1
|
Schwartz AB, Kandasamy A, Del Álamo JC, Yeh YT. Neutrophils exhibit distinct migration phenotypes that are regulated by transendothelial migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618860. [PMID: 39677773 PMCID: PMC11642774 DOI: 10.1101/2024.10.17.618860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The extravasation of polymorphonuclear neutrophils (PMNs) is a critical component of the innate immune response that involves transendothelial migration (TEM) and interstitial migration. TEM-mediated interactions between PMNs and vascular endothelial cells (VECs) trigger a cascade of biochemical and mechanobiological signals whose effects on interstitial migration are currently unclear. To address this question, we cultured human VECs on a fibronectin-treated transwell insert to model the endothelium and basement membrane, loaded PMN-like differentiated HL60 (dHL-60) cells in the upper chamber of the insert, and collected the PMNs that crossed the membrane-supported monolayer from the lower chamber. The 3D chemotactic migration of the TEM-conditioned PMNs through collagen matrices was then quantified. Data collected from over 50,000 trajectories showed two distinct migratory phenotypes, i.e., a high-persistence phenotype and a low-persistence phenotype. These phenotypes were conserved across treatment conditions, and their existence was confirmed in human primary PMNs. The high-persistence phenotype was characterized by more straight trajectories and faster migration speeds, whereas the low-persistence one exhibited more frequent sharp turns and loitering periods. A key finding of our study is that TEM induced a phenotypic shift in PMNs from high-persistence migration to low-persistence migration. Changes in the relative proportion of high-persistence and low-persistence populations correlated with GRK2 expression levels. Inhibiting GRK2 hindered the TEM-induced shift in migratory phenotype and impaired the phagocytic function of PMNs. Overall, our study suggests that TEM-mediated GRK2 signaling primes PMNs for a migration phenotype better suited for spatial exploration and inflammation resolution. These observations provide novel insight into the biophysical impacts of TEM that priming PMNs is essential to conduct sentinel functions.
Collapse
|
2
|
de Campos Kajimoto N, de Paiva Buischi Y, Mohamadzadeh M, Loomer P. The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review. Dent J (Basel) 2024; 12:299. [PMID: 39452426 PMCID: PMC11506630 DOI: 10.3390/dj12100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Peri-implantitis disease has increased significantly over the last years, resulting in increased failure of implants. Many factors may play a role in implant complications and failure, including ones related to the oral microbiota. This literature review aims to summarize the current knowledge of microbiome of implants in health and disease, focusing not only on the presence/absence of specific microbiota or on their relative abundance, but also on their phenotypic expression and their complex relationships with the host. The authors examined the MEDLINE database and identified key topics about peri-implant oral microbiome in health and disease. The peri-implant microbiome differs from that of the tooth, both in health and disease, as they are structurally and chemically different. The adhesion and formation of the peri-implant biofilm can be affected by the surface energy, topography, wettability, and electrochemical charges of the implant surface. In addition, the morphogenesis of the tissues surrounding the dental implant also differs from the tooth, making the dental implant more susceptible to bacterial infection. This interplay between the microbiome and the host immune system in peri-implant infections still needs to be elucidated.
Collapse
Affiliation(s)
- Natalia de Campos Kajimoto
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Yvonne de Paiva Buischi
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter Loomer
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| |
Collapse
|
3
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
4
|
Fu M, Jia S, Xu L, Li X, Lv Y, Zhong Y, Ai S. Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair. J Clin Invest 2024; 134:e175297. [PMID: 39190625 PMCID: PMC11444165 DOI: 10.1172/jci175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiac mononuclear phagocytic cells (Cardiac MPCs) participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific MPC subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac MPCs in regenerative (P1) and nonregenerative (P10) mouse hearts after injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-Seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous MPCs during cardiac repair and identify potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Mingzhu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengtao Jia
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longhui Xu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufang Lv
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Abdulnour-Nakhoul SM, Kolls JK, Flemington EK, Ungerleider NA, Nakhoul HN, Song K, Nakhoul NL. Alterations in gene expression and microbiome composition upon calcium-sensing receptor deletion in the mouse esophagus. Am J Physiol Gastrointest Liver Physiol 2024; 326:G438-G459. [PMID: 38193195 PMCID: PMC11213479 DOI: 10.1152/ajpgi.00066.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.
