1
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Pavelescu LA, Profir M, Enache RM, Roşu OA, Creţoiu SM, Gaspar BS. A Proteogenomic Approach to Unveiling the Complex Biology of the Microbiome. Int J Mol Sci 2024; 25:10467. [PMID: 39408795 PMCID: PMC11476728 DOI: 10.3390/ijms251910467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The complex biology of the microbiome was elucidated once the genomics era began. The proteogenomic approach analyzes and integrates genetic makeup (genomics) and microbial communities' expressed proteins (proteomics). Therefore, researchers gained insights into gene expression, protein functions, and metabolic pathways, understanding microbial dynamics and behavior, interactions with host cells, and responses to environmental stimuli. In this context, our work aims to bring together data regarding the application of genomics, proteomics, and bioinformatics in microbiome research and to provide new perspectives for applying microbiota modulation in clinical practice with maximum efficiency. This review also synthesizes data from the literature, shedding light on the potential biomarkers and therapeutic targets for various diseases influenced by the microbiome.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
3
|
Song M, Zhang S, Zhang Z, Guo L, Liang W, Li C, Wang Z. Bacillus coagulans restores pathogen-induced intestinal dysfunction via acetate-FFAR2-NF-κB-MLCK-MLC axis in Apostichopus japonicus. mSystems 2024; 9:e0060224. [PMID: 38940521 PMCID: PMC11265352 DOI: 10.1128/msystems.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Skin ulceration syndrome (SUS) is currently the main disease threatening Apostichopus japonicus aquaculture due to its higher mortality rate and infectivity, which is caused by Vibrio splendidus. Our previous studies have demonstrated that SUS is accompanied by intestinal microbiota (IM) dysbiosis, alteration of short-chain fatty acids (SCFAs) content and the damage to the intestinal barrier. However, the mediating effect of IM on intestine dysfunction is largely unknown. Herein, we conducted comprehensive intestinal microbiota transplantation (IMT) to explore the link between IM and SUS development. Furthermore, we isolated and identified a Bacillus coagulans strain with an ability to produce acetic acid from both healthy individual and SUS individual with IM from healthy donors. We found that dysbiotic IM and intestinal barrier function in SUS recipients A. japonicus could be restored by IM from healthy donors. The B. coagulans strain could restore IM community and intestinal barrier function. Consistently, acetate supply also restores intestinal homeostasis of SUS-diseased and V. splendidus-infected A. japonicus. Mechanically, acetate was found to specifically bind to its receptor-free fatty acid receptor 2 (FFAR2) to mediate IM structure community and intestinal barrier function. Knockdown of FFAR2 by transfection of specific FFAR2 siRNA could hamper acetate-mediated intestinal homeostasis in vivo. Furthermore, we confirmed that acetate/FFAR2 could inhibit V. splendidus-activated NF-κB-MLCK-MLC signaling pathway to restore intestinal epithelium integrity and upregulated the expression of ZO-1 and Occludin. Our findings provide the first evidence that B. coagulans restores pathogen-induced intestinal barrier dysfunction via acetate/FFAR2-NF-κB-MLCK-MLC axis, which provides new insights into the control and prevention of SUS outbreak from an ecological perspective.IMPORTANCESkin ulceration syndrome (SUS) as a main disease in Apostichopus japonicus aquaculture has severely restricted the developmental A. japonicus aquaculture industry. Intestinal microbiota (IM) has been studied extensively due to its immunomodulatory properties. Short-chain fatty acids (SCFAs) as an essential signal molecule for microbial regulation of host health also have attracted wide attention. Therefore, it is beneficial to explore the link between IM and SUS for prevention and control of SUS. In the study, the contribution of IM to SUS development has been examined. Additionally, our research further validated the restoration of SCFAs on intestinal barrier dysfunction caused by SUS via isolating SCFAs-producing bacteria. Notably, this restoration might be achieved by inhibition of NF-κB-MLCK-MLC signal pathway, which could be activated by V. splendidus. These findings may have important implications for exploration of the role of IM in SUS occurrence and provide insight into the SUS treatment.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Shanshan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Liyuan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhonghua Wang
- Shandong Beiyou Biotechnology Co.,Ltd., Weifang, China
| |
Collapse
|
4
|
Boyle BL, Khanna S. Fecal microbiota live - jslm (Rebyota™/RBL) for management of recurrent Clostridioides difficile infection. Future Microbiol 2024:1-9. [PMID: 38989699 DOI: 10.1080/17460913.2024.2364583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
There is an unmet need for effective treatments of Clostridioides difficile infection, an emerging health crisis in the United States. The management of C. difficile infection should include treatment of active infection and a strategy to prevent recurrence. Current gold standard therapy includes oral antibiotics which predispose patients to gut dysbiosis and increase the risk of recurrent infection. Addressing dysbiosis via fecal microbiota transplantation is an active and promising area of research, but studies have lacked standardization which makes outcome and safety data difficult to interpret. Rebyota™, formerly known as RBX2660, is a live biotherapeutic product designed using a standardized protocol and manufacturing process that has been shown to be effective for preventing recurrent C. difficile infection.
Collapse
Affiliation(s)
| | - Sahil Khanna
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Wang Y, Gao C, Niu W, Han S, Qin M, Tian Z, Zuo W, Xia X, Wang H, Li Y. Polystyrene microplastics promote intestinal colonization of Aeromonas veronii through inducing intestinal microbiota dysbiosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133976. [PMID: 38461664 DOI: 10.1016/j.jhazmat.2024.133976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The premise that pathogen colonized microplastics (MPs) can promote the spread of pathogens has been widely recognized, however, their role in the colonization of pathogens in a host intestine has not been fully elucidated. Here, we investigated the effect of polystyrene MPs (PS-MPs) on the colonization levels of Aeromonas veronii, a typical aquatic pathogen, in the loach (Misgurnus anguillicaudatus) intestine. Multiple types of MPs were observed to promote the intestinal colonization of A. veronii, among which PS-MPs exhibited the most significant stimulating effect (67.18% increase in A. veronii colonization). PS-MPs inflicted serious damage to the intestinal tracts of loaches and induced intestinal microbiota dysbiosis. The abundance of certain intestinal bacteria with resistance against A. veronii colonization decreased, with Lactococcus sp. showing the strongest colonization resistance (73.64% decline in A. veronii colonization). Fecal microbiota transplantation was performed, which revealed that PS-MPs induced intestinal microbiota dysbiosis was responsible for the increased colonization of A. veronii in the intestine. It was determined that PS-MPs reshaped the intestinal microbiota community to attenuate the colonization resistance against A. veronii colonization, resulting in an elevated intestinal colonization levels of A. veronii.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Zhuo Tian
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wenjing Zuo
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China; Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China.
| |
Collapse
|
6
|
Khan M, Shah S, Shah W, Khan I, Ali H, Ali I, Ullah R, Wang X, Mehmood A, Wang Y. Gut microbiome as a treatment in colorectal cancer. Int Rev Immunol 2024; 43:229-247. [PMID: 38343353 DOI: 10.1080/08830185.2024.2312294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The gut microbiome plays a role in the development and progression of colorectal cancer (CRC). AIM AND OBJECTIVE This review focuses on whether the gut microbiome is involved in the development and regulation of the host immune system. METHODS The gut microbiome can influence the production and activity of immune cells and molecules that help to maintain the integrity of the intestinal barrier and prevent inflammation. Gut microbiota modulates the anti-cancer immune response. The gut microbiota can influence the function of immune cells, like T cells, that recognize and eliminate cancer cells. Gut microbiota can affect various aspects of cancer progression and the efficacy of various anti-cancer treatments. RESULTS Gut microbiota provide promise as a potential biomarker to identify the effect of immunotherapy and as a target for modulation to improve the efficacy of immunotherapy in CRC treatment. CONCLUSION The potential synergistic effect between the gut microbiome and anti-cancer treatment modalities provides an interest in developing strategies to modulate the gut microbiome to improve the efficacy of anti-cancer treatment.
