1
|
Xiaoshan Z, Huan C, Zhilin G, Liwen M, Yan Z, Yue C. Hypoxia-inducible factor-1α attenuates renal podocyte injury in male rats in a simulated high-altitude environment by upregulating Krüppel-like factor 4 expression. Exp Physiol 2024; 109:1188-1198. [PMID: 38774964 PMCID: PMC11215487 DOI: 10.1113/ep091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 07/02/2024]
Abstract
Previous studies have shown that podocyte injury is involved in the development of proteinuria in rats under hypobaric hypoxia conditions. Prolyl hydroxylase inhibitors (PHIs) may reduce proteinuria. This study aimed to further investigate whether the protective effects of hypoxia-inducible factor 1α (HIF1α) on podocyte injury induced by hypobaric hypoxia are related to Krüppel-like factor 4 (KLF4). Rats were housed in a low-pressure oxygen chamber to simulate a high-altitude environment (5000 m), and a PHI was intraperitoneally injected. Urinary protein electrophoresis was performed and the morphology of the podocytes was observed by electron microscopy. Rat podocytes were cultured under 1% O2, and siRNA was used to interfere with KLF4 expression. The protein expression levels of HIF1α, KLF4, CD2-associated protein (CD2AP) and nephrin were determined by western blotting. Compared with those in the experimental group, the rats in the intervention group on day 14 had lower urinary protein levels, increased protein expression levels of CD2AP and nephrin, and reduced podocyte injury. The results of in vitro experiments showed that the protein expression levels of KLF4, CD2AP and nephrin were greater in the PHI intervention group and lower in the HIF1α inhibitors group than in the low-oxygen group. The protein expression of CD2AP and nephrin in the siKLF4-transfected podocytes treated with PHI and HIF1α inhibitors did not differ significantly from that in the low-oxygen group. HIF1α may be involved in reducing progressive high-altitude proteinuria by regulating KLF4 expression and contributing to the repair of podocyte injury induced by hypobaric hypoxia.
Collapse
Affiliation(s)
- Zeng Xiaoshan
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Cheng Huan
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Gan Zhilin
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Mo Liwen
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| | - Zeng Yan
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| | - Cheng Yue
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| |
Collapse
|
2
|
García-Loredo JA, Santoyo-Suarez MG, Rodríguez-Nuñez O, Benitez Chao DF, Garza-Treviño EN, Zapata-Morin PA, Padilla-Rivas GR, Islas JF. Is the Cis-Element CACCC-Box a Master Regulatory Element during Cardiovascular Disease? A Bioinformatics Approach from the Perspective of the Krüppel-like Family of Transcription Factors. Life (Basel) 2024; 14:493. [PMID: 38672763 PMCID: PMC11051458 DOI: 10.3390/life14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The CACCC-box motif emerges as a pivotal cis-regulatory element implicated in diverse developmental processes and diseases, particularly cardiovascular diseases (CVDs). This study centers on the intricate interplay between the CACCC-box and its binding proteins such as: the Krüppel-Like Family (KLF) of transcription factors as primary effectors in the context of CVDs. Our analysis was through a bioinformatics approach, which revealed significant transcriptional activity among KLF subgroup 2, exhibiting the highest number of interactions focusing on the established roles: pluripotency, cancer, and cardiovascular development and diseases. Our analysis reveals KLF's interactions with GATA4, MEF2C, NKX2.5 and other ~90 potential genes that participate in the regulation of the hypertrophic environment (or CVDs' Environment). Also, the GO analysis showed that genes containing the motif CACCC were enriched for multiple CVDs; in combination with STRING analysis, these results pointed to a link between KLFs and these diseases. The analysis further identifies other potential CACCC-box binding factors, such as SP family members, WT1, VEZF1, and -SALL4, which are implicated in cardiac contraction, remodeling, and inflammation processes.
