1
|
Chen H, Song J, Zeng L, Zha J, Zhu J, Chen A, Liu Y, Dong Z, Chen G. Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development. Biochem Pharmacol 2024; 229:116505. [PMID: 39181336 DOI: 10.1016/j.bcp.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45+F4/80+ macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Song
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anqun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhang Y, Tang T, Wang B, Wen Y, Feng Y, Yin Q, Jiang W, Zhang Y, Li Z, Wu M, Wu Q, Song J, Crowley SD, Lan H, Lv L, Liu B. Identification of a Novel ECM Remodeling Macrophage Subset in AKI to CKD Transition by Integrative Spatial and Single-Cell Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309752. [PMID: 39119903 PMCID: PMC11481374 DOI: 10.1002/advs.202309752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/14/2024] [Indexed: 08/10/2024]
Abstract
The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.
Collapse
Affiliation(s)
- Yi‐Lin Zhang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Tao‐Tao Tang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Bin Wang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Yi Wen
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Ye Feng
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Qing Yin
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Wei Jiang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Yue Zhang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Zuo‐Lin Li
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Min Wu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Qiu‐Li Wu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Jing Song
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Steven D. Crowley
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC27705USA
| | - Hui‐Yao Lan
- Departments of Medicine & TherapeuticsLi Ka Shing Institute of Health Sciencesand Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Lin‐Li Lv
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Bi‐Cheng Liu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| |
Collapse
|
3
|
Zhu W, Qiong D, Changzhi X, Meiyu J, Hui L. Macrophage polarization regulation shed lights on immunotherapy for CaOx kidney stone disease. Biomed Pharmacother 2024; 179:117336. [PMID: 39180792 DOI: 10.1016/j.biopha.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Kidney stone disease (KSD) is a major public health concern associated with high morbidity and recurrence, places a significant burden on the health care system worldwide. Calcium oxalate (CaOx) alone or a mixture of CaOx and calcium phosphate stones accounting for more than 80 % of cases. However, beyond surgical removal, the prevention and reduction of recurrence of CaOx kidney stones have always been a challenge. Given that macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis, which have gained more and more interests in nephrolithiasis. Several studies recently clearly demonstrated that M2-macrophage could reduce the renal calcium oxalate (CaOx) crystal acumination, and provide premise insights and therapeutic options for KSD by modulating the macrophage phenotypes. However, the mechanism of macrophage-polarization regulation and that effects on kidney stone prevention and treatments are far from clear. Here, we comprehensively reviewed the literatures related to cytokines, epigenetic modifications and metabolic reprograming of macrophage in CaOx kidney stone disease, aimed to provide better understandings on macrophage polarization regulation as well as its potential clinical applications in CaOx kidney stone disease treatments and prevention.
Collapse
Affiliation(s)
- Wang Zhu
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| | - Deng Qiong
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China
| | - Xu Changzhi
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Meiyu
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China
| | - Liang Hui
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| |
Collapse
|
4
|
Mrug M, Mrug E, Rosenblum F, Chen J, Cui X, Agarwal A, Zarjou A. Distinct developmental reprogramming footprint of macrophages during acute kidney injury across species. Am J Physiol Renal Physiol 2024; 326:F635-F641. [PMID: 38357719 PMCID: PMC11208015 DOI: 10.1152/ajprenal.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Acute kidney injury (AKI) is a common finding in hospitalized patients, particularly those who are critically ill. The development of AKI is associated with several adverse outcomes including mortality, morbidity, progression to chronic kidney disease, and an increase in healthcare expenditure. Despite the well-established negative impact of AKI and rigorous efforts to better define, identify, and implement targeted therapies, the overall approach to the treatment of AKI continues to principally encompass supportive measures. This enduring challenge is primarily due to the heterogeneous nature of insults that activate many independent and overlapping molecular pathways. Consequently, it is evident that the identification of common mechanisms that mediate the pathogenesis of AKI, independent of etiology and engaged pathophysiological pathways, is of paramount importance and could lead to the identification of novel therapeutic targets. To better distinguish the commonly modulated mechanisms of AKI, we explored the transcriptional characteristics of human kidney biopsies from patients with acute tubular necrosis (ATN), and acute interstitial nephritis (AIN) using a NanoString inflammation panel. Subsequently, we used publicly available single-cell transcriptional resources to better interpret the generated transcriptional findings. Our findings identify robust acute kidney injury (AKI-induced) developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species. These results would expand the current understanding of the pathophysiology of AKI and potentially offer novel targets for additional studies to enhance the translational transition of AKI research.NEW & NOTEWORTHY Our findings identify robust acute kidney injury (AKI)-induced developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species.