Collapse
Affiliation(s)
- Solange M Abdulnour-Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jay K Kolls
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Erik K Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Hani N Nakhoul
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Kejing Song
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nazih L Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic assessment of chemokine ligand bias at the human chemokine receptor CXCR2 indicates G protein bias over β-arrestin recruitment and receptor internalization. Cell Commun Signal 2024; 22:43. [PMID: 38233929 PMCID: PMC10795402 DOI: 10.1186/s12964-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, β-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in β-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards β-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of β-arrestin1/2 subtypes, respectively. However, compared to β-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.
Collapse
Affiliation(s)
- Katrijn Boon
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Nathan Vanalken
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
7
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
Scotland BL, Cottingham AL, Lasola JJM, Hoag SW, Pearson RM. Development of protein-polymer conjugate nanoparticles for modulation of dendritic cell phenotype and antigen-specific CD4 T cell responses. ACS APPLIED POLYMER MATERIALS 2023; 5:8794-8807. [PMID: 38911349 PMCID: PMC11192461 DOI: 10.1021/acsapm.3c00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Polymeric nanoparticles (NPs) comprised of poly(lactic-co-glycolic acid) (PLGA) have found success in modulating antigen (Ag)-specific T cell responses for the treatment multiple immunological diseases. Common methods by which Ags are associated with NPs are through encapsulation and surface conjugation; however, these methods suffer from several limitations, including uncontrolled Ag loading, burst release, and potential immune recognition. To overcome these limitations and study the relationship between NP design parameters and modulation of innate and Ag-specific adaptive immune cell responses, we developed ovalbumin (OVA) protein-PLGA bioconjugate NPs (acNP-OVA). OVA was first modified by conjugation with multiple PLGA polymers to synthesize OVA-PLGA conjugates, followed by precise combination with unmodified PLGA to form acNP-OVA with well-defined Ag loadings, reduced burst release, and reduced antibody recognition. Expression of MHC II, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs) increased as a function of acNP-OVA Ag loading. NanoString studies using BMDCs showed that PLGA NPs generally induced anti-inflammatory gene expression profiles independent of the Ag delivery method, where S100a9, Sell, and Ppbp were most significantly reduced. Co-culture studies using acNP-OVA-treated BMDCs and OT-II CD4+ T cells revealed that Ag-specific T cell activation, expansion, and differentiation were dependent on Ag loading and formulation parameters. CD25 expression was induced using acNP-OVA with the lowest Ag loading; however, the induction of robust CD4+ T cell proliferative and cytokine responses required acNP-OVA formulations with higher Ag loading, which was supported using a regulatory T cell (Treg) induction assay. The distinct differences in Ag loading required to achieve various T cell responses supported the concept of an Ag loading threshold for Ag-specific immunotherapy. We anticipate this work will help guide NP designs and aid in the future development of NP-based immunotherapies for Ag-specific immunomodulation.
Collapse
Affiliation(s)
- Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Jackline Joy M. Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stephen W. Hoag
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Duszyc K, von Pein JB, Ramnath D, Currin-Ross D, Verma S, Lim F, Sweet MJ, Schroder K, Yap AS. Apical extrusion prevents apoptosis from activating an acute inflammatory program in epithelia. Dev Cell 2023; 58:2235-2248.e6. [PMID: 37647898 DOI: 10.1016/j.devcel.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.