Collapse
Affiliation(s)
- Juan Andrés García-Loredo
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
- Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Michelle G. Santoyo-Suarez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Oscar Rodríguez-Nuñez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Diego Francisco Benitez Chao
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Patricio Adrián Zapata-Morin
- Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| |
Collapse
|
3
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Gu P, Wang Z, Yu X, Wu N, Wu L, Li Y, Hu X. Mechanism of KLF9 in airway inflammation in chronic obstructive pulmonary. Immun Inflamm Dis 2023; 11:e1043. [PMID: 37904708 PMCID: PMC10568256 DOI: 10.1002/iid3.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an airway-associated lung disorder, resulting in airway inflammation. This article aimed to explore the role of the krüppel-like factor 9 (KLF9)/microRNA (miR)-494-3p/phosphatase and tensin homolog (PTEN) axis in airway inflammation and pave a theoretical foundation for the treatment of COPD. METHODS The COPD mouse model was established by exposure to cigarette smoke, followed by measurements of total cells, neutrophils, macrophages, and hematoxylin and eosin staining. The COPD cell model was established on human lung epithelial cells BEAS-2B using cigarette smoke extract. Cell viability was assessed by cell counting kit-8 assay. miR-494-3p, KLF9, PTEN, and NLR family, pyrin domain containing 3 (NLRP3) levels in tissues and cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Inflammatory factors (TNF-α/IL-6/IL-8/IFN-γ) were measured by enzyme-linked immunosorbent assay. Interactions among KLF9, miR-494-3p, and PTEN 3'UTR were verified by chromatin immunoprecipitation and dual-luciferase assays. RESULTS KLF9 was upregulated in lung tissues of COPD mice. Inhibition of KLF9 alleviated airway inflammation, reduced intrapulmonary inflammatory cell infiltration, and repressed NLRP3 expression. KLF9 bound to the miR-494-3p promoter and increased miR-494-3p expression, and miR-494-3p negatively regulated PTEN expression. miR-494-3p overexpression or Nigericin treatment reversed KLF9 knockdown-driven repression of NLRP3 inflammasome and inflammation. CONCLUSION KLF9 bound to the miR-494-3p promoter and repressed PTEN expression, thereby facilitating NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Peijie Gu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Zhen Wang
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xin Yu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Nan Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Liang Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Yihang Li
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| |
Collapse
|
5
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
6
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
7
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
8
|
Chen H, Li LL, Du Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming. Front Pharmacol 2023; 14:1115226. [PMID: 36937859 PMCID: PMC10017497 DOI: 10.3389/fphar.2023.1115226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Liver diseases, characterized by metabolic disorder, have become a global public health problem with high morbidity and mortality. Krüppel-like factor 15 (KLF15) is a zinc-finger transcription factor mainly enriched in liver. Increasing evidence suggests that hepatic KLF15 is activated rapidly during fasting, and contributes to the regulation of gluconeogenesis, lipid, amino acid catabolism, bile acids, endobiotic and xenobiotic metabolism. This review summarizes the latest advances of KLF15 in metabolic reprogramming, and explore the function of KLF15 in acute liver injury, hepatitis B virus, and autoimmune hepatitis. which aims to evaluate the potential of KLF15 as a therapeutic target and prognostic biomarker for liver diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Lan-Lan Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yan Du,
| |
Collapse
|
9
|
EKLF/Klf1 regulates erythroid transcription by its pioneering activity and selective control of RNA Pol II pause-release. Cell Rep 2022; 41:111830. [PMID: 36543143 PMCID: PMC9879271 DOI: 10.1016/j.celrep.2022.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
EKLF/Klf1 is a zinc-finger transcription activator essential for erythroid lineage commitment and terminal differentiation. Using ChIP-seq, we investigate EKLF DNA binding and transcription activation mechanisms during mouse embryonic erythropoiesis. We utilize the Nan/+ mouse that expresses the EKLF-E339D (Nan) variant mutated in its conserved zinc-finger region and address the mechanism of hypomorphic and neomorphic changes in downstream gene expression. First, we show that Nan-EKLF limits normal EKLF binding to a subset of its sites. Second, we find that ectopic binding of Nan-EKLF occurs largely at enhancers and activates transcription through pioneering activity. Third, we find that for a subset of ectopic targets, gene activation is achieved in Nan/+ only by Nan-EKLF binding to distal enhancers, leading to RNA polymerase II pause-release. These results have general applicability to understanding how a DNA binding variant factor confers dominant disruptive effects on downstream gene expression even in the presence of its normal counterpart.