Collapse
Affiliation(s)
- Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States
| | - Elias Mrug
- Math-Science Department, Alabama School of Fine Arts, Birmingham, Alabama, United States
| | - Frida Rosenblum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jiandong Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Shao Y, Yu W, Cai H. Dehydroandrographolide facilitates M2 macrophage polarization by downregulating DUSP3 to inhibit sepsis-associated acute kidney injury. Immun Inflamm Dis 2024; 12:e1249. [PMID: 38629726 PMCID: PMC11022615 DOI: 10.1002/iid3.1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Sepsis is perceived as lethal tissue damage and significantly increases mortality in combination with acute kidney injury (AKI). M2 macrophages play important roles in the secretion of anti-inflammatory and tissue repair mediators. We aimed to study the role of Dehydroandrographolide (Deh) in sepsis-associated AKI in vitro and in vivo through lipopolysaccharide (LPS)-induced macrophages model and cecal ligation and puncture-induced AKI mice model, and to reveal the mechanism related to M2 macrophage polarization. METHODS Enzyme-linked immunosorbent assay kits were used to assess the levels of inflammatory factors. Expression of markers related to M1 macrophages and M2 macrophages were analyzed. Additionally, dual specificity phosphatase 3 (DUSP3) expression was tested. Cell apoptosis was evaluated by flow cytometry analysis and terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Moreover, renal histological assessment was performed by using hematoxylin and eosin staining. RESULTS Deh reduced inflammation of THP-1-derived macrophages exposed to LPS. Besides, Deh induced the polarization of M1 macrophages to M2 and downregulated DUSP3 expression in THP-1-derived macrophages under LPS conditions. Further, DUSP3 overexpression reversed the impacts of Deh on the inflammation and M2 macrophages polarization of THP-1-derived macrophages stimulated by LPS. Additionally, human proximal tubular epithelial cells (HK-2) in the condition medium from DUSP3-overexpressed THP-1-derived macrophages treated with LPS and Deh displayed decreased viability and increased apoptosis and inflammation. The in vivo results suggested that Deh improved the renal function, ameliorated pathological injury, induced the polarization of M1 macrophages to M2, suppressed inflammation and apoptosis, and downregulated DUSP3 expression in sepsis-induced mice. CONCLUSION Deh facilitated M2 macrophage polarization by downregulating DUSP3 to inhibit septic AKI.
Collapse
Affiliation(s)
- Yanyan Shao
- Department of PediatricsThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Weihao Yu
- Department of PediatricsThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Hailun Cai
- Department of PediatricsThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| |
Collapse
|
6
|
Benson LN, Mu S. Interferon gamma in the pathogenesis of hypertension - recent insights. Curr Opin Nephrol Hypertens 2024; 33:154-160. [PMID: 38164939 PMCID: PMC10842676 DOI: 10.1097/mnh.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Sasaki K, Kubo M, Wang YC, Lu L, Vujevich V, Wood-Trageser MA, Golnoski K, Lesniak A, Gunabushanam V, Ganoza A, Wijkstrom MJ, Humar A, Demetris AJ, Thomson AW, Ezzelarab MB. Multiple infusions of ex vivo-expanded regulatory T cells promote CD163 + myeloid cells and kidney allograft survival in non-lymphodepleted non-human primates. Kidney Int 2024; 105:84-98. [PMID: 37839695 DOI: 10.1016/j.kint.2023.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Clinical verification of adoptively transferred regulatory T cell (Treg) efficacy in transplantation remains challenging. Here, we examined the influence of autologous ex vivo-expanded polyclonal Tregs on kidney graft survival in a clinically relevant non-human primate model. Peripheral blood Tregs were isolated and expanded using artificial antigen presenting cells. Immunosuppression was comprised of tapered tacrolimus and CTLA4 immunoglobulin, in five animals each without or with Treg infusions. Escalating Treg doses were administered 6, 10, 13, 16, 20, 23, 27 and 30 days after transplant. Infused Tregs were monitored for Treg signature, anti-apoptotic (Bcl-2) and proliferation (Ki67) marker expression. Treg infusions prolonged median graft survival time significantly from 35 to 70 days. Treg marker (Ki67 and Bcl-2) expression by infused Tregs diminished after their infusion but remained comparable to that of circulating native Tregs. No major changes in circulating donor-reactive T cell responses or total Treg percentages, or in graft-infiltrating T cell subsets were observed with Treg infusion. However, Treg infusion was associated with significant increases in CD163 expression by circulating HLA-DR+ myeloid cells and elevated levels of circulating soluble CD163. Further, graft-infiltrating CD163+ cells were increased with Treg infusion. Thus, multiple Treg infusions were associated with M2-like myeloid cell enhancement that may mediate immunomodulatory, anti-inflammatory and graft reparative effects.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiko Kubo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica Vujevich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle A Wood-Trageser
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kayla Golnoski
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Lesniak
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikraman Gunabushanam
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Armando Ganoza
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin J Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Demetris
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Yang Z, He Y, Ma Q, Wang H, Zhang Q. Alleviative effect of melatonin against the nephrotoxicity induced by cadmium exposure through regulating renal oxidative stress, inflammatory reaction, and fibrosis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115536. [PMID: 37797427 DOI: 10.1016/j.ecoenv.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Chronic cadmium (Cd) exposure causes severe adverse health effects on the human body, especially the kidney tissue. Studies have demonstrated oxidative stress to be involved in renal pathological variations after exposure to Cd, but few effective treatments are available for the disease yet. Therefore, the present study was carried out to investigate the potential therapeutic intervention and its underlying molecular mechanisms of melatonin (MT), a natural antioxidant with multiple biological activities, against renal injury caused by Cd exposure in mice. C57BL/6 male mice (eight-week-old) were intragastrically administered with CdCl2, MT, or both for 30 days. Biochemical analysis showed that MT intervention significantly improved the SOD, GSH, and CAT activities while markedly decreasing the kidney MDA content of the mice exposed to Cd. Histological examination indicated that Cd exposure resulted in the atrophy of the renal glomerular, the degeneration and dilation of tubules, and the accumulation of fibrocytes. By contrast, MT administration effectively ameliorated the histological outcome of the injured kidney tissue. Moreover, administrating MT significantly inhibited proinflammatory cytokines TNF-α and iNOS expression in Cd-treated mice. Further, MT treatment markedly suppressed the expressions of renal fibrosis-related factors TGF-β1, α-SMA, and collagen Ⅰ in the injured renal tissue and the accumulation and development of renal fibrosis. In addition, the administration of MT significantly reduced the expression of caspase-3 and cell apoptotic death in the kidney tissue of Cd-exposed mice. In all, the data showed that MT has a compelling therapeutic potential in alleviating the pathological variations of renal injury caused by Cd exposure.