Collapse
Affiliation(s)
- Murad Khan
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wahid Shah
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Ikram Khan
- School of Basic Medical Sciences, Department of Genetics, Lanzhou University, Lanzhou, Gansu, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, P.R. China
| | - Yanli Wang
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
7
|
Barko P, Nguyen-Edquilang J, Williams DA, Gal A. Fecal microbiome composition and diversity of cryopreserved canine stool at different duration and storage conditions. PLoS One 2024; 19:e0294730. [PMID: 38324560 PMCID: PMC10849402 DOI: 10.1371/journal.pone.0294730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/07/2023] [Indexed: 02/09/2024] Open
Abstract
Fresh-frozen stool banks intended for humans with gastrointestinal and metabolic disorders have been recently established and there are ongoing efforts to establish the first veterinary fresh-frozen stool bank. Fresh frozen stored feces provide an advantage of increased availability and accessibility to high-quality optimal donor fecal material. The stability of frozen canine feces regarding fecal microbiome composition and diversity has not been reported in dogs, providing the basis for this study. We hypothesized that fecal microbial composition and diversity of healthy dogs would remain stable when stored at -20°C and -80°C for up to 12 months compared to baseline samples evaluated before freezing. Stool samples were collected from 20 apparently healthy dogs, manually homogenized, cryopreserved in 20% glycerol and aliquoted, frozen in liquid nitrogen and stored at -20°C or -80°C for 3, 6, 9, and 12 months. At baseline and after period of storage, aliquots were thawed and treated with propidium monoazide before fecal DNA extraction. Following long-read 16S-rRNA amplicon sequencing, bacterial community composition and diversity were compared among treatment groups. We demonstrated that fresh-frozen canine stools collected from 20 apparently healthy dogs could be stored for up to 12 months at -80°C with minimal change in microbial community composition and diversity and that storage at -80°C is superior to storage at -20°C. We also found that differences between dogs had the largest effect on community composition and diversity. Relative abundances of certain bacterial taxa, including those known to be short-chain fatty acid producers, varied significantly with specific storage temperatures and duration. Further work is required to ascertain whether fecal donor material that differs in bacterial community composition and diversity across storage conditions and duration could lead to differences in clinical efficacy for specific clinical indications of fecal microbiota transplantation.
Collapse
Affiliation(s)
- Patrick Barko
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Julie Nguyen-Edquilang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - David A. Williams
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
8
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
9
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
10
|
Larsen C, Offersen SM, Brunse A, Pirolo M, Kar SK, Guadabassi L, Thymann T. Effects of early postnatal gastric and colonic microbiota transplantation on piglet gut health. J Anim Sci Biotechnol 2023; 14:158. [PMID: 38143275 PMCID: PMC10749501 DOI: 10.1186/s40104-023-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.
Collapse
Affiliation(s)
- Christina Larsen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Simone Margaard Offersen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Soumya Kanti Kar
- Animal Nutrition, Wageningen Livestock Research, Wageningen University & Research, 1 De Elst, 6708, Wageningen, The Netherlands
| | - Luca Guadabassi
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Zhou H, Yu B, Sun J, Chen H, Liu Z, Ge L, Chen D. Gut microbiota absence and transplantation affect diarrhea: an investigation in the germ-free piglet model. Anim Biotechnol 2023; 34:3971-3977. [PMID: 37906091 DOI: 10.1080/10495398.2023.2248200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This experiment was conducted to explore the effects of gut microbiota on neonatal diarrhea in a germ-free (GF) pig model. Twelve hysterectomy-derived GF piglets were housed in six sterile isolators. Among them, six piglets were treated as the GF group, and the other six piglets were orally introduced with healthy sow fecal suspension and regarded as the fecal microbiota transplantation (FMT) group. Another six piglets from natural birth were considered as the conventional (CV) group. The GF and FMT piglets were hand-fed with sterile milk powder for 21 days, and the CV piglets were suckled for the same days. Then, all piglets were fed with sterile feed for another 21 days. Results exhibited that the GF group's fecal score and moisture level were higher than those in the CV and FMT groups (p < 0.05). Meanwhile, the abundances of colonic AQP1 and AQP8 in the GF group were the greatest among these treatments (p < 0.05). However, FMT piglets had a lower fecal score in d 22-28 and d 29-35 than that in the CV piglets (p < 0.05). Collectively, the absence of gut microbiota may cause diarrhea in the piglet model, and transplantation of maternal fecal microbiota may reverse it.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
13
|
Song X, Liu Y, Zhang X, Weng P, Zhang R, Wu Z. Role of intestinal probiotics in the modulation of lipid metabolism: implications for therapeutic treatments. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Boicean A, Bratu D, Bacila C, Tanasescu C, Fleacă RS, Mohor CI, Comaniciu A, Băluță T, Roman MD, Chicea R, Cristian AN, Hasegan A, Birsan S, Dura H, Mohor CI. Therapeutic Perspectives for Microbiota Transplantation in Digestive Diseases and Neoplasia-A Literature Review. Pathogens 2023; 12:766. [PMID: 37375456 PMCID: PMC10302701 DOI: 10.3390/pathogens12060766] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In a mutually beneficial connection with its host, the gut microbiota affects the host's nutrition, immunity, and metabolism. An increasing number of studies have shown links between certain types of disease and gut dysbiosis or specific microorganisms. Fecal microbiota transplantation (FMT) is strongly advised for the treatment of recurrent or resistant Clostridium difficile infection (CDI) due to its outstanding clinical effectiveness against CDI. The therapeutic potential of FMT for other disorders, particularly inflammatory bowel diseases and malignancies, is currently gaining more and more attention. We summarized the most recent preclinical and clinical evidence to show the promise of FMT in the management of cancer as well as complications related to cancer treatment after reviewing the most recent research on the gut microbiota and its relationship to cancer.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Dan Bratu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ciprian Bacila
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Ciprian Tanasescu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Sorin Fleacă
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Calin Ilie Mohor
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Andra Comaniciu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Teodora Băluță
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Mihai Dan Roman
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Chicea
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Nicolae Cristian
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Hasegan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Sabrina Birsan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Horațiu Dura
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cosmin Ioan Mohor
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
15
|
Song L. Toward Understanding Microbial Ecology to Restore a Degraded Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4647. [PMID: 36901656 PMCID: PMC10001736 DOI: 10.3390/ijerph20054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The microbial community plays an important role in maintaining human health, addressing climate change, maintaining environmental quality, etc. High-throughput sequencing leads to the discovery and identification of more microbial community composition and function in diverse ecosystems. Microbiome therapeutics such as fecal microbiota transplantation for human health and bioaugmentation for activated sludge restoration have drawn great attention. However, microbiome therapeutics cannot secure the success of microbiome transplantation. This paper begins with a view on fecal microbiota transplantation and bioaugmentation and is followed by a parallel analysis of these two microbial therapeutic strategies. Accordingly, the microbial ecology mechanisms behind them were discussed. Finally, future research on microbiota transplantation was proposed. Successful application of both microbial therapeutics for human disease and bioremediation for contaminated environments relies on a better understanding of the microbial "entangled bank" and microbial ecology of these environments.