Collapse
|
10
|
Zhou C, Sun P, Hamblin MH, Yin KJ. Genetic deletion of Krüppel-like factor 11 aggravates traumatic brain injury. J Neuroinflammation 2022; 19:281. [PMID: 36403074 PMCID: PMC9675068 DOI: 10.1186/s12974-022-02638-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The long-term functional recovery of traumatic brain injury (TBI) is hampered by pathological events, such as parenchymal neuroinflammation, neuronal death, and white matter injury. Krüppel-like transcription factor 11 (KLF 11) belongs to the zinc finger family of transcription factors and actively participates in various pathophysiological processes in neurological disorders. Up to now, the role and molecular mechanisms of KLF11 in regulating the pathogenesis of brain trauma is poorly understood. METHODS KLF11 knockout (KO) and wild-type (WT) mice were subjected to experimental TBI, and sensorimotor and cognitive functions were evaluated by rotarod, adhesive tape removal, foot fault, water maze, and passive avoidance tests. Brain tissue loss/neuronal death was examined by MAP2 and NeuN immunostaining, and Cresyl violet staining. White matter injury was assessed by Luxol fast blue staining, and also MBP/SMI32 and Caspr/Nav1.6 immunostaining. Activation of cerebral glial cells and infiltration of blood-borne immune cells were detected by GFAP, Iba-1/CD16/32, Iba-1/CD206, Ly-6B, and F4/80 immunostaining. Brian parenchymal inflammatory cytokines were measured with inflammatory array kits. RESULTS Genetic deletion of KLF11 worsened brain trauma-induced sensorimotor and cognitive deficits, brain tissue loss and neuronal death, and white matter injury in mice. KLF11 genetic deficiency in mice also accelerated post-trauma astrocytic activation, promoted microglial polarization to a pro-inflammatory phenotype, and increased the infiltration of peripheral neutrophils and macrophages into the brain parenchyma. Mechanistically, loss-of-KLF11 function was found to directly increase the expression of pro-inflammatory cytokines in the brains of TBI mice. CONCLUSION KLF11 acts as a novel protective factor in TBI. KLF11 genetic deficiency in mice aggravated the neuroinflammatory responses, grey and white matter injury, and impaired long-term sensorimotor and cognitive recovery. Elucidating the functional importance of KLF11 in TBI may lead us to discover novel pharmacological targets for the development of effective therapies against brain trauma.
Collapse
Affiliation(s)
- Chao Zhou
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ping Sun
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA, 70112, USA
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Ke-Jie Yin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
You B, Yang Y, Zhou Z, Yan Y, Zhang L, Jin J, Qian H. Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics 2022; 14:pharmaceutics14091848. [PMID: 36145595 PMCID: PMC9503573 DOI: 10.3390/pharmaceutics14091848] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been used to treat diseases. Growing evidence indicates that EVs play a cardioprotective role in heart disease by activating beneficial signaling pathways. Multiple functional components of EVs and intracellular molecular mechanisms are involved in the process. To overcome the shortcomings of native EVs such as their heterogeneity and limited tropism, a series of engineering approaches has been developed to improve the therapeutic efficiency of EVs. In this review, we present an overview of the research and future directions for EVs-based cardiac therapies with an emphasis on EVs-mediated delivery of therapeutic agents. The advantages and limitations of various modification strategies are discussed, and possible opportunities for improvement are proposed. An in-depth understanding of the endogenous properties of EVs and EVs engineering strategies could lead to a promising cell-free therapy for cardiac repair.
Collapse
Affiliation(s)
- Benshuai You
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225317, China
| | - Zixuan Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Correspondence: (J.J.); (H.Q.)
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.J.); (H.Q.)
| |
Collapse
|
12
|
Li Y, Zhao X, Xu M, Chen M. Krüppel-like factors in glycolipid metabolic diseases. Mol Biol Rep 2022; 49:8145-8152. [PMID: 35585376 DOI: 10.1007/s11033-022-07565-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Krüppel-like factors (KLFs) are a family of transcription factors characterised by zinc-finger structures at the C-terminal. They play the key roles in cell proliferation, differentiation, and migration, as well as in embryonic development. They have been widely expressed in multiple systems in vivo, and their dysregulation is closely associated with a variety of human diseases. Glycolipid metabolism is a complex physiological process which can be regulated at the transcriptional level. Glycolipid metabolic diseases, such as obesity, non-alcoholic fatty liver disease, diabetes, and their complications, are a serious threat to human health. Recently, increasing studies have shown that KLFs are closely related to glycolipid metabolism and energy balance of the liver, adipose tissue, heart, skeletal muscle, lung, pancreas, and nervous system. In this review, we focused on the correlation between the subtypes of the KLF family and glycolipid metabolic diseases to describe new directions and trends in endocrine and glycolipid metabolic disease treatments.
Collapse
Affiliation(s)
- Yutong Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230032, Hefei, Anhui, China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230032, Hefei, Anhui, China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230032, Hefei, Anhui, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230032, Hefei, Anhui, China.
| |
Collapse
|
13
|
Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, Tu Q, Zhang X, Luo S, Yao L, Chen F, Li J. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol 2022; 19:504-515. [PMID: 34983946 PMCID: PMC8976055 DOI: 10.1038/s41423-021-00806-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
Sepsis is a heterogeneous syndrome induced by a dysregulated host response to infection. Glycolysis plays a role in maintaining the immune function of macrophages, which is crucial for severely septic patients. However, how the pathways that link glycolysis and macrophages are regulated is still largely unknown. Here, we provide evidence to support the function of KLF14, a novel Krüppel-like transcription factor, in the regulation of glycolysis and the immune function of macrophages during sepsis. KLF14 deletion led to significantly increased mortality in lethal models of murine endotoxemia and sepsis. Mechanistically, KLF14 decreased glycolysis and the secretion of inflammatory cytokines by macrophages by inhibiting the transcription of HK2. In addition, we confirmed that the expression of KLF14 was upregulated in septic patients. Furthermore, pharmacological activation of KLF14 conferred protection against sepsis in mice. These findings uncover a key role of KLF14 in modulating the inflammatory signaling pathway and shed light on the development of KLF14-targeted therapeutics for sepsis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Lu Liu
- Department of Anesthesiology, Weifang Medical University, Weifang, 261000, China
| | - Tong Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Pengfei Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Qing Tu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Xinyi Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Shiyuan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Liangfang Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Jingbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China.