Collapse
Affiliation(s)
- Zhijie Yang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuqin He
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Ma
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haifang Wang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Kang Y, Amoafo EB, Entsie P, Beatty GL, Liverani E. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Front Physiol 2023; 14:1250982. [PMID: 37693009 PMCID: PMC10484008 DOI: 10.3389/fphys.2023.1250982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.
Collapse
Affiliation(s)
- Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Gregory L. Beatty
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
10
|
Liu C, Cheng Q, Ao Q, Yang G, Liu Y, Zhao J. Induced pluripotent stem cells-podocytes promote repair in acute kidney injury is dependent on Mafb/CCR5/Nampt axis-mediated M2 macrophage polarization. Chem Biol Interact 2023; 380:110534. [PMID: 37182688 DOI: 10.1016/j.cbi.2023.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been the focus of cellular therapy studies. The use of iPSCs in regenerative medicine is limited by their tumorigenic potential. This study sought to determine whether iPSCs-derived podocytes attenuate acute kidney injury (AKI) and the molecular mechanism. Inoculation of iPSCs-podocytes significantly promoted the repair of kidney injury in AKI mice, reduced the levels of kidney injury factors Scr, BUN, and urinary NAG, and alleviated the inflammatory response. Histological analysis revealed a significant increase in the number of M2 macrophages and a significant decrease in M1 macrophages in the kidney tissues. Subsequently, the genes and signaling pathways that may be associated with kidney injury repair in mice were analyzed by RNA-seq and bioinformatics prediction. The polarization of M2 macrophages was promoted by MAF bZIP transcription factor B (Mafb)-mediated activation of C-C motif chemokine receptor 5 (Ccr5) and nicotinamide phosphoribosyltransferase (Nampt) signaling pathway. Taken together, these results show that iPSCs-podocytes depend on Mafb to activate the Nampt signaling pathway through transcriptional activation of Ccr5, thereby promoting the repair of AKI caused by ischemia-reperfusion.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Qingli Cheng
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Qiangguo Ao
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Guang Yang
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yang Liu
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Jiahui Zhao
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
11
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
12
|
Wang J, Ren C, Bi W, Batu W. Glycyrrhizin mitigates acute lung injury by inhibiting the NLRP3 inflammasome in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115948. [PMID: 36423713 DOI: 10.1016/j.jep.2022.115948] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza glabra L. is a widely used traditional Chinese medicine with antipyretic, detoxification, antibacterial and therapeutic effects against various diseases, including liver diseases. Glycyrrhizin (GL), the most significant active ingredient of Glycyrrhiza glabra L., exerts anti-inflammatory activity. However, the anti-inflammatory effect of GL remains to be determined. AIM OF THIS STUDY Consequently, this research was carried out to discover the effects and mechanism of action of GL on ALI. MATERIALS AND METHODS Cell experiments established an in vitro model of LPS-induced RAW 264.7 macrophages to verify the mechanism. The levels of NO, PEG2, and inflammatory cytokines were estimated by ELISA. The expression levels of proteins related to the NF-κB signalling pathway and NLRP3 inflammasome were determined by Western blotting. The nuclear translocation of NF-κB p65 and ASC was tested through immunofluorescence analysis. The inhibitory effect of NLRP3 inhibitor MCC950 on macrophage was evaluated. Male BALB/C mice were selected to establish the ALI model. The experiment was randomly divided into five groups: control, ALI, GLL, GLH, and DEX. Pathological alterations were explored by H&E staining. The weight ratios of lung W/D, MPO, and inflammatory cytokines were evaluated by ELISA. The expression levels of proteins related to the NF-κB signalling pathway or NLRP3 inflammasome were analysed by Western blotting. RESULTS Here, we demonstrate that GL attenuates inflammation, nitric oxide, IL-18, IL-1β, TNF-α, IL-6, and PGE2 levels and alveolar epithelial barrier permeability in macrophages and mice challenged with LPS. In addition, GL inhibits NLRP3 inflammasome initiation and activation and NF-κB signalling pathway activation. CONCLUSION This research demonstrates that GL may alleviate ALI inflammation by interfering with the NF-κB/NLRP3 inflammasome signalling pathway.