Collapse
Affiliation(s)
- Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230039, China; ; Tel.: +86-551-6386-1441; Fax: +86-551-6386-1724
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
16
|
Liu YY. Controlling the human microbiome. Cell Syst 2023; 14:135-159. [PMID: 36796332 PMCID: PMC9942095 DOI: 10.1016/j.cels.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
We coexist with a vast number of microbes that live in and on our bodies. Those microbes and their genes are collectively known as the human microbiome, which plays important roles in human physiology and diseases. We have acquired extensive knowledge of the organismal compositions and metabolic functions of the human microbiome. However, the ultimate proof of our understanding of the human microbiome is reflected in our ability to manipulate it for health benefits. To facilitate the rational design of microbiome-based therapies, there are many fundamental questions to be addressed at the systems level. Indeed, we need a deep understanding of the ecological dynamics associated with such a complex ecosystem before we rationally design control strategies. In light of this, this review discusses progress from various fields, e.g., community ecology, network science, and control theory, that are helping us make progress toward the ultimate goal of controlling the human microbiome.
Collapse
Affiliation(s)
- Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
17
|
Mahmoudi H, Hossainpour H. Application and development of fecal microbiota transplantation in the treatment of gastrointestinal and metabolic diseases: A review. Saudi J Gastroenterol 2023; 29:3-11. [PMID: 36412458 PMCID: PMC10117003 DOI: 10.4103/sjg.sjg_131_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) restores a balanced intestinal flora, which helps to cure recurrent Clostridium difficile infections (RCDI). FMT has also been used to treat other gastrointestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and chronic constipation, as well as a variety of non-GI disorders. The purpose of this review is to discuss gut microbiota and FMT treatment of GI and non-GI diseases. An imbalanced gut microbiota is known to predispose one to Clostridium difficile infections (CDI), IBD, and IBS. However, the complex role of the gut microbiota in maintaining health is a newer concept that is being increasingly studied. The microbiome plays a major role in cellular immunity and metabolism and has been implicated in the pathogenesis of non-GI autoimmune diseases, chronic fatigue syndrome, obesity, and even some neuropsychiatric disorders. Many recent studies have reported that viral gastroenteritis can affect intestinal epithelial cells, and SARS-CoV-2 virus has been identified in the stool of infected patients. FMT is a highly effective cure for RCDI, but a better understanding of the gut microbiota in maintaining health and controlled studies of FMT in a variety of conditions are needed before FMT can be accepted and used clinically.
Collapse
Affiliation(s)
- Hassan Mahmoudi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences; Department of Nursing and Paramedical, Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Wei S, Bahl MI, Baunwall SMD, Dahlerup JF, Hvas CL, Licht TR. Gut microbiota differs between treatment outcomes early after fecal microbiota transplantation against recurrent Clostridioides difficile infection. Gut Microbes 2022; 14:2084306. [PMID: 36519447 PMCID: PMC9176232 DOI: 10.1080/19490976.2022.2084306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AbstarctIn fecal microbiota transplantation (FMT) against recurrent Clostridioides difficile infection (CDI), clinical outcomes are usually determined after 8 weeks. We hypothesized that the intestinal microbiota changes earlier than this timepoint, and analyzed fecal samples obtained 1 week after treatment from 64 patients diagnosed with recurrent CDI and included in a randomized clinical trial, where the infection was treated with either vancomycin-preceded FMT (N = 24), vancomycin (N = 16) or fidaxomicin (N = 24). In comparison with non-responders, patients with sustained resolution after FMT had increased microbial alpha diversity, enrichment of Ruminococcaceae and Lachnospiraceae, depletion of Enterobacteriaceae, more pronounced donor microbiota engraftment, and resolution of gut microbiota dysbiosis. We found that a constructed index, based on markers for the identified genera Escherichia and Blautia, successfully predicted clinical outcomes at Week 8, which exemplifies a way to utilize clinically feasible methods to predict treatment failure. Microbiota changes were restricted to patients who received FMT rather than antibiotic monotherapy, indicating that FMT confers treatment response in a different way than antibiotics. We suggest that early identification of microbial community structures after FMT is of clinical value to predict response to the treatment.
Collapse
Affiliation(s)
- Shaodong Wei
- National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark,CONTACT Tine Rask Licht National Food Institute, Technical University of Denmark, Kemitorvet 2022800, Kgs Lyngby, Denmark
| |
Collapse
|
19
|
Najafi S, Majidpoor J, Mortezaee K. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sci 2022; 310:121138. [DOI: 10.1016/j.lfs.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
20
|
Almeida C, Oliveira R, Baylina P, Fernandes R, Teixeira FG, Barata P. Current Trends and Challenges of Fecal Microbiota Transplantation-An Easy Method That Works for All? Biomedicines 2022; 10:2742. [PMID: 36359265 PMCID: PMC9687574 DOI: 10.3390/biomedicines10112742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
The gut microbiota refers to bacteria lodges in the gastrointestinal tract (GIT) that interact through various complex mechanisms. The disturbance of this ecosystem has been correlated with several diseases, such as neurologic, respiratory, cardiovascular, and metabolic diseases and cancer. Therefore, the modulation of the gut microbiota has emerged as a potential therapeutic tool; of the various forms of gut microbiota modulation, fecal microbiota transplantation (FMT) is the most approached. This recent technique involves introducing fecal material from a healthy donor into the patient's gastrointestinal tract, aiming to restore the gut microbiota and lead to the resolution of symptoms. This procedure implies a careful donor choice, fine collection and handling of fecal material, and a balanced preparation of the recipient and consequent administration of the prepared content. Although FMT is considered a biological therapy with promising effects, side effects such as diarrhea and abdominal pain have also been claimed, making this a significant challenge in the application of FMT. Bearing this in mind, the present review aims to summarize the recent advances in understanding FMT mechanisms, their impact across different pathological conditions, and the associated side effects, emphasizing the most recent published data.