Collapse
Affiliation(s)
- Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Jessica B von Pein
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Divya Ramnath
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Denni Currin-Ross
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Matthew J Sweet
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
11
|
Fahimi F, Alam MJ, Ang C, Adhyatma GP, Xie L, Mackay CR, Robert R. Human CXCR1 knock-in mice infer functional expression of a murine ortholog. J Leukoc Biol 2023; 114:373-380. [PMID: 37478375 DOI: 10.1093/jleuko/qiad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
Targeting CXCR1 and CXCR2 chemokine receptors to block neutrophil migration to sites of inflammation is a promising therapeutic approach for various inflammatory and autoimmune diseases. However, assessing the translational potential of such therapies using mouse models is challenging due to the unclear expression of CXCR1 at the protein level. Although CXCR2 has been well characterized in both mice and humans, the protein-level expression of CXCR1 in mice (mCXCR1) remains controversial. To address this issue, we generated a novel human CXCR1 knock-in (hCXCR1 KI) mouse model in which the transgene is under the control of the native mouse promoter and regulatory elements. Using an anti-human CXCR1 monoclonal antibody (anti-hCXCR1 monoclonal antibody), we found that hCXCR1 was highly expressed on neutrophils in the hCXCR1 KI mice, comparable to levels observed in human neutrophils. This successful expression of hCXCR1 in this mouse model suggests that functional mCXCR1 likely exists. To investigate the functional role of CXCR1, we investigated how antagonizing this receptor using anti-hCXCR1 monoclonal antibody in the arthritis model would affect disease outcomes. Antibody treatment significantly alleviated all signs of joint inflammation. In summary, our newly generated hCXCR1 KI transgenic mice provide a valuable tool to investigate the therapeutic efficacy of small molecules or monoclonal antibodies that antagonize this receptor in neutrophil-mediated pathologies.
Collapse
Affiliation(s)
- Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Md Jahangir Alam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Caroline Ang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Galih Prakasa Adhyatma
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Liang Xie
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Charles R Mackay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Remy Robert
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Jiao Y, Zhang T, Liu M, Zhou L, Qi M, Xie X, Shi X, Gu X, Ma Z. Exosomal PGE2 from M2 macrophages inhibits neutrophil recruitment and NET formation through lipid mediator class switching in sepsis. J Biomed Sci 2023; 30:62. [PMID: 37533081 PMCID: PMC10394797 DOI: 10.1186/s12929-023-00957-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ti Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Mei Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Mengzhi Qi
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Xie
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xueyin Shi
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
13
|
Krohl PJ, Fine J, Yang H, VanDyke D, Ang Z, Kim KB, Thomas-Tikhonenko A, Spangler JB. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. CELL REPORTS METHODS 2023; 3:100429. [PMID: 37056366 PMCID: PMC10088246 DOI: 10.1016/j.crmeth.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023]
Abstract
Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.
Collapse
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Justyn Fine
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Van Hoof M, Claes S, Boon K, Van Loy T, Schols D, Dehaen W, De Jonghe S. Exploration of Pyrido[3,4- d]pyrimidines as Antagonists of the Human Chemokine Receptor CXCR2. Molecules 2023; 28:molecules28052099. [PMID: 36903345 PMCID: PMC10004157 DOI: 10.3390/molecules28052099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Upregulated CXCR2 signalling is found in numerous inflammatory, autoimmune and neurodegenerative diseases, as well as in cancer. Consequently, CXCR2 antagonism is a promising therapeutic strategy for treatment of these disorders. We previously identified, via scaffold hopping, a pyrido[3,4-d]pyrimidine analogue as a promising CXCR2 antagonist with an IC50 value of 0.11 µM in a kinetic fluorescence-based calcium mobilization assay. This study aims at exploring the structure-activity relationship (SAR) and improving the CXCR2 antagonistic potency of this pyrido[3,4-d]pyrimidine via systematic structural modifications of the substitution pattern. Almost all new analogues completely lacked the CXCR2 antagonism, the exception being a 6-furanyl-pyrido[3,4-d]pyrimidine analogue (compound 17b) that is endowed with similar antagonistic potency as the original hit.
Collapse
Affiliation(s)
- Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Katrijn Boon
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
15
|
Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation. Nat Commun 2023; 14:12. [PMID: 36596811 PMCID: PMC9810723 DOI: 10.1038/s41467-022-35700-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression.
Collapse
|
16
|
Papageorgiou L, Papakonstantinou E, Diakou I, Pierouli K, Dragoumani K, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Semantic and Population Analysis of the Genetic Targets Related to COVID-19 and Its Association with Genes and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:59-78. [PMID: 37525033 DOI: 10.1007/978-3-031-31978-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 is a coronavirus responsible for one of the most serious, modern worldwide pandemics, with lasting and multifaceted effects. By late 2021, SARS-CoV-2 has infected more than 180 million people and has killed more than 3 million. The virus gains entrance to human cells through binding to ACE2 via its surface spike protein and causes a complex disease of the respiratory system, termed COVID-19. Vaccination efforts are being made to hinder the viral spread, and therapeutics are currently under development. Toward this goal, scientific attention is shifting toward variants and SNPs that affect factors of the disease such as susceptibility and severity. This genomic grammar, tightly related to the dark part of our genome, can be explored through the use of modern methods such as natural language processing. We present a semantic analysis of SARS-CoV-2-related publications, which yielded a repertoire of SNPs, genes, and disease ontologies. Population data from the 1000 Genomes Project were subsequently integrated into the pipeline. Data mining approaches of this scale have the potential to elucidate the complex interaction between COVID-19 pathogenesis and host genetic variation; the resulting knowledge can facilitate the management of high-risk groups and aid the efforts toward precision medicine.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece.