Collapse
Affiliation(s)
- JunMei Wang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - Chunxiu Ren
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - WenHui Bi
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - Wuliji Batu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
13
|
Liu WH, Feng L, Wang X, Wei L, Zou HQ. GDF11 Improves Ischemia-Reperfusion-Induced Acute Kidney Injury via Regulating Macrophage M1/M2 Polarization. Kidney Blood Press Res 2023; 48:209-219. [PMID: 36780878 PMCID: PMC10124752 DOI: 10.1159/000529444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinical emergency caused by the rapid decline of renal function caused by various etiologies. Growth differentiation factor 11 (GDF11) can promote renal tubular regeneration and improve kidney function in AKI, but the specific mechanism remains unclear. Herein, we investigated the effect and mechanisms of GDF11 in ameliorating AKI induced by ischemia-reperfusion (I/R). METHODS An animal model of AKI was established by I/R method, and the changes of serum urea nitrogen and creatinine were measured to evaluate the AKI. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokines, malondialdehyde, superoxide dismutase, nitric oxide synthase, and arginase 1 levels. Flow cytometry was used to count the M1/M2 macrophages. IHC, WB, and q-PCR experiments were used to evaluate the expression of GDF11. RESULTS The changes in serum levels of urea nitrogen and creatinine after I/R suggest that an animal model of AKI induced by I/R was successfully established. AKI caused by I/R significantly changed the M1/M2 macrophage polarization balance, with an increase in M2 being significantly higher than M1 as well as increased oxidative stress. Treatment with GDF11 after I/R significantly increased the differentiation of M2 cells and inhibited the differentiation of M1 macrophages, as well as decreased oxidative stress. CONCLUSION GDF11 can promote the repair of AKI caused by I/R by regulating the balance of M1/M2 polarization in macrophages and oxidative stress.
Collapse
Affiliation(s)
- Wei-hua Liu
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Feng
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xuan Wang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Wei
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - He-qun Zou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Huang J, Tiu AC, Jose PA, Yang J. Sorting nexins: role in the regulation of blood pressure. FEBS J 2023; 290:600-619. [PMID: 34847291 PMCID: PMC9149145 DOI: 10.1111/febs.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Sorting nexins (SNXs) are a family of proteins that regulate cellular cargo sorting and trafficking, maintain intracellular protein homeostasis, and participate in intracellular signaling. SNXs are also important in the regulation of blood pressure via several mechanisms. Aberrant expression and dysfunction of SNXs participate in the dysregulation of blood pressure. Genetic studies show a correlation between SNX gene variants and the response to antihypertensive drugs. In this review, we summarize the progress in SNX-mediated regulation of blood pressure, discuss the potential role of SNXs in the pathophysiology and treatment of hypertension, and propose novel strategies for the medical therapy of hypertension.
Collapse
Affiliation(s)
- Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| | - Andrew C. Tiu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| |
Collapse
|
15
|
Gouda SAA, Aboulhoda BE, Abdelwahed OM, Abdallah H, Rashed L, Hussein RE, Sharawy N. Low-intensity pulsed ultrasound (LIPUS) switched macrophage into M2 phenotype and mitigated necroptosis and increased HSP 70 in gentamicin-induced nephrotoxicity. Life Sci 2023; 314:121338. [PMID: 36592788 DOI: 10.1016/j.lfs.2022.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Many attempts to control acute kidney injury (AKI) have failed due to a lack of understanding of its pathophysiological key components. Macrophages are a crucial determinant of AKI, which can be categorized functionally as M1 pro-inflammatory and M2 anti-inflammatory macrophages. Low-intensity pulsed ultrasound (LIPUS) is currently being investigated as an immune modulator. The present study aimed to explore the potential effects of LIPUS on the polarization of renal macrophages, as well as the possible interplay between macrophage polarization and necroptosis in gentamicin-induced acute kidney injury. METHOD All rats were randomly allocated into one of four groups: control, LIPUS-treated control, gentamicin acute kidney (GM-AKI), and LIPUS-treated GM-AKI. Renal functions, macrophage polarization, necroptosis, and heat shock protein-70 (HSP70) were analyzed using real-time reverse-transcriptase-polymerase chain reaction (rT-PCR), Western Blot, Enzyme-linked immunosorbent assay (ELISA) as well as immunohistological analysis. RESULTS we found that LIPUS markedly inhibited the expressions of M1 macrophage-related genes and promoted significantly the expression of M2 macrophages related genes. This was accompanied by an inhibition of necroptosis and a marked reduction of HSP-70, resulting in a reversal of gentamicin-induced renal alteration. CONCLUSION Functional switching of macrophage responses from M1 into M2 seems to be a potential approach to ameliorate necroptosis as well as HSP-70 by low pulsed ultrasound waves in GM-AKI.