Collapse
Affiliation(s)
- Cátia Almeida
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, 4200-319 Porto, Portugal
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Rita Oliveira
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Pilar Baylina
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- ESS-IPP—Health School, Porto Polytechnic Institute, 4200-072 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rúben Fernandes
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fábio G. Teixeira
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICVS/3B’s-PT Government Associated Lab, 4710-057/4805-107 Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Barata
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
21
|
Zhou X, Wang B, Demkowicz PC, Johnson JS, Chen Y, Spakowicz DJ, Zhou Y, Dorsett Y, Chen L, Sodergren E, Kuchel GA, Weinstock GM. Exploratory studies of oral and fecal microbiome in healthy human aging. FRONTIERS IN AGING 2022; 3:1002405. [PMID: 36338834 PMCID: PMC9631447 DOI: 10.3389/fragi.2022.1002405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Growing evidence has linked an altered host fecal microbiome composition with health status, common chronic diseases, and institutionalization in vulnerable older adults. However, fewer studies have described microbiome changes in healthy older adults without major confounding diseases or conditions, and the impact of aging on the microbiome across different body sites remains unknown. Using 16S ribosomal RNA gene sequencing, we reconstructed the composition of oral and fecal microbiomes in young (23-32; mean = 25 years old) and older (69-94; mean = 77 years old) healthy community-dwelling research subjects. In both body sites, we identified changes in minor bacterial operational taxonomic units (OTUs) between young and older subjects. However, the composition of the predominant bacterial species of the healthy older group in both microbiomes was not significantly different from that of the young cohort, which suggests that dominant bacterial species are relatively stable with healthy aging. In addition, the relative abundance of potentially pathogenic genera, such as Rothia and Mycoplasma, was enriched in the oral microbiome of the healthy older group relative to the young cohort. We also identified several OTUs with a prevalence above 40% and some were more common in young and others in healthy older adults. Differences with aging varied for oral and fecal samples, which suggests that members of the microbiome may be differentially affected by aging in a tissue-specific fashion. This is the first study to investigate both oral and fecal microbiomes in the context of human aging, and provides new insights into interactions between aging and the microbiome within two different clinically relevant sites.
Collapse
Affiliation(s)
- Xin Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou City, China
| | - Patrick C. Demkowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Yale University School of Medicine, New Haven, CT, United States
| | - Jethro S. Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Yanfei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou City, China
| | - Daniel J. Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Yair Dorsett
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Lei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - George A. Kuchel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, United States
| | | |
Collapse
|
22
|
The Role of Gut Microbiota and Trimethylamine N-oxide in Cardiovascular Diseases. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10330-0. [PMID: 36251229 DOI: 10.1007/s12265-022-10330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/30/2022] [Indexed: 10/24/2022]
Abstract
Changes in the intestinal flora and its metabolites have been associated with cardiovascular disease (CVD). Short-chain fatty acids, bile acids, and especially trimethylamine N-oxide (TMAO), an endothelial toxic factor produced by gut microbiota from phosphatidylcholine in meat, have been identified to be closely related to endothelial cell dysfunction as well as tightly affiliated with CVD, the two main types being coronary artery disease (CAD) and coronary microvascular disease (CMVD). We discuss how changes in the gut flora and the metabolite TMAO contribute to the development of CAD and CMVD. The above insight might serve as a stepping stone for novel CAD and CMVD diagnostics and therapies centered on microbiota.
Collapse
|
23
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
24
|
Mazzawi T, Hausken T, Refsnes PF, Hatlebakk JG, Lied GA. The Effect of Anaerobically Cultivated Human Intestinal Microbiota Compared to Fecal Microbiota Transplantation on Gut Microbiota Profile and Symptoms of Irritable Bowel Syndrome, a Double-Blind Placebo-Controlled Study. Microorganisms 2022; 10:microorganisms10091819. [PMID: 36144420 PMCID: PMC9503104 DOI: 10.3390/microorganisms10091819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) from healthy donors has been shown to improve the symptoms of irritable bowel syndrome (IBS) and changes the profile of the gut microbiota for the recipients. Alternatively, anaerobically cultivated human intestinal microbiota (ACHIM) can be used to manipulate the gut microbiota. The aim of the current study was to compare the efficacy and safety of ACHIM suspension with donor-FMT and placebo (patient's own feces) to treat IBS. Out of the 62 originally included eligible patients with diarrhea-predominant IBS and their respective donors, only 43 patients completed the study by answering the questionnaires and delivering fecal samples before transplantation and after 1, 4, 12 and 24 weeks. The patients were randomized into three subgroups for receiving ACHIM suspension (n = 17), donor-FMT (n = 11), or placebo (n = 15), and were followed up for 24 weeks. Fecal samples were analyzed by sequencing 16S rRNA gene using the GA-map Dysbiosis Test (Genetic Analysis AS, Oslo, Norway). IBS symptom questionnaires improved in all three subgroups. Bacterial strain signals in IBS patients were more significant for Actinobacteria spp. and Bifidobacteria spp. after receiving donor-FMT compared to placebo and for Alistipes onderdonkii before and after treatment in the subgroups of ACHIM and donor-FMT vs. placebo. These signals change after treatment with ACHIM suspension and donor FMT towards those measured for healthy controls, but not after placebo. IBS symptom questionnaires improved in all three forms of transplantation. Some bacterial strain signals were significantly different between ACHIM and donor-FMT vs. placebo. However, the placebo subgroup failed to change the gut microbiota towards signals measured for healthy controls. The safety and efficacy of ACHIM and donor-FMT seems similar in the current study, but further larger studies are needed.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Faculty of Medicine, Al-Balqa Applied University, 19117 Al-Salt, Jordan
- Correspondence:
| | - Trygve Hausken
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Per Førde Refsnes
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Gülen Arslan Lied
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
25
|
Ko YJ, Kim S, Pan CH, Park K. Identification of Functional Microbial Modules Through Network-Based Analysis of Meta-Microbial Features Using Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2851-2862. [PMID: 34329170 DOI: 10.1109/tcbb.2021.3100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the microbiome is composed of a variety of microbial interactions, it is imperative in microbiome research to identify a microbial sub-community that collectively conducts a specific function. However, current methodologies have been highly limited to analyzing conditional abundance changes of individual microorganisms without considering group-wise collective microbial features. To overcome this limitation, we developed a network-based method using nonnegative matrix factorization (NMF) to identify functional meta-microbial features (MMFs) that, as a group, better discriminate specific environmental conditions of samples using microbiome data. As proof of concept, large-scale human microbiome data collected from different body sites were used to identify body site-specific MMFs by applying NMF. The statistical test for MMFs led us to identify highly discriminative MMFs on sample classes, called synergistic MMFs (SYMMFs). Finally, we constructed a SYMMF-based microbial interaction network (SYMMF-net) by integrating all of the SYMMF information. Network analysis revealed core microbial modules closely related to critical sample properties. Similar results were also found when the method was applied to various disease-associated microbiome data. The developed method interprets high-dimensional microbiome data by identifying functional microbial modules on sample properties and intuitively representing their systematic relationships via a microbial network.