| |
Collapse
|
14
|
Tsaryk R, Yucel N, Leonard EV, Diaz N, Bondareva O, Odenthal-Schnittler M, Arany Z, Vaquerizas JM, Schnittler H, Siekmann AF. Shear stress switches the association of endothelial enhancers from ETV/ETS to KLF transcription factor binding sites. Sci Rep 2022; 12:4795. [PMID: 35314737 PMCID: PMC8938417 DOI: 10.1038/s41598-022-08645-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.
Collapse
Affiliation(s)
- Roman Tsaryk
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nora Yucel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Elvin V Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Noelia Diaz
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Olga Bondareva
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| | - Maria Odenthal-Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Institute of Neuropathology, Westfälische Wilhelms-Universität Münster, Pottkamp 2, 48149, Münster, Germany
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Hans Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Institute of Neuropathology, Westfälische Wilhelms-Universität Münster, Pottkamp 2, 48149, Münster, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhang W, Chen Z, Qiao S, Chen S, Zheng H, Wei X, Li Q, Xu B, Huang W. The effects of extracellular vesicles derived from Krüppel-Like Factor 2 overexpressing endothelial cells on the regulation of cardiac inflammation in the dilated cardiomyopathy. J Nanobiotechnology 2022; 20:76. [PMID: 35139878 PMCID: PMC8827179 DOI: 10.1186/s12951-022-01284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is one of the common causes of heart failure. Myocardial injury triggers an inflammatory response and recruits immune cells into the heart. High expression of Krüppel-like factor 2 (KLF2) in endothelial cells (ECs) potentially exerts an anti-inflammatory effect. However, the role of extracellular vesicles (EVs) from KLF2-overexpressing ECs (KLF2-EVs) in DCM remains unclear. METHODS AND RESULTS EVs were separated from the supernatant of KLF2-overexpressing ECs by gradient centrifugation. Mice were repeatedly administered low-dose doxorubicin (DOX) and then received KLF2-EVs through an intravenous injection. Treatment with KLF2-EVs prevented doxorubicin-induced left ventricular dysfunction and reduced the recruitment of Ly6high Mo/Mø in the myocardium. We used flow cytometry to detect Ly6high monocytes in bone marrow and spleen tissues and to elucidate the mechanisms underlying this beneficial effect. KLF2-EVs increased the retention of Ly6Chigh monocytes in the bone marrow but not in the spleen tissue. KLF2-EVs also significantly downregulated C-C chemokine receptor 2 (CCR2) protein expression in cells from the bone marrow. CONCLUSIONS EVs derived from KLF2-overexpressing ECs reduced cardiac inflammation and ameliorated left ventricular dysfunction in DCM mice by targeting the CCR2 protein to inhibit Ly6Chigh monocyte mobilization from the bone marrow.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Ziwei Chen
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Shuaihua Qiao
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Siyuan Chen
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Hongyan Zheng
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xuan Wei
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Qiaoling Li
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Wei Huang
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
17
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021; 20:1663-1680. [PMID: 34334119 PMCID: PMC8489901 DOI: 10.1080/15384101.2021.1958484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9 and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
18
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021:1-18. [PMID: 34382896 DOI: 10.1080/15384101.2021.1958501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9, and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration, and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
19
|
Chen L, Huang R, Li Y, Li Y, Li Y, Liao L, He L, Zhu Z, Wang Y. Genome-wide identification, evolution of Krüppel-like factors (klfs) and their expressions during GCRV challenge in grass carp (Ctenopharyngodonidella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104062. [PMID: 33667530 DOI: 10.1016/j.dci.2021.104062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The Krüppel-like factors (KLFs) are a family of transcription factors containing three highly conserved tandem zinc finger structures, and each member participates in multiple physiological and pathological processes. The publication of genome sequences and the application of bioinformatics tools have led to the discovery of numerous gene families in fishes. Here, 24 klf genes were re-annotated in grass carp. Subsequently, the number of klf family members were investigated in some representative vertebrate species. Then, a series of bioinformatics analysis showed that grass carp klfs in the same subfamily had similar genome structure patterns and conserved distribution patterns of motifs, which supported their molecular evolutionary relationships. Furthermore, the mRNA expression profiles showed that 24 grass carp klfs were ubiquitously expressed in 11 different tissues, and some of them displayed tissue-enriched expression patterns. Finally, the expressions of the evolutionarily expanded klf members (klf2a, 2b, 2l, 5a, 5b, 5l, 6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 15 and 15l) during GCRV infection were also analyzed. The results suggested that grass carp klf genes with common evolutionary sources may share functional diversity and conservation. In conclusion, this study provides preliminary clues for further researches on grass carp klf members and their underlying transcriptional regulatory mechanisms during GCRV infection.