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
17
|
Liu N, Bauer M, Press AT. The immunological function of CXCR2 in the liver during sepsis. J Inflamm (Lond) 2022; 19:23. [DOI: 10.1186/s12950-022-00321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The chemokine receptor CXCR2 and its ligands, especially CXCL8, are crucial mediators for the progression of liver inflammation and liver failure in sepsis. Neutrophils have the highest CXCR2 expression in mice and humans, and their activation via CXCL8 facilitates their migration to the inflamed liver for the clearance of the pathogens and, in turn, the inflammation.
Main body
In sepsis, the inflammatory insult causes extensive neutrophil migration to the liver that overwhelms the immune response. To compensate for the strong receptor activation, CXCR2 desensitizes, incapacitating the immune cells to efficiently clear pathogens, causing further life-threatening liver damage and uncontrolled pathogen spread.
Conclusion
CXCR2 function during infection strongly depends on the expressing cell type. It signals pro- and anti-inflammatory effects that may prompt novel cell-type-specific CXCR2-directed therapeutics.
Collapse
|
18
|
CXCR2 Is Essential for Radiation-Induced Intestinal Injury by Initiating Neutrophil Infiltration. J Immunol Res 2022; 2022:7966089. [PMID: 35879949 PMCID: PMC9308512 DOI: 10.1155/2022/7966089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neutrophils, known as an important part of the immune system, are the most abundant leukocyte population in peripheral blood, but excessive recruitment will lead to tissue/organ injury. RNA sequencing showed that ionizing radiation significantly increased the expression of characteristic genes of neutrophils in intestinal tissues compared with liver and lung tissues. By clearing neutrophils with an anti-Ly6G antibody, we found that neutrophil infiltration is critical for irradiation-induced intestinal injury. CXCR2 is a G-protein-coupled receptor that mediates the migration of neutrophils by combining with its ligands. Compared with observations in liver and lung tissues, we found that CXCR2 and its ligands, including CXCL1, CXCL2, CXCL3, and CXCL5, were all significantly upregulated in irradiated intestinal tissues. Further studies showed that SB225002, an inhibitor of CXCR2, could effectively inhibit the chemotaxis of neutrophils and tissue damage mediated by the CXCL-CXCR2 signalling pathway.
Collapse
|
19
|
Liu Y, Song R, Zhao L, Lu Z, Li Y, Zhan X, Lu F, Yang J, Niu Y, Cao X. m 6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration. Signal Transduct Target Ther 2022; 7:194. [PMID: 35764614 PMCID: PMC9240034 DOI: 10.1038/s41392-022-01020-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022] Open
Abstract
Neutrophil migration into the site of infection is necessary for antibacterial innate defense, whereas impaired neutrophil migration may result in excessive inflammation and even sepsis. The neutrophil migration directed by extracellular signals such as chemokines has been extensively studied, yet the intrinsic mechanism for determining neutrophil ability to migrate needs further investigation. N6-methyladenosine (m6A) RNA modification is important in immunity and inflammation, and our preliminary data indicate downregulation of RNA m6A demethylase alkB homolog 5 (ALKBH5) in neutrophils during bacterial infection. Whether m6A modification and ALKBH5 might intrinsically modulate neutrophil innate response remain unknown. Here we report that ALKBH5 is required for antibacterial innate defense by enhancing intrinsic ability of neutrophil migration. We found that deficiency of ALKBH5 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture (CLP), and Alkbh5-deficient CLP mice exhibited higher bacterial burden and massive proinflammatory cytokine production in the peritoneal cavity and blood because of less neutrophil migration. Alkbh5-deficient neutrophils had lower CXCR2 expression, thus exhibiting impaired migration toward chemokine CXCL2. Mechanistically, ALKBH5-mediated m6A demethylation empowered neutrophils with high migration capability through altering the RNA decay, consequently regulating protein expression of its targets, neutrophil migration-related molecules, including increased expression of neutrophil migration-promoting CXCR2 and NLRP12, but decreased expression of neutrophil migration-suppressive PTGER4, TNC, and WNK1. Our findings reveal a previously unknown role of ALKBH5 in imprinting migration-promoting transcriptome signatures in neutrophils and intrinsically promoting neutrophil migration for antibacterial defense, highlighting the potential application of targeting neutrophil m6A modification in controlling bacterial infections.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China. .,Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Renjie Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Lu Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Zhike Lu
