chain fibres. To the best of our knowledge, this study is the first to demonstrate 15 and 2x isoforms in human intrafusal fibres. However, whether the labelling with an antibody specific for rat 2b isoform reflects the expression of this isoform in bag fibres and some extrafusal ones in the specialised cranial muscles requires further evaluation. The revealed pattern of isoform co-expression only partially agrees with the results of previous, more extensive studies. Nevertheless, it may be inferred that MyHC isoform expression in intrafusal fibres varies along their length, across different muscle spindles and muscles. Furthermore, the estimation of expression may also depend on the antibodies utilised, which may also react differently with intrafusal and extrafusal fibres.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
4
|
Kemfack AM, Hernandez-Morato I, Moayedi Y, Pitman MJ. An optimized method for high-quality RNA extraction from distinctive intrinsic laryngeal muscles in the rat model. Sci Rep 2022; 12:21665. [PMID: 36522411 PMCID: PMC9755529 DOI: 10.1038/s41598-022-25643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Challenges related to high-quality RNA extraction from post-mortem tissue have limited RNA-sequencing (RNA-seq) application in certain skeletal muscle groups, including the intrinsic laryngeal muscles (ILMs). The present study identified critical factors contributing to substandard RNA extraction from the ILMs and established a suitable method that permitted high-throughput analysis. Here, standard techniques for tissue processing were adapted, and an effective means to control confounding effects during specimen preparation was determined. The experimental procedure consistently provided sufficient intact total RNA (N = 68) and RIN ranging between 7.0 and 8.6, which was unprecedented using standard RNA purification protocols. This study confirmed the reproducibility of the workflow through repeated trials at different postnatal time points and across the distinctive ILMs. High-throughput diagnostics from 90 RNA samples indicated no sequencing alignment scores below 70%, validating the extraction strategy. Significant differences between the standard and experimental conditions suggest circumvented challenges and broad applicability to other skeletal muscles. This investigation remains ongoing given the prospect of therapeutic insights to voice, swallowing, and airway disorders. The present methodology supports pioneering global transcriptome investigations in the larynx previously unfounded in literature.
Collapse
Affiliation(s)
- Angela M Kemfack
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Neurology, Irving Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
5
|
Shembel AC, Kanshin E, Ueberheide B, Johnson AM. Proteomic Characterization of Senescent Laryngeal Adductor and Plantaris Hindlimb Muscles. Laryngoscope 2022; 132:148-155. [PMID: 34115877 PMCID: PMC9118136 DOI: 10.1002/lary.29683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The goals of this study were to 1) compare global protein expression in muscles of the larynx and hindlimb and 2) investigate differences in protein expression between aged and nonaged muscle using label-free global proteomic profiling methods. METHODS Liquid chromatography-mass spectrometry (LC-MS/MS) analysis was performed on thyroarytenoid intrinsic laryngeal muscle and plantaris hindlimb muscle from 10 F344xBN F1 male rats (5 old and 5 young). Protein expression was compared and pathway enrichment analysis performed for each muscle type (larynx and limb) and age group (old and young muscle). RESULTS Over 1,000 proteins were identified in common across both muscle types and age groups using LC-MS/MS analysis. Significant age-related differences were seen across 107 proteins in plantaris hindlimb and in 19 proteins in thyroarytenoid laryngeal muscle. Bioinformatic and enrichment analysis demonstrated protein differences between the hindlimb and larynx may relate to immune and stress redox responses and RNA repair. CONCLUSION There are clear differences in protein expressions between the laryngeal and hindlimb skeletal muscles. Initial analysis suggests differences between the two muscle groups may relate to stress responses and repair mechanisms. Age-related changes in the thyroarytenoid appear to be less obvious than in the plantaris. Further in-depth study is needed to elucidate how aging affects protein expression in the laryngeal muscles. LEVEL OF EVIDENCE NA Laryngoscope, 132:148-155, 2022.