Collapse
Affiliation(s)
| | | | | | - Hend Abdallah
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
16
|
Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, Fehrenbach DJ, Chen Y, Prabakaran N, Tirado B, Centrella M, Ao M, Du L, Shyr Y, Levy D, Madhur MS. A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage. Circ Res 2022; 131:731-747. [PMID: 36169218 PMCID: PMC9588739 DOI: 10.1161/circresaha.121.320625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Hank
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, VUMC, Nashville, TN, USA
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Yuhan Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | | | | | - Megan Centrella
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Mingfang Ao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Liping Du
- Department of Biostatistics, VUMC, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, VUMC, Nashville, TN
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA and Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Mishra M, Nichols L, Dave AA, Pittman EH, Cheek JP, Caroland AJV, Lotwala P, Drummond J, Bridges CC. Molecular Mechanisms of Cellular Injury and Role of Toxic Heavy Metals in Chronic Kidney Disease. Int J Mol Sci 2022; 23:11105. [PMID: 36232403 PMCID: PMC9569673 DOI: 10.3390/ijms231911105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease that affects millions of adults every year. Major risk factors include diabetes, hypertension, and obesity, which affect millions of adults worldwide. CKD is characterized by cellular injury followed by permanent loss of functional nephrons. As injured cells die and nephrons become sclerotic, remaining healthy nephrons attempt to compensate by undergoing various structural, molecular, and functional changes. While these changes are designed to maintain appropriate renal function, they may lead to additional cellular injury and progression of disease. As CKD progresses and filtration decreases, the ability to eliminate metabolic wastes and environmental toxicants declines. The inability to eliminate environmental toxicants such as arsenic, cadmium, and mercury may contribute to cellular injury and enhance the progression of CKD. The present review describes major molecular alterations that contribute to the pathogenesis of CKD and the effects of arsenic, cadmium, and mercury on the progression of CKD.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Larry Nichols
- Department of Pathology and Clinical Sciences Education, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Aditi A. Dave
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Elizabeth H Pittman
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - John P. Cheek
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Anasalea J. V. Caroland
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Purva Lotwala
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - James Drummond
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Christy C. Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
18
|
Zhang Z, Chen H, Zhou L, Li C, Lu G, Wang L. Macrophage‑derived exosomal miRNA‑155 promotes tubular injury in ischemia‑induced acute kidney injury. Int J Mol Med 2022; 50:116. [PMID: 35795997 PMCID: PMC9333901 DOI: 10.3892/ijmm.2022.5172] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Tubule injury is a characteristic pathological feature of acute kidney injury (AKI) and determines the prognosis of kidney disease. However, the exact mechanism of tubule injury remains largely unclear. In the present study, the exact mechanism of tubule injury was investigated. Bilateral renal ischemia/reperfusion (I/R) injury (I/RI) was induced in mice and exosome secretion inhibitor GW4869 and miRNA-155 inhibitor were used. In addition, the exosomal microRNA (miR)-155-mediated cross-talk between macrophage and tubular cells was also investigated. It was determined that tubular injury was observed in an I/R-induced AKI model, which was closely associated with macrophage infiltration. Interestingly, blocking exosome production using GW4869 ameliorated tubular injury in I/R-induced AKI. Mechanistically, once released, activated macrophage-derived exosomal miR-155 was internalized by tubular cells, resulting in increased tubule injury through targeting of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of NF-κB signaling. In addition, a dual-luciferase reporter assay confirmed that SOCS-1 was the direct target of miR-155 in tubular cells. Notably, injection of these miR-155-enriched exosomes into renal parenchyma resulted in increased tubule injury in vivo. Thus, the present study demonstrated that exosomal miR-155 mediated the communication between activated macrophages and injured tubules, leading to progression of AKI, which not only provide novel insights into the pathophysiology of AKI but also offer a new therapeutic strategy for kidney diseases.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hanzhi Chen
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Leting Zhou
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Cheng Li
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liang Wang
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
19
|
Qing J, Hu X, Li C, Song W, Tirichen H, Yaigoub H, Li Y. Fucose as a potential therapeutic molecule against the immune-mediated inflammation in IgA nepharopathy: An unrevealed link. Front Immunol 2022; 13:929138. [PMID: 36059518 PMCID: PMC9428610 DOI: 10.3389/fimmu.2022.929138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background IgA nephropathy (IgAN) is an autoimmune disease that affects people of any age and is an important cause of end-stage renal disease. However, the pathogenesis and pathophysiology of IgAN is not clear. This article aimed to explore the immune-mediated inflammation and genetic mechanisms in IgAN. Methods The transcriptome sequencing data of IgAN glomeruli in the Gene Expression Omnibus database were downloaded. Single-sample gene set enrichment analysis was used to estimate the immune microenvironment of the merged microarray data and GSE141295. IgAN samples were divided into two clusters by cluster analysis. “limma” and “DEseq2” package in R were used to identify differentially expressed genes (DEGs). The weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules related to inflammation in IgAN. R software package “clusterProfiler” was used for enrichment analysis, whereas Short Time-Series Expression Miner (STEM) analysis was used to identify the trend of gene expression. Machine-learn (ML) was performed using the shiny app. Finally, Drug Signatures Database (DSigDB) was used to identify potential molecules for treating IgAN. Results The infiltration of macrophages in IgAN glomeruli was increased, whereas CD4+ T cells, especially inducedregulatory T cells (iTregs) were decreased. A total of 1,104 common DEGs were identified from the merged data and GSE141295. Brown module was identified to have the highest inflammatory correlation with IgAN using WGCNA, and 15 hub genes were screened from this module. Among these 15 hub genes, 14 increased with the severity of IgAN inflammation based on STEM analysis. Neural network (nnet) is considered as the best model to predict the severity of IgAN. Fucose identified from DSigDB has a potential biological activity to treat IgAN. Conclusion The increase of macrophages and the decrease of iTregs in glomeruli represent the immune-mediated inflammation of IgAN, and fucose may be a potential therapeutic molecule against IgAN because it affects genes involved in the severe inflammation of IgAN.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xueli Hu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Changqun Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Core Laboratory , Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yafeng Li,