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Yini Li
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Xinyi Zhan
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Fengjiao Lu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Jiang Yang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China. .,Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
20
|
Wu LD, Li F, Chen JY, Zhang J, Qian LL, Wang RX. Analysis of potential genetic biomarkers using machine learning methods and immune infiltration regulatory mechanisms underlying atrial fibrillation. BMC Med Genomics 2022; 15:64. [PMID: 35305619 PMCID: PMC8934464 DOI: 10.1186/s12920-022-01212-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
We aimed to screen out biomarkers for atrial fibrillation (AF) based on machine learning methods and evaluate the degree of immune infiltration in AF patients in detail.
Methods
Two datasets (GSE41177 and GSE79768) related to AF were downloaded from Gene expression omnibus (GEO) database and merged for further analysis. Differentially expressed genes (DEGs) were screened out using “limma” package in R software. Candidate biomarkers for AF were identified using machine learning methods of the LASSO regression algorithm and SVM-RFE algorithm. Receiver operating characteristic (ROC) curve was employed to assess the diagnostic effectiveness of biomarkers, which was further validated in another independent validation dataset of GSE14975. Moreover, we used CIBERSORT to study the proportion of infiltrating immune cells in each sample, and the Spearman method was used to explore the correlation between biomarkers and immune cells.
Results
129 DEGs were identified, and CYBB, CXCR2, and S100A4 were identified as key biomarkers of AF using LASSO regression and SVM-RFE algorithm. Both in the training dataset and the validation dataset, CYBB, CXCR2, and S100A4 showed favorable diagnostic effectiveness. Immune infiltration analysis indicated that, compared with sinus rhythm (SR), the atrial samples of patients with AF contained a higher T cells gamma delta, neutrophils and mast cells resting, whereas T cells follicular helper were relatively lower. Correlation analysis demonstrated that CYBB, CXCR2, and S100A4 were significantly correlated with the infiltrating immune cells.
Conclusions
In conclusion, this study suggested that CYBB, CXCR2, and S100A4 are key biomarkers of AF correlated with infiltrating immune cells, and infiltrating immune cells play pivotal roles in AF.
Collapse
|
21
|
Identification of novel chemotypes as CXCR2 antagonists via a scaffold hopping approach from a thiazolo[5,4-d]pyrimidine. Eur J Med Chem 2022; 235:114268. [DOI: 10.1016/j.ejmech.2022.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/21/2022]
|
22
|
Suppressing MDSC Recruitment to the Tumor Microenvironment by Antagonizing CXCR2 to Enhance the Efficacy of Immunotherapy. Cancers (Basel) 2021; 13:cancers13246293. [PMID: 34944914 PMCID: PMC8699249 DOI: 10.3390/cancers13246293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary While the development of immunotherapy has greatly advanced cancer treatment, many patients do not benefit from immunotherapy. Numerous strategies have been developed to improve response to immunotherapy across cancer types, including blocking the activity of immunosuppressive immune cells, cytokines, and signaling pathways that are linked to poor responses. Myeloid-derived suppressor cells (MDSCs) are associated with poor responses to immunotherapy, and the chemokine receptor, CXCR2, is involved in recruiting MDSCs to the tumor. In this review, we present studies that explore the potential of inhibiting MDSCs through blocking CXCR2 as a strategy to enhance response to existing and novel immunotherapies. Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells derived from immature myeloid cells. These cells are often associated with poor responses to cancer therapy, including immunotherapy, in a variety of tumor types. The C-X-C chemokine receptor 2 (CXCR2) signaling axis plays a key role in the migration of immunosuppressive MDSCs into the tumor microenvironment (TME) and the pre-metastatic niche. MDSCs impede the efficacy of immunotherapy through a variety of mechanisms. Efforts to target MDSCs by blocking CXCR2 is an active area of research as a method for improving existing and novel immunotherapy strategies. As immunotherapies gain approval for a wider array of clinical indications, it will become even more important to understand the efficacy of CXCR2 inhibition in combating immunotherapy resistance at different stages of tumor progression.