Collapse
Affiliation(s)
- Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
20
|
Cao Y. Potential roles of Kruppel-like factors in mediating adverse vascular effects of nanomaterials: A review. J Appl Toxicol 2021; 42:4-16. [PMID: 33837572 DOI: 10.1002/jat.4172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The development of nanotechnology leads to the exposure of human beings to nanomaterials (NMs), and there is a health concern about the adverse vascular effects of NMs. Current data from epidemiology, controlled human exposure, and animal studies suggested that exposure to NMs could induce cardiopulmonary effects. In support of in vivo findings, in vitro studies showed that direct contact of vascular cells with NMs could induce endothelial cell (EC) activation and promote macrophage foam cell formation, although only limited studies showed that NMs could damage vascular smooth muscle cells and promote their phenotypic switch. It has been proposed that NMs induced adverse vascular effects via different mechanisms, but it is still necessary to understand the upstream events. Kruppel-like factors (KLFs) are a set of C2H2 zinc finger transcription factors (TFs) that can regulate various aspects of vascular biology, but currently, the roles of KLF2 in mediating the adverse vascular effects of NMs have gained little attention by toxicologists. This review summarized current knowledge about the adverse vascular effects of NMs and proposed the potential roles of KLFs in mediating these effects based on available data from toxicological studies as well as the current understanding about KLFs in vascular biology. Finally, the challenges in investigating the role of KLFs in vascular toxicology were also summarized. Considering the important roles of KLFs in vascular biology, further studies are needed to understand the influence of NMs on KLFs and the downstream events.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
21
|
Wei G, Zhu D, Sun Y, Zhang L, Liu X, Li M, Gu J. The protective effects of azilsartan against oscillatory shear stress-induced endothelial dysfunction and inflammation are mediated by KLF6. J Biochem Mol Toxicol 2021; 35:1-8. [PMID: 33793019 DOI: 10.1002/jbt.22766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a common cardiovascular disease with high morbidity and mortality. It is reported to be related to oscillatory shear stress (OSS)-induced endothelial dysfunction and excessive production of inflammatory factors. Azilsartan, a specific antagonist of the angiotensin II receptor, has been approved for the management of hypertensive subjects with diabetes mellitus type II (DMII). The present study will investigate the effects of azilsartan against OSS-induced endothelial dysfunction and inflammation, as well as the underlying mechanism. MATERIALS AND METHODS Cell viability was detected using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay were used to determine the expression levels of IL-6, TNF-α, IL-1β, VCAM-1, and ICAM-1 in human aortic endothelial cells (HAECs). Generation of reactive oxygen species (ROS) was measured using 2'-7'dichlorofluorescin diacetate (DCFH-DA) staining, and the level of reduced glutathione (GSH) was evaluated using a commercial kit. The adhesion of THP-1 monocytes to HAECs was evaluated using calcein-AM staining. The expression level of KLF6 was determined using qRT-PCR and Western blot analysis. RESULTS According to the result of the MTT assay, 5 and 10 μM azilsartan were considered as the optimized concentrations applied in the present study. The elevated production of IL-6, TNF-α, and IL-1β, increased levels of ROS, decreased levels of reduced GSH, upregulated VCAM-1, ICAM-1, and E-selectin, and the aggravated adhesion of THP-1 cells to HAECs induced by OSS were all reversed by the introduction of azilsartan. The downregulation of KLF6 induced by OSS was significantly reversed by azilsartan. By knocking down the expression of KLF6, the suppressed adhesion of THP-1 cells to the HAECs, and the downregulation of VCAM-1 and ICAM-1 induced by azilsartan in OSS-stimulated HAECs were greatly reversed. CONCLUSION The protective effects of azilsartan against OSS-induced endothelial dysfunction and inflammation might be mediated by KLF6.