| |
Collapse
|
20
|
Jia Y, Chen J, Zheng Z, Tao Y, Zhang S, Zou M, Yang Y, Xue M, Hu F, Li Y, Zhang Q, Xue Y, Zheng Z. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease. Mol Med 2022; 28:95. [PMID: 35962319 PMCID: PMC9373297 DOI: 10.1186/s10020-022-00525-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Albuminuria is a hallmark of diabetic kidney disease (DKD) that promotes its progression, leading to renal fibrosis. Renal macrophage function is complex and influenced by macrophage metabolic status. However, the metabolic state of diabetic renal macrophages and the impact of albuminuria on the macrophage metabolic state are poorly understood. Methods Extracellular vesicles (EVs) from tubular epithelial cells (HK-2) were evaluated using transmission electron microscopy, nanoparticle tracking analysis and western blotting. Glycolytic enzyme expression in macrophages co-cultured with HSA-treated HK-2 cell-derived EVs was detected using RT-qPCR and western blotting. The potential role of EV-associated HIF-1α in the mediation of glycolysis was explored in HIF-1α siRNA pre-transfected macrophages co-cultured with HSA-treated HK-2 cell-derived EVs, and the extent of HIF-1α hydroxylation was measured using western blotting. Additionally, we injected db/db mice with EVs via the caudal vein twice a week for 4 weeks. Renal macrophages were isolated using CD11b microbeads, and immunohistofluorescence was applied to confirm the levels of glycolytic enzymes and HIF-1α in these macrophages. Results Glycolysis was activated in diabetic renal macrophages after co-culture with HSA-treated HK-2 cells. Moreover, HSA-treated HK-2 cell-derived EVs promoted macrophage glycolysis both in vivo and in vitro. Inhibition of glycolysis activation in macrophages using the glycolysis inhibitor 2-DG decreased the expression of both inflammatory and fibrotic genes. Mechanistically, EVs from HSA-stimulated HK-2 cells were found to accelerate macrophage glycolysis by stabilizing HIF-1α. We also found that several miRNAs and lncRNAs, which have been reported to stabilize HIF-1α expression, were increased in HSA-treated HK-2 cell-derived EVs. Conclusion Our study suggested that albuminuria induced renal macrophage glycolysis through tubular epithelial cell-derived EVs by stabilizing HIF-1α, indicating that regulation of macrophage glycolysis may offer a new treatment strategy for DKD patients, especially those with macroalbuminuria. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00525-1.
Collapse
Affiliation(s)
- Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Chen
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhikang Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Tao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meina Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanlin Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meng Xue
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology), Jinan University, Shenzhen, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yang Li
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Lin B, Ma YY, Wang JW. Nano-Technological Approaches for Targeting Kidney Diseases With Focus on Diabetic Nephropathy: Recent Progress, and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870049. [PMID: 35646840 PMCID: PMC9136139 DOI: 10.3389/fbioe.2022.870049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. With the rising prevalence of diabetes, the occurrence of DN is likely to hit pandemic proportions. The current treatment strategies employed for DN focus on the management of blood pressure, glycemia, and cholesterol while neglecting DN’s molecular progression mechanism. For many theranostic uses, nano-technological techniques have evolved in biomedical studies. Several nanotechnologically based theranostics have been devised that can be tagged with targeting moieties for both drug administration and/or imaging systems and are being studied to identify various clinical conditions. The molecular mechanisms involved in DN are discussed in this review to assist in understanding its onset and progression pattern. We have also discussed emerging strategies for establishing a nanomedicine-based platform for DN-targeted drug delivery to increase drug’s efficacy and safety, as well as their reported applications.
Collapse
Affiliation(s)
- Bo Lin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| | - Jun-Wei Wang
- Emergency Department, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| |
Collapse
|
22
|
Liu C, Shen Y, Huang L, Wang J. TLR2/caspase-5/Panx1 pathway mediates necrosis-induced NLRP3 inflammasome activation in macrophages during acute kidney injury. Cell Death Dis 2022; 8:232. [PMID: 35473933 PMCID: PMC9042857 DOI: 10.1038/s41420-022-01032-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) is characterized by necroinflammation formed by necrotic tubular epithelial cells (TECs) and interstitial inflammation. In necroinflammation, macrophages are key inflammatory cells and can be activated and polarized into proinflammatory macrophages. Membranous Toll-like receptors (TLRs) can cooperate with intracellular NOD-like receptor protein 3 (NLRP3) to recognize danger signals from necrotic TECs and activate proinflammatory macrophages by assembling NLRP3 inflammasome. However, the cooperation between TLRs and NLRP3 is still unclear. Using conditioned medium from necrotic TECs, we confirmed that necrotic TECs could release danger signals to activate NLRP3 inflammasome in macrophages. We further identified that necrotic TECs-induced NLRP3 inflammasome activation was dependent on ATP secretion via Pannexin-1 (Panx1) channel in macrophages. Next, we verified that TLR2 was required for the activation of Panx1 and NLRP3 in macrophages. Mechanistically, we indicated that caspase-5 mediated TLR2-induced Panx1 activation. In addition, we showed that necrotic TECs-induced activation of TLR2/caspase-5/Panx1 axis could be decreased in macrophages when TECs was protected by N-acetylcysteine (NAC). Overall, we demonstrate that danger signals from necrotic TECs could activate NLRP3 inflammasome in macrophages via TLR2/caspase-5/Panx1 axis during AKI.