Collapse
|
26
|
Madhogaria B, Bhowmik P, Kundu A. Correlation between human gut microbiome and diseases. INFECTIOUS MEDICINE 2022; 1:180-191. [PMID: 38077626 PMCID: PMC10699709 DOI: 10.1016/j.imj.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Human gut microbiome is a major source of human bacterial population and a significant contribution to both positive and harmful effects. Due to its involvement in a variety of interactions, gut microorganisms have a great impact on our health throughout our lives. The impact of gut microbial population is been studied intensively in last two decades. Extensive literature survey focusing developments in the field were searched in English language Electronic Databases like PubMed, Google Scholar, Pubag, Google books, and Research Gate were mostly used to understand the role of human gut mirobiome and its role in different human diseases. Gut microbiome in healthy subjects differs from those who suffer from diseases. Type 2 diabetes, obesity, non-alcoholic liver disease, and cardiometabolic diseases have all been linked to dysbiosis of the gut microbiota. Pathogenesis of many disorders is also linked to changes in gut microbiota. Other diseases like cancer, arithritis, autism, depression, anxiety, sleep disorder, HIV, hypertension, and gout are also related to gut microbiota dysbiosis. We focus in this review on recent studies looking into the link between gut microbiome dysbiosis and disease etiology. Research on how gut microbiota affects host metabolism has been changed in past decades from descriptive analyses to high throughput integrative omics data analysis such as metagenomics and metabolomics. Identification of molecular mechanisms behind reported associations is been carried out in human, animals, and cells for measure of host physiology and mechanics. Still many the mechanisms are not completely understood.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Priyanka Bhowmik
- Department of Biological Sciences, Adamas University, Barrackpore-Barasat Road, 24 Paragnas North, Jagannathpur, Kolkata, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
27
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Gut Microbiota Manipulation in Irritable Bowel Syndrome. Microorganisms 2022; 10:microorganisms10071332. [PMID: 35889051 PMCID: PMC9319495 DOI: 10.3390/microorganisms10071332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Increased knowledge suggests that disturbed gut microbiota, termed dysbiosis, might promote the development of irritable bowel syndrome (IBS) symptoms. Accordingly, gut microbiota manipulation has evolved in the last decade as a novel treatment strategy in order to improve IBS symptoms. In using different approaches, dietary management stands first in line, including dietary fiber supplements, prebiotics, and probiotics that are shown to change the composition of gut microbiota, fecal short-chain fatty acids and enteroendocrine cells densities and improve IBS symptoms. However, the exact mixture of beneficial bacteria for each individual remains to be identified. Prescribing nonabsorbable antibiotics still needs confirmation, although using rifaximin has been approved for diarrhea-predominant IBS. Fecal microbiota transplantation (FMT) has recently gained a lot of attention, and five out of seven placebo-controlled trials investigating FMT in IBS obtain promising results regarding symptom reduction and gut microbiota manipulation. However, more data, including larger cohorts and studying long-term effects, are needed before FMT can be regarded as a treatment for IBS in clinical practice.
Collapse
|
29
|
Doroftei B, Ilie OD, Diaconu R, Hutanu D, Stoian I, Ilea C. An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression. Diagnostics (Basel) 2022; 12:diagnostics12071576. [PMID: 35885482 PMCID: PMC9315700 DOI: 10.3390/diagnostics12071576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Antenatal depression (AND) and post-partum depression (PPD) are long-term debilitating psychiatric disorders that significantly influence the composition of the gut flora of mothers and infants that starts from the intrauterine life. Not only does bacterial ratio shift impact the immune system, but it also increases the risk of potentially life-threatening disorders. Material and Methods: Therefore, we conducted a narrative mini-review aiming to gather all evidence published between 2018–2022 regarding microflora changes in all three stages of pregnancy. Results: We initially identified 47 potentially eligible studies, from which only 7 strictly report translocations; 3 were conducted on rodent models and 4 on human patients. The remaining studies were divided based on their topic, precisely focused on how probiotics, breastfeeding, diet, antidepressants, exogenous stressors, and plant-derived compounds modulate in a bidirectional way upon behavior and microbiota. Almost imperatively, dysbacteriosis cause cognitive impairments, reflected by abnormal temperament and personality traits that last up until 2 years old. Thankfully, a distinct technique that involves fecal matter transfer between individuals has been perfected over the years and was successfully translated into clinical practice. It proved to be a reliable approach in diminishing functional non- and gastrointestinal deficiencies, but a clear link between depressive women’s gastrointestinal/vaginal microbiota and clinical outcomes following reproductive procedures is yet to be established. Another gut-dysbiosis-driving factor is antibiotics, known for their potential to trigger inflammation. Fortunately, the studies conducted on mice that lack microbiota offer, without a shadow of a doubt, insight. Conclusions: It can be concluded that the microbiota is a powerful organ, and its optimum functionality is crucial, likely being the missing puzzle piece in the etiopathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence:
| | - Roxana Diaconu
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Pârvan Avenue, No. 4, 300115 Timisoara, Romania;
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
| |
Collapse
|
30
|
Zhang J, Liang Z, Ding Kao R, Han J, Du M, Ahmad AA, Wang S, Salekdeh GH, Long R, Yan P, Ding X. Maternal Fecal Microbes Contribute to Shaping the Early Life Assembly of the Intestinal Microbiota of Co-inhabiting Yak and Cattle Calves. Front Microbiol 2022; 13:916735. [PMID: 35733965 PMCID: PMC9208665 DOI: 10.3389/fmicb.2022.916735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The Qinghai-Tibetan Plateau offers one of the most extreme environments for yaks (Bos grunniens). Although the genetic adaptability of yak and rumen metagenomes is increasingly understood, the relative contribution of host genetics and maternal symbiotic microbes throughout early intestinal microbial successions in yaks remains elusive. In this study, we assessed the intestinal microbiota succession of co-inhabiting yak and cattle (Bos taurus) calves at different weeks after birth as well as the modes of transmission of maternal symbiotic microbes (i.e., rumen fluid, feces, oral cavity, and breast skin) to their calves' intestinal microbiota colonization. We found that the fecal microbiota of yak and cattle calves after birth was dominated by members of the families Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae. The Source Tracker model revealed that maternal fecal microbes played an important role (the average contribution was about 80%) in the intestinal microbial colonization of yak and cattle calves at different weeks after birth. Unlike cattle calves, there was no significant difference in the fecal microbiota composition of yak calves between 5 and 9 weeks after birth (Wilcoxon test, P > 0.05), indicating that yak may adapt to its natural extreme environment to stabilize its intestinal microbiota composition. Additionally, our results also find that the intestinal microbial composition of yak and cattle calves, with age, gradually tend to become similar, and the differences between species gradually decrease. The findings of this study are vital for developing strategies to manipulate the intestinal microbiota in grazing yaks and cattle for better growth and performance on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
- Chinese Academy of Agricultural Sciences (CAAS) and International Livestock Research Institute (ILRI) Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, CAAS, Beijing, China
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ruijun Long
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
31
|
Bao Z, Zhang Z, Zhou G, Zhang A, Shao A, Zhou F. Novel Mechanisms and Therapeutic Targets for Ischemic Stroke: A Focus on Gut Microbiota. Front Cell Neurosci 2022; 16:871720. [PMID: 35656406 PMCID: PMC9152006 DOI: 10.3389/fncel.2022.871720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is the most common type of stroke with limited treatment options. Although the pathological mechanisms and potential therapeutic targets of ischemic stroke have been comprehensively studied, no effective therapies were translated into clinical practice. Gut microbiota is a complex and diverse dynamic metabolic ecological balance network in the body, including a large number of bacteria, archaea, and eukaryotes. The composition, quantity and distribution in gut microbiota are found to be associated with the pathogenesis of many diseases, such as individual immune abnormalities, metabolic disorders, and neurodegeneration. New insight suggests that ischemic stroke may lead to changes in the gut microbiota and the alterations of gut microbiota may determine stroke outcomes in turn. The link between gut microbiota and stroke is expected to provide new perspectives for ischemic stroke treatment. In this review, we discuss the gut microbiota alterations during ischemic stroke and gut microbiota-related stroke pathophysiology and complications. Finally, we highlight the role of the gut microbiota as a potential therapeutic target for ischemic stroke and summarize the microbiome-based treatment options that can improve the recovery of stroke patients.