Collapse
Affiliation(s)
- Guoqian Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Zhu
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province, China
| | - Yongtao Sun
- Department of Imaging, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province, China
| | - Lan Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xian Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming Li
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxia Gu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
22
|
Mao S, Lu Z, Zheng S, Zhang H, Zhang G, Wang F, Huang J, Lei Y, Wang X, Liu C, Sun N, He J. Exosomal miR-141 promotes tumor angiogenesis via KLF12 in small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:193. [PMID: 32958011 PMCID: PMC7504642 DOI: 10.1186/s13046-020-01680-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Angiogenesis, a basic requirement for tumor cell survival, is considered to be a malignant characteristic of small cell lung cancer (SCLC) and is closely related to the poor outcomes of SCLC patients. miR-141 has been found to play pro- and antiangiogenic roles in different cancers, but its role in SCLC angiogenesis has never been explored. METHODS Total RNA was isolated from plasm exosomes and serum of SCLC patients to examine the expression of miR-141 by qRT-PCR. Cell proliferation, invasion, migration, tube formation assay, aortic ring assay and mouse tumor model were used to investigate the effect of exosomal miR-141 in angiogenesis in vitro and in vivo. Dual-luciferase assay was conducted to explore the target gene of miR-141. RESULTS Circulating miR-141 was upregulated in samples from 122 SCLC patients compared with those from normal volunteers and that the increase in miR-141 was significantly associated with advanced TNM stages, implying the potential oncogenic role of miR-141 in SCLC malignancy. In vitro, miR-141 that was packaged into SCLC cell-secreted exosomes and delivered to human umbilical vein vascular endothelial cells (HUVECs) via exosomes facilitated HUVEC proliferation, invasion, migration and tube formation and promoted microvessel sprouting from mouse aortic rings. Matrigel plug assays demonstrated that SCLC cell-derived exosomal miR-141 induced neoangiogenesis in vivo. Furthermore, mouse subcutaneous tumor nodules that were developed from miR-141-overexpressing SCLC cells had a higher microvessel density (MVD) and grew faster than those developed from negative control cells. KLF12 was found to be the direct target gene of miR-141 and that the proangiogenic effect of miR-141 on HUVECs was abrogated by KLF12 overexpression. CONCLUSIONS Our results demonstrate the specific function of the exosomal miR-141/KLF12 pathway in SCLC angiogenesis for the first time and provide potential novel targets for antiangiogenic therapies for SCLC patients.
Collapse
Affiliation(s)
- Shuangshuang Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
23
|
Downregulation of S1P Lyase Improves Barrier Function in Human Cerebral Microvascular Endothelial Cells Following an Inflammatory Challenge. Int J Mol Sci 2020; 21:ijms21041240. [PMID: 32069843 PMCID: PMC7072972 DOI: 10.3390/ijms21041240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a key bioactive lipid that regulates a myriad of physiological and pathophysiological processes, including endothelial barrier function, vascular tone, vascular inflammation, and angiogenesis. Various S1P receptor subtypes have been suggested to be involved in the regulation of these processes, whereas the contribution of intracellular S1P (iS1P) through intracellular targets is little explored. In this study, we used the human cerebral microvascular endothelial cell line HCMEC/D3 to stably downregulate the S1P lyase (SPL-kd) and evaluate the consequences on endothelial barrier function and on the molecular factors that regulate barrier tightness under normal and inflammatory conditions. The results show that in SPL-kd cells, transendothelial electrical resistance, as a measure of barrier integrity, was regulated in a dual manner. SPL-kd cells had a delayed barrier build up, a shorter interval of a stable barrier, and, thereafter, a continuous breakdown. Contrariwise, a protection was seen from the rapid proinflammatory cytokine-mediated barrier breakdown. On the molecular level, SPL-kd caused an increased basal protein expression of the adherens junction molecules PECAM-1, VE-cadherin, and β-catenin, increased activity of the signaling kinases protein kinase C, AMP-dependent kinase, and p38-MAPK, but reduced protein expression of the transcription factor c-Jun. However, the only factors that were significantly reduced in TNFα/SPL-kd compared to TNFα/control cells, which could explain the observed protection, were VCAM-1, IL-6, MCP-1, and c-Jun. Furthermore, lipid profiling revealed that dihydro-S1P and S1P were strongly enhanced in TNFα-treated SPL-kd cells. In summary, our data suggest that SPL inhibition is a valid approach to dampenan inflammatory response and augmente barrier integrity during an inflammatory challenge.