Collapse
Affiliation(s)
- Adrianna C Shembel
- Department of Speech, Language and Hearing, University of Texas at Dallas, Dallas, Texas, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, University of Texas at Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, New York, U.S.A
- Department of Biochemistry and Molecular Pharmacology and Department of Neurology, New York University Grossman School of Medicine, New York, New York, U.S.A
| | - Aaron M Johnson
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, New York, U.S.A
| |
Collapse
|
6
|
Lee LA, Karabina A, Broadwell LJ, Leinwand LA. The ancient sarcomeric myosins found in specialized muscles. Skelet Muscle 2019; 9:7. [PMID: 30836986 PMCID: PMC6402096 DOI: 10.1186/s13395-019-0192-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Anastasia Karabina
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Lindsey J. Broadwell
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
- Department of Biochemistry, University of Colorado, Boulder, CO USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| |
Collapse
|
7
|
Vahabzadeh-Hagh AM, Pillutla P, Zhang Z, Chhetri DK. Dynamics of Intrinsic Laryngeal Muscle Contraction. Laryngoscope 2019; 129:E21-E25. [PMID: 30325497 PMCID: PMC6320299 DOI: 10.1002/lary.27353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 05/21/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Laryngeal function requires neuromuscular activation of the intrinsic laryngeal muscles (ILMs). Rapid activation of the ILMs occurs in cough, laughter, and voice-unvoiced-voiced segments in speech and singing. Abnormal activation is observed in hyperfunctional disorders such as vocal tremor and dystonia. In this study, we evaluate the dynamics of ILM contraction. STUDY/DESIGN Basic science study in an in vivo canine model. METHODS The following ILMs were stimulated: thyroarytenoid (TA), lateral cricoarytenoid/interarytenoid (LCA/IA), cricothyroid (CT), all laryngeal adductors (LCA/IA/TA), and the posterior cricoarytenoid (PCA). Neuromuscular stimulation was performed via the respective nerves at current levels needed to achieve maximum vocal fold posture change. Muscle contraction and posture changes were recorded with high speed video (HSV). HSV frames were then analyzed to measure response times required from the onset of muscle contraction to the time the vocal folds achieved maximum posture change. RESULTS In all muscles, the onset of posture change occurred within 10 to 12 milliseconds after neuromuscular stimulation. The average times ( ± standard deviation) to achieve final posture were as follows: TA 34.5 ± 6 ms (N = 15), LCA/IA 55 ± 12 ms (N = 14), recurrent laryngeal nerve 43 ± 8 ms (N = 18), CT 100.8 ± 17 ms (N = 26), and PCA 91.2 ± 8 ms (N = 3). Data distribution appeared normal. CONCLUSION Results showed a difference in muscle activation time between different ILMs consistent with reported differences in muscle fiber composition. These data also provide an estimate of the limits of laryngeal contraction frequency in physiologic and pathologic laryngeal states. LEVEL OF EVIDENCE NA Laryngoscope, 129:E21-E25, 2019.
Collapse
Affiliation(s)
- Andrew M Vahabzadeh-Hagh
- Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Pranati Pillutla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Zhaoyan Zhang
- Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Dinesh K Chhetri
- Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
8
|
Sandage MJ, Smith AG. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:1254-1263. [PMID: 28505224 DOI: 10.1044/2016_jslhr-s-16-0192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/27/2016] [Indexed: 06/07/2023]
Abstract
PURPOSE Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and introduce bioenergetic physiology as a necessary parameter for theoretical models of laryngeal skeletal muscle function. METHOD A comprehensive review of the human intrinsic laryngeal skeletal muscle physiology literature was conducted. Findings regarding intrinsic laryngeal muscle fiber complement and muscle metabolism in human models are summarized and exercise physiology methodology is applied to identify probable bioenergetic pathways used for voice function. RESULTS Intrinsic laryngeal skeletal muscle fibers described in human models support the fast, high-intensity physiological requirements of these muscles for biological functions of airway protection. Inclusion of muscle bioenergetic constructs in theoretical modeling of voice training, detraining, fatigue, and voice loading have been limited. CONCLUSIONS Muscle bioenergetics, a key component for muscle training, detraining, and fatigue models in exercise science, is a little-considered aspect of intrinsic laryngeal skeletal muscle physiology. Partnered with knowledge of occupation-specific voice requirements, application of bioenergetics may inform novel considerations for voice habilitation and rehabilitation.
Collapse
|
9
|
Mascarello F, Toniolo L, Cancellara P, Reggiani C, Maccatrozzo L. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann Anat 2016; 207:9-20. [PMID: 26970499 DOI: 10.1016/j.aanat.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b).
Collapse
Affiliation(s)
- Francesco Mascarello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, Legnaro, 35020 Padova, Italy.