Collapse
Affiliation(s)
- Chongbin Liu
- Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanting Shen
- Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Liuwei Huang
- Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun Wang
- Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China. .,Department of Nephrology, The First People's Hospital of Kashi, Kashi, PR China.
| |
Collapse
|
23
|
Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, Merle NS, Gidon A, Sporsheim B, Lionakis MS, Evensen K, Lindberg B, Skagen K, Skjelland M, Singh P, Haug M, Ruseva MM, Kolev M, Bibby J, Marshall O, O’Brien B, Deeks N, Afzali B, Clark RJ, Woodruff TM, Pryor M, Yang ZH, Remaley AT, Mollnes TE, Hewitt SM, Yan B, Kazemian M, Kiss MG, Binder CJ, Halvorsen B, Espevik T, Kemper C. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol 2021; 6:eabf2489. [PMID: 34932384 PMCID: PMC8902698 DOI: 10.1126/sciimmunol.abf2489] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the “complosome,” functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1β production, both at the transcriptional level and processing of pro–IL-1β. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1β produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E. West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas S. Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alexandre Gidon
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørnar Sporsheim
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Administration, St. Olavs Hospital, University Hospital in Trondheim, Trondheim, Norway
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin Evensen
- Department of Neurology, Vestre Viken, Drammen Hospital, Drammen, Norway
| | - Beate Lindberg
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Markus Haug
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Marieta M. Ruseva
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Martin Kolev
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jack Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Olivia Marshall
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Brett O’Brien
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Nigel Deeks
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Richard J. Clark
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Tom E. Mollnes
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Bingyu Yan
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Máté G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Wu YM, Shi Q, Zhu PF, Ma HJ, Cui SC, Li J, Hou AJ, Li JY. Rhodomeroterpene alleviates macrophage infiltration and the inflammatory response in renal tissue to improve acute kidney injury. FASEB J 2021; 35:e21985. [PMID: 34674317 DOI: 10.1096/fj.202100981rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Inflammation is broadly recognized as an important factor in the pathogenesis of acute kidney injury (AKI), but pharmacological approaches to alleviate inflammation in AKI have not been proved successful in clinical trials. Macrophage infiltration into renal tissue promotes inflammatory responses that contribute to the pathogenesis of AKI. Suppression of renal tissue inflammatory responses is postulated to improve renal injury of patients and animals. Rhodomeroterpene (RMT) is a novel meroterpenoid isolated from the Rhododendron genus that was shown to exert anti-inflammatory action in vivo or in vitro in this study. We investigated the treatment effects of RMT on LPS-induced sepsis and two different AKI models. The results showed that pretreatment with RMT (30 mg kg-1 d-1 , ip, for 3 days) significantly inhibited acute inflammatory responses in LPS-induced septic mice. In both renal ischemia-reperfusion injury (I/R) and sepsis-induced AKI models, RMT (30 mg kg-1 d-1 , ip, for 3 days) ameliorated renal function and injury and alleviated inflammation by reducing the infiltration of immune cells, including macrophages and neutrophils. Furthermore, our study demonstrated that RMT inhibits inflammatory responses in macrophages. The anti-inflammatory effects of RMT may be due to the inactivation of the IKK/NF-κB and PI3K/PDK1/Akt inflammatory signaling pathways in macrophages. Collectively, our findings indicate that RMT ameliorates renal injury and alleviates the renal inflammatory state in different AKI models, suggesting that RMT may be a potential agent for the treatment of AKI.