Collapse
|
23
|
Song Y, Zhang Z, Yu Z, Xia G, Wang Y, Wang L, Peng C, Jiang B, Liu S. Wip1 Aggravates the Cerulein-Induced Cell Autophagy and Inflammatory Injury by Targeting STING/TBK1/IRF3 in Acute Pancreatitis. Inflammation 2021; 44:1175-1183. [PMID: 33417178 DOI: 10.1007/s10753-021-01412-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory reaction of pancreatic tissue self-digestion, edema, hemorrhage, and even necrosis after the activation of pancreatic enzymes in the pancreas caused by a variety of etiologies. This study was aimed to explore the functions and mechanism of Wip1 in AP. Twenty male SD rats were randomly assigned into 2 groups (control group: saline treatment; AP group: cerulein treatment). And cerulein-treated AR42J cells were conducted as AP model in vitro. The levels of amylase were detected by using the Beckman biochemical analyzer. The levels of IFNβ and TNFα were analyzed by ELISA. The autophagosomes were observed by transmission electron microscopy. The Wip1-specific shRNAs were transfected to AR42J cells to silence the expression of Wip1. The levels of Wip1 were measured by qRT-PCR and Western blot. The levels of STING/TBK1/IRF3 and LC3 were measured by Western blot. The AP model was successfully constructed by cerulein administration. Wip1 was notably upregulated in AP models. Autophagy and STING pathway activation were involved in the development of AP. Wip1 inhibition counteracts the promotion effect on inflammatory response induced by cerulein in AR42J Cells. Wip1 inhibition inhibited the activity of the STING/TBK1/IRF3 and reduced LC3 levels in AP. This study preliminarily explored that Wip1 could regulate autophagy and participate in the development of AP through the STING/TBK1/IRF3 signaling pathway.
Collapse
Affiliation(s)
- Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Zhihua Zhang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Guoyi Xia
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yizhi Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Le Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China.
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China.
| |
Collapse
|
24
|
Zhang Q, Wang J, Yao X, Wu S, Tian W, Gan C, Wan X, You C, Hu F, Zhang S, Zhang H, Zhao K, Shu K, Lei T. Programmed Cell Death 10 Mediated CXCL2-CXCR2 Signaling in Regulating Tumor-Associated Microglia/Macrophages Recruitment in Glioblastoma. Front Immunol 2021; 12:637053. [PMID: 34108959 PMCID: PMC8182060 DOI: 10.3389/fimmu.2021.637053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background Programmed cell death 10 (PDCD10) plays a crucial role in regulating tumor phenotyping, especially in glioblastoma (GBM). Glioma-associated microglia/macrophages (GAMs) in tumor pathological microenvironment contribute to GBM progression. We previously found that the infiltration of GAMs was associated with PDCD10 expression in GBM patients. The present study aims to further explore the regulation of PDCD10 on GAMs in GBM. Methods Overexpression of PDCD10 in human- and murine-GBM cells was established by lentiviral transduction. Cell behaviors and polarization of primary microglia, microglia- and macrophage-like cells were investigated through indirect co-culture with GBM cells in vitro respectively. The PDCD10-induced release of chemokines was identified by a chemokine protein array. The cross-talk between GBM and microglia as well as macrophages was further studied using selective antagonist SB225002. Finally, an orthotopic homograft mouse model was employed to verify the results of in vitro experiments. Results Indirect co-culture with PDCD10-overexpressed GBM cells promoted proliferation and migration of microglia- and macrophage-like cells, and stimulated pro-tumorigenic polarization of primary microglia, microglia- and macrophage-like cells. Pdcd10-upregulated GBM cells triggered a nearly 6-fold increase of CXC motif chemokine ligand 2 (CXCL2) release, which in turn activated CXC chemokine receptor 2 (CXCR2) and downstream Erk1/2 and Akt signaling in primary microglia, microglia- and macrophage-like cells. The blockage of CXCR2 signaling with specific inhibitor (SB225002) abolished microglia- and macrophage-like cell migration induced by PDCD10-upregulated GBM cells. Moreover, Pdcd10-upregulated GL261 cells promoted GAMs recruitment and tumor growth in vivo. Conclusion Our study demonstrates that overexpression of PDCD10 in GBM recruits and activates microglia/macrophages, which in turn promotes tumor progression. CXCL2-CXCR2 signaling mediated by PDCD10 is potentially involved in the crosstalk between GBM cells and GAMs.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Sisi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Tian