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, Legnaro, 35020 Padova, Italy
| |
Collapse
|
10
|
Zebrick B, Teeramongkolgul T, Nicot R, Horton MJ, Raoul G, Ferri J, Vieira AR, Sciote JJ. ACTN3 R577X genotypes associate with Class II and deepbite malocclusions. Am J Orthod Dentofacial Orthop 2014; 146:603-11. [PMID: 25439211 DOI: 10.1016/j.ajodo.2014.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 01/02/2023]
Abstract
INTRODUCTION α-Actinins are myofibril anchor proteins that influence the contractile properties of skeletal muscles. ACTN2 is expressed in slow type I and fast type II fibers, whereas ACTN3 is expressed only in fast fibers. ACTN3 homozygosity for the 577X stop codon (ie, changing 577RR to 577XX, the R577X polymorphism) results in the absence of α-actinin-3 in about 18% of Europeans, diminishes fast contractile ability, enhances endurance performance, and reduces bone mass or bone mineral density. We have examined ACTN3 expression and genetic variation in the masseter muscle of orthognathic surgery patients to determine the genotype associations with malocclusion. METHODS Clinical information, masseter muscle biopsies, and saliva samples were obtained from 60 subjects. Genotyping for ACTN3 single nucleotide polymorphisms, real-time polymerase chain reaction quantitation of muscle gene message, and muscle morphometric fiber type properties were compared to determine statistical differences between genotype and phenotype. RESULTS Muscle mRNA expression level was significantly different for ACTN3 single nucleotide polymorphism genotypes (P <0.01). The frequency of ACTN3 genotypes was significantly different for the sagittal and vertical classifications of malocclusion, with the clearest association being elevated 577XX genotype in skeletal Class II malocclusion (P = 0.003). This genotype also resulted in significantly smaller diameters of fast type II fibers in masseter muscles (P = 0.002). CONCLUSION ACTN3 577XX is overrepresented in subjects with skeletal Class II malocclusion, suggesting a biologic influence during bone growth. ACTN3 577XX is underrepresented in subjects with deepbite malocclusion, suggesting that muscle differences contribute to variations in vertical facial dimensions.
Collapse
Affiliation(s)
- Brian Zebrick
- Resident, Department of Orthodontics, Temple University, Philadelphia, Pa
| | | | - Romain Nicot
- Resident, Oral and Maxillofacial Department, Université Lille Nord de France, Lille, France
| | - Michael J Horton
- Research assistant professor, Department of Orthodontics, Temple University, Philadelphia, Pa
| | - Gwenael Raoul
- Professor, Department of Oral and Maxillofacial, Université Lille Nord de France, Lille, France; UDSL, Roger Salengro Hospital, CHU; and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Joel Ferri
- Professor and head, Department of Oral and Maxillofacial Surgery, Université Lille Nord de France, Lille, France; UDSL, Roger Salengro Hospital, CHU; and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Alexandre R Vieira
- Associate professor, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - James J Sciote
- Professor, Department of Orthodontics, Temple University, Philadelphia, Pa.
| |
Collapse
|
11
|
Desh H, Gray SL, Horton MJ, Raoul G, Rowlerson AM, Ferri J, Vieira AR, Sciote JJ. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion. Arch Oral Biol 2014; 59:601-7. [PMID: 24698832 DOI: 10.1016/j.archoralbio.2014.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/20/2013] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Type I myosins are molecular motors necessary for glucose transport in the cytoplasm and initiation of transcription in the nucleus. Two of these, MYO1H and MYO1C, are paralogs which may be important in the development of malocclusion. The objective of this study was to investigate their gene expression in the masseter muscle of malocclusion subjects. Two functionally related proteins known to contribute to malocclusion were also investigated: KAT6B (a chromatin remodelling epigenetic enzyme which is activated by MYO1C) and RUNX2 (a transcription factor regulating osteogenesis which is activated by KAT6B). DESIGN Masseter muscle samples and malocclusion classifications were obtained from orthognathic surgery subjects. Muscle was sectioned and immunostained to determine fibre type properties. RNA was isolated from the remaining sample to determine expression levels for the four genes by TaqMan(®) RT-PCR. Fibre type properties, gene expression quantities and malocclusion classification were compared. RESULTS There were very significant associations (P<0.0000001) between MYO1C and KAT6B expressions. There were also significant associations (P<0.005) between RUNX2 expression and masseter muscle type II fibre properties. Very few significant associations were identified between MYO1C and masseter muscle fibre type properties. CONCLUSIONS The relationship between MYO1C and KAT6B suggests that the two are interacting in chromatin remodelling for gene expression. This is the nuclear myosin1 (NM1) function of MYO1C. A surprising finding is the relationship between RUNX2 and type II masseter muscle fibres, since RUNX2 expression in mature muscle was previously unknown. Further investigations are necessary to elucidate the role of RUNX2 in adult masseter muscle.