Collapse
|
24
|
Lu Q, Meng Q, Qi M, Li F, Liu B. Shear-Sensitive lncRNA AF131217.1 Inhibits Inflammation in HUVECs via Regulation of KLF4. Hypertension 2019; 73:e25-e34. [PMID: 30905197 DOI: 10.1161/hypertensionaha.118.12476] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherosclerosis is one of the most common vascular diseases, and inflammation participates in all stages of its progression. Laminar shear stress protects arteries from atherosclerosis and reduces endothelial inflammation. Long noncoding RNAs have emerged as critical regulators in many diseases, including atherosclerosis. However, the expression and functions of long noncoding RNAs subjected to laminar shear stress in endothelial cells remain unclear. This study aimed to reveal the mechanism by which shear stress-regulated long noncoding RNAs contribute to anti-inflammation. In this study, we identified a novel long noncoding RNA AF131217.1, which was upregulated after laminar shear stress treatment in human umbilical vein endothelial cells. Knockdown of AF131217.1 inhibited flow-mediated reduction of monocyte adhesion VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression and inhibited flow-mediated enhancement of flow-responsive expression of KLF (Kruppel-like factor) 2 and eNOS (endothelial NO synthase). Furthermore, TNF-α (tumor necrosis factor-α) was used to induce an inflammatory response in human umbilical vein endothelial cells. Knockdown of AF131217.1 promoted ICAM-1 and VCAM-1 expression, as well as changes in monocyte adhesion and KLF2 and eNOS expression induced by TNF-α. Mechanistic investigations indicated that AF131217.1 acted as a competing endogenous RNA for miR-128-3p, leading to regulation of its target gene KLF4. In conclusion, our study demonstrates for the first time that laminar shear stress regulates the expression of AF131217.1 in human umbilical vein endothelial cells, and the AF131217.1/miR-128-3p/KLF4 axis plays a vital role in atherosclerosis development.
Collapse
Affiliation(s)
- Qing Lu
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Qingyu Meng
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Mingran Qi
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Fan Li
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, Jilin, China (B.L.)
| |
Collapse
|
25
|
Franzoni M, O'Connor DT, Marcar L, Power D, Moloney MA, Kavanagh EG, Leask RL, Nolan J, Kiely PA, Walsh MT. The Presence of a High Peak Feature Within Low-Average Shear Stimuli Induces Quiescence in Venous Endothelial Cells. Ann Biomed Eng 2019; 48:582-594. [PMID: 31555984 DOI: 10.1007/s10439-019-02371-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
Wall shear stress (WSS) is an important stimulus in vascular remodelling and vascular lesion development. The current methods to assess and predict the risk associated with specific unsteady WSS consider the WSS mean values or the presence of reverse phases described by the oscillatory shear index. Recent evidence has shown that the accuracy of these methods is limited, especially with respect to the venous environment. Unsteady WSS are characterised by several features that may individually affect endothelial cells. Consequently, we assessed the effects of averaged WSS (TAWSS), temporal WSS gradient (TWSSG), maximum WSS (WSS peak) and reverse phase (OSI) by applying different WSS profiles to venous EC in-vitro, using a real-time controlled cone-and-plate cell-shearing device for 24 h. We found that TWSSG and WSS peak affect cell elongation and alignment respectively. We also found that the WSS waveforms with a peak of 1.5 Pa or higher significantly correlate with the induction of a protective phenotype. Cell phenotype induced by these high peak waveforms does not correlate to what is predicted by the hemodynamic indices currently used. The definition of reliable hemodynamic indices can be used to inform the computational models aimed at estimating the hemodynamic effects on vascular remodelling.
Collapse
Affiliation(s)
- M Franzoni
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - D T O'Connor
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - L Marcar
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - D Power
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - M A Moloney
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - E G Kavanagh
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - R L Leask
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - J Nolan
- Health Research Institute, University of Limerick, Limerick, Ireland.,Graduate Entry Medical School, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - P A Kiely
- Health Research Institute, University of Limerick, Limerick, Ireland.,Graduate Entry Medical School, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - M T Walsh
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland. .,Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
26
|
Stratopoulos A, Kolliopoulou A, Karamperis K, John A, Kydonopoulou K, Esftathiou G, Sgourou A, Kourakli A, Vlachaki E, Chalkia P, Theodoridou S, Papadakis MN, Gerou S, Symeonidis A, Katsila T, Ali BR, Papachatzopoulou A, Patrinos GP. Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients. Pharmacogenomics 2019; 20:791-801. [PMID: 31393228 DOI: 10.2217/pgs-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.