Collapse
|
32
|
Zhi W, Song W, Abdi Saed Y, Wang Y, Li Y. Fecal Capsule as a Therapeutic Strategy in IgA Nephropathy: A Brief Report. Front Med (Lausanne) 2022; 9:914250. [PMID: 35647000 PMCID: PMC9133370 DOI: 10.3389/fmed.2022.914250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this brief report, we reported an IgA nephropathy (IgAN) patient who presented in November 2020 with an acute exacerbation with massive proteinuria and diarrhea. He had the earliest onset in 2018 when his IgAN was diagnosed by renal biopsy. He has been treated with active ACEI/ARB drugs for more than 90 days, intermittent steroid therapy, combined with anti-infective therapy. Although his acute symptoms resolved with each episode, he became increasingly severe as the interval between episodes shortened. Accordingly, the immunosuppressive drugs were administered under the KDIGO guidelines and related guidelines. However, the patient and his family refused this treatment. We pondered over the possible pathogenesis of IgAN, and after a full discussion with the patient and his family, FMT was administered to him after obtaining his informed consent. During the FMT procedure, one healthy volunteer (the doctor himself) also took the FMT capsules. In the end, the patient’s urine protein dropped significantly and even turned negative after treatment. Neither the patient nor the healthy volunteer experienced any serious adverse effects during the use of the capsules and the subsequent 6-month follow-up period. We also used metagenomic sequencing to analyze the intestinal flora of patients before and after treatment, and a gradual increase stood out in the abundance of the patient’s intestinal flora after drug administration.
Collapse
Affiliation(s)
- Wenqiang Zhi
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People’s Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yasin Abdi Saed
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People’s Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yi Wang
- The Third Clincial College, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People’s Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial People’s Hospital, Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yafeng Li,
| |
Collapse
|
33
|
Shor EK, Brown SP, Freeman DA. Bacteria and Bellicosity: Photoperiodic Shifts in Gut Microbiota Drive Seasonal Aggressive Behavior in Male Siberian Hamsters. J Biol Rhythms 2022; 37:296-309. [PMID: 35502701 DOI: 10.1177/07487304221092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.
Collapse
Affiliation(s)
- Elyan K Shor
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - Shawn P Brown
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - David A Freeman
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
35
|
Wang X, Tsai T, Zuo B, Wei X, Deng F, Li Y, Maxwell CV, Yang H, Xiao Y, Zhao J. Donor age and body weight determine the effects of fecal microbiota transplantation on growth performance, and fecal microbiota development in recipient pigs. J Anim Sci Biotechnol 2022; 13:49. [PMID: 35399089 PMCID: PMC8996565 DOI: 10.1186/s40104-022-00696-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The application of fecal microbiota transplantation (FMT) to improve swine growth performance has been sporadically studied. Most of these studies used a single microbiota source and thus the effect of donor characteristics on recipient pigs’ fecal microbiota development and growth performance is largely unknown. Results In this study, we collected feces from six donors with heavy (H) or light (L) body weight and different ages (d 42, nursery; d 96, growing; and d 170, finisher) to evaluate their effects on the growth performance and fecal microbiota development of recipient pigs. Generally, recipients that received two doses of FMT from nursery and finisher stages donor at weaning (21 ± 2 days of age) inherited the donor’s growth pattern, while the pigs gavaged with grower stage material exerted a numerically greater weight gain than the control pigs regardless of donor BW. FMT from heavier donors (NH, GH, and FH) led to the recipients to have numerically increased growth compared to their lighter counterparts (NL, GL, and FL, respectively) throughout the growing and most finishing stages. This benefit could be attributed to the enrichment of ASV25 Faecalibacterium, ASV61 Faecalibacterium, ASV438 Coriobacteriaceae_unclassified, ASV144 Bulleidia, and ASV129 Oribacterium and decrease of ASV13 Escherichia during nursery stage. Fecal microbiota transplantation from growing and finishing donors influenced the microbial community significantly in recipient pigs during the nursery stage. FMT of older donors’ gut microbiota expedited recipients’ microbiota maturity on d 35 and 49, indicated by increased estimated microbiota ages. The age-associated bacterial taxa included ASV206 Ruminococcaceae, ASV211 Butyrivibrio, ASV416 Bacteroides, ASV2 Streptococcus, and ASV291 Veillonellaceae. The body weight differences between GL and GH pigs on d 104 were associated with the increased synthesis of the essential amino acid, lysine and methionine, mixed acid fermentation, expedited glycolysis, and sucrose/galactose degradation. Conclusions Overall, our study provided insights into how donor age and body weight affect FMT outcomes regarding growth performance, microbiota community shifts, and lower GI tract metabolic potentials. This study also provided guidance to select qualified donors for future fecal microbiota transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00696-1.
Collapse
|
36
|
Chen Y, Lv T, Yan D, Zheng L, Zheng B, Wang J, Gu S, Li L. Disordered Intestinal Microbial Communities During Clostridioides difficile Colonization and Subsequent Infection of Hepatic Cirrhosis Patients in a Tertiary Care Hospital in China. Front Cell Infect Microbiol 2022; 12:825189. [PMID: 35433508 PMCID: PMC9010725 DOI: 10.3389/fcimb.2022.825189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with hepatic cirrhosis are more susceptible to Clostridioides difficile infection (CDI) and colonization with Clostridioides difficile (C. difficile). Asymptomatic C. difficile colonization is thought to predispose to subsequent CDI. However, the dynamic gut microbiota changes remain unclear. In this study, we used 16S rRNA gene sequencing to longitudinally monitor alterations in the intestinal microbiota of 22 hepatic cirrhosis patients with toxigenic C. difficile colonization at admission (pre-CDI) and developed CDI during hospitalization, subdivided into pre-CDI and CDI. 21 hospitalized cirrhotic patients without C. difficile colonization served as controls (HC). Compared with HC, pre-CDI and CDI samples had significantly decreased microbial richness and diversity, a significantly higher relative abundance of opportunistic pathogen Enterococcus, and a lower relative abundance of beneficial symbionts, such as Faecalibacterium, Dorea, and Roseburia. Three biomarkers showed high accuracy for distinguishing pre-CDI samples from HC with an area under the curve (AUC) up to 0.81. In conclusion, our study explored the changes of the gut microbiome before and after CDI. The gut microbial richness as well as diversity in CDI patients were notably reduced, relative to controls. Imbalance of the intestinal flora may be related to the risk for development of CDI. Identifying key members of the gut microbiota and illustrating their roles and mechanisms of action in CDI development are important avenues for future research.