Collapse
Affiliation(s)
- Heather Desh
- Orthodontic Private Practice,1649 Bluebird Canyon Drive, Laguna Beach, CA, United States
| | - S Lauren Gray
- Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States
| | - Michael J Horton
- Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States
| | - Gwenael Raoul
- Oral and Maxillofacial Surgery, Université Lille Nord de France, UDSL, Roger Salengro Hospital, CHU, and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Anthea M Rowlerson
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - Joel Ferri
- Oral and Maxillofacial Surgery, Université Lille Nord de France, UDSL, Roger Salengro Hospital, CHU, and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, United States
| | - James J Sciote
- Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Luo Q, Douglas M, Burkholder T, Sokoloff AJ. Absence of developmental and unconventional myosin heavy chain in human suprahyoid muscles. Muscle Nerve 2014; 49:534-44. [PMID: 23835800 DOI: 10.1002/mus.23946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Contradictory reports of the myosin heavy chain (MHC) composition of adult human suprahyoid muscles leave unresolved the extent to which these muscles express developmental and unconventional MHC. METHODS By immunohistochemistry, separation sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-Coomassie, separation SDS-PAGE-Western blot, and mRNA PCR, we tested for conventional MHCI, MHCIIA, MHCIIX, developmental MHC embryonic and MHC neonatal, and unconventional MHC alpha-cardiac, MHC extraocular, and MHC slow tonic in adult human anterior digastric (AD), geniohyoid (GH), and mylohyoid (MH) muscles. RESULTS By separation SDS-PAGE-Coomassie and Western blot, only conventional MHC are present. By immunohistochemistry all muscle fibers are positive for MHCI, MHCIIA, or MHCIIX, and fewer than 4 fibers/mm(2) are positive for developmental or unconventional MHC. By PCR, mRNA of MHCI and MHCIIA dominate, with sporadically detectable MHC alpha-cardiac and without detectable mRNA of other developmental and unconventional MHC. CONCLUSIONS We conclude that human suprahyoid muscles AD, GH, and MH are composed almost exclusively of conventional MHC isoforms.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, Georgia, 30322, USA
| | | | | | | |
Collapse
|
13
|
Huh A, Horton MJ, Cuenco KT, Raoul G, Rowlerson AM, Ferri J, Sciote JJ. Epigenetic influence of KAT6B and HDAC4 in the development of skeletal malocclusion. Am J Orthod Dentofacial Orthop 2013; 144:568-76. [PMID: 24075665 DOI: 10.1016/j.ajodo.2013.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Genetic influences on the development of malocclusion include heritable effects on both masticatory muscles and jaw skeletal morphology. Beyond genetic variations, however, the characteristics of muscle and bone are also influenced by epigenetic mechanisms that produce differences in gene expression. We studied 2 enzymes known to change gene expressions through histone modifications, chromatin-modifying histone acetyltransferase KAT6B and deacetylase HDAC4, to determine their associations with musculoskeletal variations in jaw deformation malocclusions. METHODS Samples of masseter muscle were obtained from subjects undergoing orthognathic surgery from 6 malocclusion classes based on skeletal sagittal and vertical dysplasia. The muscles were characterized for fiber type properties by immunohistochemistry, and their total RNA was isolated for gene expression studies by microarray analysis and quantitative real-time polymerase chain reaction. RESULTS Gene expressions for fast isoforms of myosins and contractile regulatory proteins and for KAT6B and HDAC4 were severalfold greater in masseter muscles from a patient with a deepbite compared with one with an open bite, and genes related to exercise and activity did not differ substantially. In the total population, expressions of HDAC4 (P = 0.03) and KAT6B (P = 0.004) were significantly greater in subjects with sagittal Class III than in Class II malocclusion, whereas HDAC4 tended to correlate negatively with slow myosin type I and positively with fast myosin gene, especially type IIX. CONCLUSIONS These data support other published reports of epigenetic regulation in the determination of skeletal muscle fiber phenotypes and bone growth. Further investigations are needed to elucidate how this regulatory model might apply to musculoskeletal development and malocclusion.