Collapse
Affiliation(s)
- Apostolos Stratopoulos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Alexandra Kolliopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Kariofyllis Karamperis
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Anne John
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | | | - Argyro Sgourou
- School of Science & Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Alexandra Kourakli
- Thalassemia & Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Efthimia Vlachaki
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia & Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatia Theodoridou
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Argiris Symeonidis
- Medical Faculty, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Bassam R Ali
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece.,United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates.,United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
27
|
Tian F, Yu C, Wu M, Wu X, Wan L, Zhu X. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Prolif 2019; 52:e12635. [PMID: 31334580 PMCID: PMC6797514 DOI: 10.1111/cpr.12635] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES MicroRNAs are powerful regulators in hepatocellular carcinoma (HCC) tumorigenesis. MicoRNA-191 (miR-191) has been reported to play an important role in HCC, However, the regulatory mechanism is still unclear. In this study, we investigated the role of miR-191 in HCC and studied its underlying mechanisms of action. MATERIALS AND METHODS The expression of miR-191 in HCC tissues was determined by quantitative real-time PCR (qRT-PCR). The role of miR-191 in HCC cells was examined by using both in vitro and in vivo assays. Downstream targets of miR-191 were determined by qRT-PCR and Western blot analysis. Dual-luciferase assays were performed to validate the interaction between miR-191 and its targets. RESULTS The expression of miR-191 was significantly higher in HCC patients and a higher miR-191 expression predicted poorer prognosis. Analysis of The Cancer Genome Atlas data sets suggested that miR-191 positively correlated with cell cycle progression. Gain and loss of function assays showed that miR-191 promoted cell cycle progression and proliferation. Luciferase reporter assay showed that miR-191 directly targeted the 3'-untranslated region of KLF6 mRNA. Furthermore, circular RNA has_circ_0000204 could sponge with miR-191, resulting in inactivation of miR-191. CONCLUSIONS Our study sheds light on the novel underlying mechanism of miR-191 in HCC, which may accelerate the development of cancer therapy.
Collapse
Affiliation(s)
- Fang Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoyu Wu
- Life Science and Technology Institute, China Pharmaceutical University, Nanjing, China
| | - Lingfeng Wan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuejun Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Li D, Liu Y, Xu R, Jia X, Li X, Huo C, Wang X. RETRACTED ARTICLE: Astragalus polysaccharide alleviates H2O2-triggered oxidative injury in human umbilical vein endothelial cells via promoting KLF2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2188-2195. [PMID: 31159593 DOI: 10.1080/21691401.2019.1621886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dongtao Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
29
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
30
|
Zheng J, Chen K, Zhu Y, Wang H, Chen Z, Yong X, Yin H, Chen J, Lai K, Liu Y. The neurokinin-1 receptor antagonist aprepitant ameliorates oxidized LDL-induced endothelial dysfunction via KLF2. Mol Immunol 2019; 106:29-35. [DOI: 10.1016/j.molimm.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 12/15/2022]
|
31
|
Wang X, Wu Z, He Y, Zhang H, Tian L, Zheng C, Shang T, Zhu Q, Li D, He Y. Humanin prevents high glucose-induced monocyte adhesion to endothelial cells by targeting KLF2. Mol Immunol 2018; 101:245-250. [DOI: 10.1016/j.molimm.2018.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023]
|
32
|
Liu B, Xu L, Yu X, Li W, Sun X, Xiao S, Guo M, Wang H. Protective effect of KLF15 on vascular endothelial dysfunction induced by TNF‑α. Mol Med Rep 2018; 18:1987-1994. [PMID: 29956764 PMCID: PMC6072176 DOI: 10.3892/mmr.2018.9195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/17/2018] [Indexed: 01/21/2023] Open
Abstract
Atherosclerosis (AS) is a cardiovascular disease with a relatively high incidence rate. Krüppel-like factor 15 (KLF15) has a role in numerous pathological processes, including nephropathy, abnormal glucose metabolism and myocardial injury. The aim of the present study was to investigate the function of KLF15 in vascular endothelial dysfunction. MTT analyses, nitric oxide (NO) detection and cell adhesion detection kits were used to investigate the viability and adhesion of, and quantity of NO released by Eahy926 cells induced by tumor necrosis factor (TNF)-α, respectively. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to determine the expression levels of KLF15, endothelial nitric oxide synthase, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), transforming growth factor-β1 (TGF-β1), phosphorylated (p-)transcription factor p65 (p65) and nuclear factor erythroid 2-related factor 2 (Nrf2). The results of the present study demonstrated that TNF-α was able to induce vascular endothelial dysfunction in Eahy926 cells at an optimum concentration of 10 ng/ml. Overexpression of KLF15 markedly enhanced cell viability in addition to the quantity of released NO of TNF-α-induced Eahy926 cells, and increased the expression levels of eNOS and Nrf2. Furthermore, overexpression of KLF15 markedly suppressed the rate of cellular adhesion, and downregulated levels of MCP-1, ICAM-1, TGF-β1 and p-p65 in TNF-α induced Eahy926 cells. In conclusion, the results of the present study suggested that overexpression of KLF15 in Eahy926 cells exhibited a protective effect against TNF-α induced dysfunction via activation of Nrf2 signaling and inhibition of nuclear factor κB signaling.
Collapse
Affiliation(s)
- Bing Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xinming Yu
- Department of Vascular Surgery, The Central Hospital of Zibo, Zibo, Shandong 256100, P.R. China
| | - Wei Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaozhi Sun
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shun Xiao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Haofu Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|