Collapse
Affiliation(s)
- Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lisi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingxia Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Silan Gu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Bacterial Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
37
|
Liu J, Gao Z, Liu C, Liu T, Gao J, Cai Y, Fan X. Alteration of Gut Microbiota: New Strategy for Treating Autism Spectrum Disorder. Front Cell Dev Biol 2022; 10:792490. [PMID: 35309933 PMCID: PMC8929512 DOI: 10.3389/fcell.2022.792490] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is defined as a complex heterogeneous disorder and characterized by stereotyped behavior and deficits in communication and social interactions. The emerging microbial knowledge has pointed to a potential link between gut microbiota dysbiosis and ASD. Evidence from animal and human studies showed that shifts in composition and activity of the gut microbiota may causally contribute to the etiopathogenesis of core symptoms in the ASD individuals with gastrointestinal tract disturbances and act on microbiota-gut-brain. In this review, we summarized the characterized gut bacterial composition of ASD and the involvement of gut microbiota and their metabolites in the onset and progression of ASD; the possible underlying mechanisms are also highlighted. Given this correlation, we also provide an overview of the microbial-based therapeutic interventions such as probiotics, antibiotics, fecal microbiota transplantation therapy, and dietary interventions and address their potential benefits on behavioral symptoms of ASD. The precise contribution of altering gut microbiome to treating core symptoms in the ASD needs to be further clarified. It seemed to open up promising avenues to develop microbial-based therapies in ASD.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Yun Cai, ; Xiaotang Fan,
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Yun Cai, ; Xiaotang Fan,
| |
Collapse
|
38
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 557] [Impact Index Per Article: 278.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
39
|
Haindl R, Totzauer L, Kulozik U. Preservation by lyophilization of a human intestinal microbiota: influence of the cultivation pH on the drying outcome and re‐establishment ability. Microb Biotechnol 2022; 15:886-900. [PMID: 35124900 PMCID: PMC8913864 DOI: 10.1111/1751-7915.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Regina Haindl
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Lisa Totzauer
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| |
Collapse
|
40
|
Savigamin C, Mahakit N, Stithit S, Samuthpongtorn C. How to Initiate Fecal Microbiota Transplantation in Developing Countries Using the Behavior Economics Concept of "Choice Architecture". Front Med (Lausanne) 2022; 8:746230. [PMID: 35096856 PMCID: PMC8789744 DOI: 10.3389/fmed.2021.746230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chatuthanai Savigamin
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttida Mahakit
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
41
|
Kim J, Lee HK. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front Immunol 2022; 12:807648. [PMID: 35069592 PMCID: PMC8777015 DOI: 10.3389/fimmu.2021.807648] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have revealed that the progression of colorectal cancer (CRC) is related to gut microbiome composition. Under normal conditions, the gut microbiome acts as a barrier to other pathogens or infections in the intestine and modulates inflammation by affecting the host immune system. These gut microbiota are not only related to the intestinal inflammation associated with tumorigenesis but also modulation of the anti-cancer immune response. Thus, they are associated with tumor progression and anti-cancer treatment efficacy. Studies have shown that the gut microbiota can be used as biomarkers to predict the effect of immunotherapy and improve the efficacy of immunotherapy in treating CRC through modulation. In this review, we discuss the role of the gut microbiome as revealed by recent studies of the growth and progression of CRC along with its synergistic effect with anti-cancer treatment modalities.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
42
|
Alharthi A, Alhazmi S, Alburae N, Bahieldin A. The Human Gut Microbiome as a Potential Factor in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23031363. [PMID: 35163286 PMCID: PMC8835713 DOI: 10.3390/ijms23031363] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
The high prevalence of gastrointestinal (GI) disorders among autism spectrum disorder (ASD) patients has prompted scientists to look into the gut microbiota as a putative trigger in ASD pathogenesis. Thus, many studies have linked the gut microbial dysbiosis that is frequently observed in ASD patients with the modulation of brain function and social behavior, but little is known about this connection and its contribution to the etiology of ASD. This present review highlights the potential role of the microbiota–gut–brain axis in autism. In particular, it focuses on how gut microbiota dysbiosis may impact gut permeability, immune function, and the microbial metabolites in autistic people. We further discuss recent findings supporting the possible role of the gut microbiome in initiating epigenetic modifications and consider the potential role of this pathway in influencing the severity of ASD. Lastly, we summarize recent updates in microbiota-targeted therapies such as probiotics, prebiotics, dietary supplements, fecal microbiota transplantation, and microbiota transfer therapy. The findings of this paper reveal new insights into possible therapeutic interventions that may be used to reduce and cure ASD-related symptoms. However, well-designed research studies using large sample sizes are still required in this area of study.
Collapse
Affiliation(s)
- Amani Alharthi
- Department of Biology, Faculty of Science, Majmaah University, Al Zulfi 11932, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
- Correspondence: (A.A.); (A.B.)
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
| | - Najla Alburae
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
- Correspondence: (A.A.); (A.B.)
| |
Collapse
|
43
|
Guo X, Huang C, Xu J, Xu H, Liu L, Zhao H, Wang J, Huang W, Peng W, Chen Y, Nie Y, Zhou Y, Zhou Y. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front Nutr 2022; 8:818902. [PMID: 35127797 PMCID: PMC8814525 DOI: 10.3389/fnut.2021.818902] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is characterized by relapse and remission alternately. It remains a great challenge to diagnose and assess disease activity during IBD due to the lack of specific markers. While traditional biomarkers from plasma and stool, such as C-reactive protein (CRP), fecal calprotectin (FC), and S100A12, can be used to measure inflammation, they are not specific to IBD and difficult to determine an effective cut-off value. There is consensus that gut microbiota is crucial for intestinal dysbiosis is closely associated with IBD etiopathology and pathogenesis. Multiple studies have documented differences in the composition of gut microbiota between patients with IBD and healthy individuals, particularly regarding microbial diversity and relative abundance of specific bacteria. Patients with IBD have higher levels of Proteobacteria and lower amounts of Bacteroides, Eubacterium, and Faecalibacterium than healthy individuals. This review summarizes the pros and cons of using traditional and microbiota biomarkers to assess disease severity and treatment outcomes and addresses the possibility of using microbiota-focused interventions during IBD treatment. Understanding the role of microbial biomarkers in the assessment of disease activity and treatment outcomes has the potential to change clinical practice and lead to the development of more personalized therapies.
Collapse
Affiliation(s)
- Xue Guo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqi Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wu Peng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Yongjian Zhou
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Youlian Zhou
| |
Collapse
|
44
|
Li Y, Wang Y, Zhang T. Fecal Microbiota Transplantation in Autism Spectrum Disorder. Neuropsychiatr Dis Treat 2022; 18:2905-2915. [PMID: 36544550 PMCID: PMC9762410 DOI: 10.2147/ndt.s382571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that begin in infancy. In recent years, the incidence of ASD in the world is increasing year by year. At present, the etiology and pathogenesis of ASD are not clear, and effective treatments are still lacking. In addition to neurobehavioral symptoms, children with ASD often have obvious gastrointestinal symptoms. Gut microbiota is a large microbial community in the human gut, which is closely related to the nervous system and can affect brain development and behavior through the neuroendocrine, neuroimmune and autonomic nervous systems, forming a microbiota-gut-brain axis connection. Recent studies have shown that children with ASD have significant gut microbiota and metabolic disorders, and fecal microbiota transplantation (FMT) is expected to improve ASD-related symptoms by regulating gut microbiota and metabolism. This review paper will therefore focus on FMT in the treatment of ASD, and FMT is effective in improving gastrointestinal and neurobehavioral symptoms in children with ASD.