Collapse
|
14
|
Smerdu V, Cvetko E. Myosin heavy chain-2b transcripts and isoform are expressed in human laryngeal muscles. Cells Tissues Organs 2013; 198:75-86. [PMID: 23796659 DOI: 10.1159/000351293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Three fast myosin heavy chain (MyHC) isoforms, i.e. MyHC-2a, -2x and -2b, are expressed in skeletal muscles of smaller mammals. In contrast, only MyHC-2a and -2x have been revealed in humans so far. The expression of MyHC isoforms is known to be wider in the functionally more specialized laryngeal muscles. Though mRNA transcripts of the MyHC-2b gene were found to be expressed in certain human skeletal and laryngeal muscles, the corresponding isoform has not been demonstrated in these muscles. To our knowledge, we are the first to demonstrate not only the expression of MyHC-2b transcripts using an in situ hybridization technique but also the corresponding protein, i.e. the MyHC-2b isoform, in some human laryngeal muscles by immunohistochemistry but not by polyacrylamide gel electrophoresis. Using a set of antibodies specific to MyHC isoforms, we demonstrated that MyHC-2b was always co-expressed with the major MyHC isoforms, not only with the fast ones (MyHC-2a and -2x) but with the slow isoform (MyHC-1) as well.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
15
|
Sciote JJ, Horton MJ, Rowlerson AM, Ferri J, Close JM, Raoul G. Human masseter muscle fiber type properties, skeletal malocclusions, and muscle growth factor expression. J Oral Maxillofac Surg 2011; 70:440-8. [PMID: 21821327 DOI: 10.1016/j.joms.2011.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
Abstract
PURPOSE We identified masseter muscle fiber type property differences in subjects with dentofacial deformities. PATIENTS AND METHODS Samples of masseter muscle were collected from 139 young adults during mandibular osteotomy procedures to assess mean fiber areas and percent tissue occupancies for the 4 fiber types that comprise the muscle. Subjects were classified into 1 of 6 malocclusion groups based on the presence of a skeletal Class II or III sagittal dimension malocclusion and either a skeletal open, deep, or normal bite vertical dimension malocclusion. In a subpopulation, relative quantities of the muscle growth factors IGF-I and GDF-8 gene expression were quantified by real-time polymerase chain reaction. RESULTS Fiber properties were not different in the sagittal malocclusion groups, but were very different in the vertical malocclusion groups (P ≤ .0004). There were significant mean fiber area differences for type II (P ≤ .0004) and type neonatal-atrial (P = .001) fiber types and for fiber percent occupancy differences for both type I-II hybrid fibers and type II fibers (P ≤ .0004). Growth factor expression differed by gender for IGF-I (P = .02) and GDF-8 (P < .01). The ratio of IGF-I:GDF-8 expression associates with type I and II mean fiber areas. CONCLUSION Fiber type properties are very closely associated with variations in vertical growth of the face, with statistical significance for overall comparisons at P ≤ .0004. An increase in masseter muscle type II fiber mean fiber areas and percent tissue occupancies is inversely related to increases in vertical facial dimension.
Collapse
|
16
|
Posterior cricoarytenoid bellies: relationship between their function and histology. J Voice 2011; 25:e67-73. [PMID: 21277741 DOI: 10.1016/j.jvoice.2010.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/10/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS Complete physiological information about human posterior cricoarytenoid muscle (PCA) is essential and is not only of basic science interest but also could lead directly to understanding phonation and many clinical issues in neurolaryngology. The purpose of the study was to investigate and compare the histochemical and morphological properties to know contractile muscle fiber characteristics of two bellies of the PCA. STUDY DESIGN Cross-sectional experimental study. METHODS The PCAs were harvested from the total laryngectomy simples. Serial transverse sections of the two PCA bellies were performed and studied by immunohistochemical analysis. RESULTS Two separate muscle bellies were always identified within 15 PCA. The following muscle fiber types were observed: I, I-IIA, and IIA. Comparisons of the vertical and horizontal bellies of the PCA reveled differences in the fiber-type composition. CONCLUSION In our experience, the PCA should be considered as a combination of two functional subunits, which significantly differ in their muscle fiber-type composition.