Collapse
Affiliation(s)
- Yong-Mei Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Shi
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Peng-Fei Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hai-Jian Ma
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shi-Chao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Jun Hou
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jing-Ya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Zhao J, Chen J, Li YY, Xia LL, Wu YG. Bruton's tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via NLRP3 inflammasome activation. Int J Mol Med 2021; 48:177. [PMID: 34278465 PMCID: PMC8354311 DOI: 10.3892/ijmm.2021.5010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
It has been previously reported that macrophages may be involved in diabetic nephropathy (DN) development. Furthermore, Bruton's tyrosine kinase (BTK) may participate in macrophage activation and lead to the release of inflammatory mediators. The main aim of the present study was to analyze the association between renal BTK expression and clinical indicators. Moreover, BTK knockout mice were used to establish a diabetic model for further research. The results demonstrated that BTK was activated in the kidneys of patients with DN and was associated with the progression of proteinuria, creatinine levels, estimated glomerular filtration rate and pathological changes in the kidneys of patients with DN. Furthermore, BTK knockout was observed to reduce urinary protein excretion, alleviate renal injury and decrease renal inflammation in diabetic mice. This protection may be attributed to BTK‑induced suppression of the activation of the Nod‑like receptor (NLR) family pyrin domain containing 3 inflammasome. Collectively, it has been demonstrated in the present study that BTK may be a potential target for DN treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Juan Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuan-Yuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ling-Ling Xia
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
26
|
Yang M, Liu JW, Zhang YT, Wu G. The Role of Renal Macrophage, AIM, and TGF-β1 Expression in Renal Fibrosis Progression in IgAN Patients. Front Immunol 2021; 12:646650. [PMID: 34194427 PMCID: PMC8236720 DOI: 10.3389/fimmu.2021.646650] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/28/2021] [Indexed: 01/24/2023] Open
Abstract
Objective To analyze the expression of macrophages, AIM, TGF-β1 in the kidney of IgAN patients, and to explore the role of macrophages, AIM, TGF-β1 in the progression of renal fibrosis in IgAN patients. Methods The paraffin specimens of renal tissue from 40 IgAN patients were selected as the observation group. At the same time, paraffin specimens of normal renal tissue from 11 patients treated by nephrectomy were selected as the normal control group. We observed the distribution of macrophages, the expression of AIM and TGF-β1 by immunohistochemical staining and/or immunofluorescence. Result The number of M0, M1, M2 macrophages could be found increased in IgAN patients. M0 macrophages are mainly polarized towards M2 macrophages. The expression of AIM and TGF-β1 were significantly higher in IgAN patients than in NC. M2 macrophage, AIM and TGF-β1 were positively correlated with serum creatinine and 24-hour proteinuria, but negatively correlated with eGFR. M2 macrophages, AIM, TGF-β1 were positively correlated with fibrotic area. Conclusion M2 macrophages, AIM and TGF-β1 play important roles in the process of IgAN fibrosis, and the three influence each other.
Collapse
Affiliation(s)
- Min Yang
- Renal Division of Northern Jiangsu People's Hospital, Clinical Medicine College of Yangzhou University, Yangzhou, China
| | - Jia Wei Liu
- Renal Division of Xi'an People's Hospital, Xi'an, China
| | - Yu Ting Zhang
- Intensive Care Unit of The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Gang Wu
- Renal Division of Northern Jiangsu People's Hospital, Clinical Medicine College of Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
28
|
Davidson A. Renal Mononuclear Phagocytes in Lupus Nephritis. ACR Open Rheumatol 2021; 3:442-450. [PMID: 34060247 PMCID: PMC8280821 DOI: 10.1002/acr2.11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
Renal mononuclear phagocytes are a highly pleiotropic group of immune cells of myeloid origin that play multiple protective and pathogenic roles in tissue homeostasis, inflammation, repair, and fibrosis. Infiltration of kidneys with these cells is a hallmark of lupus nephritis and is associated with more severe disease and with increased risk of progression to end‐stage renal disease. This review presents current knowledge of the diversity of these cells and their involvement in kidney inflammation and resolution and describes how they contribute to the chronic inflammation of lupus nephritis. A better understanding of the subset heterogeneity and diverse functions of mononuclear phagocytes in the lupus nephritis kidney should provide fertile ground for the development of new therapeutic approaches that promote the differentiation and survival of protective subsets while targeting pathogenic cell subsets that cause inflammation and fibrosis.
Collapse
Affiliation(s)
- Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, New York
| |
Collapse
|
29
|
Wen Y, Yan HR, Wang B, Liu BC. Macrophage Heterogeneity in Kidney Injury and Fibrosis. Front Immunol 2021; 12:681748. [PMID: 34093584 PMCID: PMC8173188 DOI: 10.3389/fimmu.2021.681748] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney macrophages are central in kidney disease pathogenesis and have therapeutic potential in preventing tissue injury and fibrosis. Recent studies highlighted that kidney macrophages are notably heterogeneous immune cells that fulfill opposing functions such as clearing deposited pathogens, maintaining immune tolerance, initiating and regulating inflammatory responses, promoting kidney fibrosis, and degrading the extracellular matrix. Macrophage origins can partially explain macrophage heterogeneity in the kidneys. Circulating Ly6C+ monocytes are recruited to inflammatory sites by chemokines, while self-renewed kidney resident macrophages contribute to kidney repair and fibrosis. The proliferation of resident macrophages or infiltrating monocytes provides an alternative explanation of macrophage accumulation after kidney injury. In addition, dynamic Ly6C expression on infiltrating monocytes accompanies functional changes in handling kidney inflammation and fibrosis. Mechanisms underlying kidney macrophage heterogeneity, either by recruiting monocyte subpopulations, regulating macrophage polarization, or impacting distinctive macrophage functions, may help develop macrophage-targeted therapies for kidney diseases.
Collapse
Affiliation(s)
- Yi Wen
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong-Ru Yan
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
30
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
31
|
Hypertension and osteoporosis: Common pathophysiological mechanisms. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|