Collapse
Affiliation(s)
- Youran Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Varesi A, Deumer US, Ananth S, Ricevuti G. The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications. J Clin Med 2021; 10:jcm10215077. [PMID: 34768601 PMCID: PMC8584653 DOI: 10.3390/jcm10215077] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
The well-known symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are chronic pain, cognitive dysfunction, post-exertional malaise and severe fatigue. Another class of symptoms commonly reported in the context of ME/CFS are gastrointestinal (GI) problems. These may occur due to comorbidities such as Crohn's disease or irritable bowel syndrome (IBS), or as a symptom of ME/CFS itself due to an interruption of the complex interplay between the gut microbiota (GM) and the host GI tract. An altered composition and overall decrease in diversity of GM has been observed in ME/CFS cases compared to controls. In this review, we reflect on genetics, infections, and other influences that may factor into the alterations seen in the GM of ME/CFS individuals, we discuss consequences arising from these changes, and we contemplate the therapeutic potential of treating the gut to alleviate ME/CFS symptoms holistically.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Sanjana Ananth
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Giovanni Ricevuti
- Department of Drug Sciences, School of Pharmacy, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| |
Collapse
|
46
|
Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J Clin Med 2021; 10:4786. [PMID: 34682909 PMCID: PMC8538807 DOI: 10.3390/jcm10204786] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic systemic disease that manifests via various symptoms such as chronic fatigue, post-exertional malaise, and cognitive impairment described as "brain fog". These symptoms often prevent patients from keeping up their pre-disease onset lifestyle, as extended periods of physical or mental activity become almost impossible. However, the disease presents heterogeneously with varying severity across patients. Therefore, consensus criteria have been designed to provide a diagnosis based on symptoms. To date, no biomarker-based tests or diagnoses are available, since the molecular changes observed also largely differ from patient to patient. In this review, we discuss the infectious, genetic, and hormonal components that may be involved in CFS pathogenesis, we scrutinize the role of gut microbiota in disease progression, we highlight the potential of non-coding RNA (ncRNA) for the development of diagnostic tools and briefly mention the possibility of SARS-CoV-2 infection causing CFS.
Collapse
Affiliation(s)
- Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, 37129 Verona, Italy;
| | - Paulina López-Carrasco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | | | - Sakshi Prasad
- National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Giovanni Ricevuti
- School of Pharmacy, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
47
|
Bornbusch SL, Harris RL, Grebe NM, Roche K, Dimac-Stohl K, Drea CM. Antibiotics and fecal transfaunation differentially affect microbiota recovery, associations, and antibiotic resistance in lemur guts. Anim Microbiome 2021; 3:65. [PMID: 34598739 PMCID: PMC8485508 DOI: 10.1186/s42523-021-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases. RESULTS Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups. CONCLUSIONS Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.
Collapse
Affiliation(s)
| | - Rachel L. Harris
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| | - Nicholas M. Grebe
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| | - Kimberly Roche
- Program in Computational Biology & Bioinformatics, Duke University, Durham, USA
| | | | - Christine M. Drea
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| |
Collapse
|
48
|
Sanlier N, Kocabas Ş. The effect of probiotic, prebiotic and gut microbiota on ASD: A review and future perspectives. Crit Rev Food Sci Nutr 2021; 63:2319-2330. [PMID: 34486891 DOI: 10.1080/10408398.2021.1973957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is a serious neurodevelopmental disease that affects social communication and behavior, characterized by an increasingly common immune mechanism and various complications in the gastrointestinal system. Symptoms of autism can generally vary according to the genetic background of the individuals, the environment in which they live. The microbiota of individuals with autism is also different from healthy individuals. Recently, probiotics, prebiotic, fecal microbiota transplantation, diet therapy, etc. options have come to the fore. Cofactors are even more important at this stage. Since it is related to the gut microbiota, immune mechanism, gastrointestinal system, attention has been drawn to the relationship between dysbiosis, autism in the intestine. The component of the gut microbiota in individuals with autism has been linked with gastrointestinal symptoms that develop with autism severity. However, the role of the microbiota in diagnosis, follow-up, treatment is not clear yet, and its two-way relationship with the nervous system makes it difficult to establish a cause-effect relationship. Nutritional cofactors required in neurotransmitter synthesis and enzyme activation must be regularly and adequately taken to maximize brain functions in autistic individuals. Therefore, this study was conducted to investigate the cause-effect relationship of ASD with microbiota and brain-gut axis, probiotic-prebiotic use.
Collapse
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
49
|
Ansari AF, Reddy YBS, Raut J, Dixit NM. An efficient and scalable top-down method for predicting structures of microbial communities. NATURE COMPUTATIONAL SCIENCE 2021; 1:619-628. [PMID: 38217133 DOI: 10.1038/s43588-021-00131-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2024]
Abstract
Modern applications involving multispecies microbial communities rely on the ability to predict structures of such communities in defined environments. The structures depend on pairwise and high-order interactions between species. To unravel these interactions, classical bottom-up approaches examine all possible species subcommunities. Such approaches are not scalable as the number of subcommunities grows exponentially with the number of species, n. Here we present a top-down method wherein the number of subcommunities to be examined grows linearly with n, drastically reducing experimental effort. The method uses steady-state data from leave-one-out subcommunities and mathematical modeling to infer effective pairwise interactions and predict community structures. The accuracy of the method increases with n, making it suitable for large communities. We established the method in silico and validated it against a five-species community from literature and an eight-species community cultured in vitro. Our method offers an efficient and scalable tool for predicting microbial community structures.
Collapse
Affiliation(s)
- Aamir Faisal Ansari
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
50
|
Influence of Cultivation pH on Composition, Diversity, and Metabolic Production in an In Vitro Human Intestinal Microbiota. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fecal microbiota transplantation, an alternative treatment method for gastrointestinal diseases, has a high recovery rate, but comes with disadvantages, such as high donor requirements and the low storability of stool. A solution to overcome these problems is the cultivation of an in vitro microbiota. However, the influence of cultivation conditions on the pH are yet unknown. In this study, the influence of the cultivation pH (6.0–7.0) on the system’s behavior and characteristics, including cell count, metabolism, and microbial composition, was investigated. With an increasing cultivation pH, an increase in cell count, total amount of SCFAs, acetate, propionate, and the abundance of Bacteroidetes and Verrucomicrobia were observed. For the concentration of butyrate and the abundance of Actinobacteria and Firmicutes, a decrease with increasing pH was determined. For the concentration of isovalerate, the abundance of Proteobacteria and diversity (richness and Shannon effective), no effect of the pH was observed. Health-promoting genera were more abundant at lower pH levels. When cultivating an in vitro microbiota, all investigated pH values created a diverse and stable system. Ultimately, therefore, the choice of pH creates significant differences in the established in vitro microbiota, but no clear recommendations for a special value can be made.
Collapse
|