Collapse
|
17
|
Van Daele DJ. Quantitative PCR analysis of laryngeal muscle fiber types. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:327-334. [PMID: 20430402 PMCID: PMC4530018 DOI: 10.1016/j.jcomdis.2010.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 05/29/2023]
Abstract
UNLABELLED Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses have shown changes in laryngeal muscle fiber MyHC isoform with denervation. RNA analyses in this setting have not been performed, and understanding RNA levels will allow interventions better designed to reverse processes such as denervation in the future. Total RNA was extracted from bilateral rat thyroarytenoid (TA), posterior cricoarytenoid (PCA), and cricothyroid (CT) muscles in rats. Primers were designed using published MyHC isoform sequences. SYBR Green real-time reverse transcription-polymerase chain reaction (SYBR-RT-PCR) was used for quantification. The electropherogram showed a clear separation of total RNA to 28S and 18S subunits. Melting curves illustrated single peaks for all type MyHC primers. All MyHC isoforms were identified in all muscles with various degrees of expression. Quantitative PCR is a sensitive method to detect MyHC isoforms in laryngeal muscle. Isoform expression using mRNA analysis was similar to previous analyses but showed some important differences. This technique can be used to quantitatively assess response to interventions targeted to maintain muscle bulk after denervation. LEARNING OUTCOMES (1) Readers will be able to describe the relationship between myosin heavy chain expression and muscle contractile properties. (2) Readers will be able to separate myosin heavy chain isoforms into slow and fast twitch phenotypes. (3) Readers will be able to describe differential muscle isoform expression between different laryngeal muscles. (4) Readers will be able to compare this study to other modalities of determining muscle fiber type.
Collapse
Affiliation(s)
- Douglas J Van Daele
- Department of Otolaryngology - Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
Sokoloff AJ, Daugherty M, Li H. Myosin heavy-chain composition of the human hyoglossus muscle. Dysphagia 2010; 25:81-93. [PMID: 19526266 PMCID: PMC3818084 DOI: 10.1007/s00455-009-9227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
The human tongue muscle hyoglossus (HG) is active in oromotor behaviors encompassing a wide range of tongue movement speeds. Here we test the hypothesis that the human HG is composed of "uncommon" myosin heavy-chain (MHC) isoforms MHCembryonic, MHCneonatal, and MHCslow tonic as has been reported for other head and neck muscles active during kinematically diverse behaviors. Following reaction of human HG with antibodies specific for MHCI, MHCIIA, MHCII, MHCembryonic, MHCextraocular, MHCneonatal, and MHCslow tonic, only antibodies to MHCI, MHCIIA, and MHCII label more than occasional muscle fibers. These antibodies describe five phenotypes with prevalence MHCIIA > MHCI > MHCI-IIX > MHCI-IIA > MHCIIX. In MHC composition, the human HG is thus similar to human appendicular muscles and many human head and neck muscles but different from human masseter and extraocular muscles which contain five or more MHC isoforms.
Collapse
Affiliation(s)
- Alan J Sokoloff
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
19
|
Rahnert JA, Sokoloff AJ, Burkholder TJ. Sarcomeric myosin expression in the tongue body of humans, macaques and rats. Cells Tissues Organs 2009; 191:431-42. [PMID: 19907142 DOI: 10.1159/000258678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2009] [Indexed: 11/19/2022] Open
Abstract
Expression of developmental and unconventional myosin heavy chain (MHC) isoforms in some adult head and neck muscles is thought to reflect specific contractile demands of muscle fibers active during kinematically complex movements. Mammalian tongue muscles are active during oromotor behaviors that encompass a wide range of tongue movement speeds and tongue shape changes (e.g. respiration, oral transport, swallowing, rejection), but the extent to which tongue muscles express developmental and unconventional MHC is not known. Quantitative PCR was used to determine the mRNA content of conventional MHC-beta, MHC-2a, MHC-2b and MHC-2x, the developmental isoforms embryonic MHC and neonatal MHC and the unconventional isoforms atrial/cardiac-alpha MHC (MHC-alpha), extraocular MHC, masseter MHC and slow tonic MHC in tongue body muscles of the rat, macaque and human. In all species, conventional MHC isoforms predominate. MHC-2b and MHC-2x account for 98% of total MHC mRNA in the rat. MHC-2a, MHC-2x and MHC-beta account for 94% of total MHC mRNA in humans and 96% of total MHC mRNA in macaque. With the exception of MHC-alpha in humans (5%), developmental and unconventional MHC mRNA represents less than 0.3% of total MHC mRNA. We conclude that in these species, there is limited expression of developmental and unconventional MHC and that diversity of tongue body muscle fiber contractile properties is achieved primarily by MHC-beta, MHC-2a, MHC-2x and MHC-2b. Whether expression of MHC-alpha mRNA in tongue is unique to humans or present in other hominoids awaits further investigation.
Collapse
Affiliation(s)
- Jill A Rahnert
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|