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Xinjiang, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
26
|
Rodriguez C, de Prost N, Fourati S, Lamoureux C, Gricourt G, N’debi M, Canoui-Poitrine F, Désveaux I, Picard O, Demontant V, Trawinski E, Lepeule R, Surgers L, Vindrios W, Lelièvre JD, Mongardon N, Langeron O, Cohen JL, Mekontso-Dessap A, Woerther PL, Pawlotsky JM. Viral genomic, metagenomic and human transcriptomic characterization and prediction of the clinical forms of COVID-19. PLoS Pathog 2021; 17:e1009416. [PMID: 33780519 PMCID: PMC8032121 DOI: 10.1371/journal.ppat.1009416] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/08/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by respiratory symptoms of various severities, ranging from mild upper respiratory signs to acute respiratory failure/acute respiratory distress syndrome associated with a high mortality rate. However, the pathophysiology of the disease is largely unknown. Shotgun metagenomics from nasopharyngeal swabs were used to characterize the genomic, metagenomic and transcriptomic features of patients from the first pandemic wave with various forms of COVID-19, including outpatients, patients hospitalized not requiring intensive care, and patients in the intensive care unit, to identify viral and/or host factors associated with the most severe forms of the disease. Neither the genetic characteristics of SARS-CoV-2, nor the detection of bacteria, viruses, fungi or parasites were associated with the severity of pulmonary disease. Severe pneumonia was associated with overexpression of cytokine transcripts activating the CXCR2 pathway, whereas patients with benign disease presented with a T helper "Th1-Th17" profile. The latter profile was associated with female gender and a lower mortality rate. Our findings indicate that the most severe cases of COVID-19 are characterized by the presence of overactive immune cells resulting in neutrophil pulmonary infiltration which, in turn, could enhance the inflammatory response and prolong tissue damage. These findings make CXCR2 antagonists, in particular IL-8 antagonists, promising candidates for the treatment of patients with severe COVID-19.
Collapse
Affiliation(s)
- Christophe Rodriguez
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team “Viruses, Hepatology, Cancer”, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, Créteil, France
| | - Nicolas de Prost
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- CARMAS Clinical Research Group, Université Paris-Est, Créteil, France
| | - Slim Fourati
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team “Viruses, Hepatology, Cancer”, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, Créteil, France
| | - Claudie Lamoureux
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Guillaume Gricourt
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team “Viruses, Hepatology, Cancer”, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, Créteil, France
| | - Melissa N’debi
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team “Viruses, Hepatology, Cancer”, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, Créteil, France
| | - Florence Canoui-Poitrine
- Université Paris-Est-Créteil, INSERM, IMRB, Créteil, France
- Public Health and Clinical Research Unit, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Isaac Désveaux
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Oriane Picard
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Vanessa Demontant
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Elisabeth Trawinski
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Raphaël Lepeule
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Laure Surgers
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - William Vindrios
- Department of Clinical Immunology and Infectious Diseases, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jean-Daniel Lelièvre
- Department of Clinical Immunology and Infectious Diseases, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Nicolas Mongardon
- Department of Anesthesiology and Surgical Intensive Care, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Olivier Langeron
- Department of Anesthesiology and Surgical Intensive Care, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - José L. Cohen
- Center for Clinical Investigation and Biotherapies, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team “Immunoregulation and biotherapies”, Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France
| | - Armand Mekontso-Dessap
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- CARMAS Clinical Research Group, Université Paris-Est, Créteil, France
| | - Paul-Louis Woerther
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team DYNAMIC, Université Paris-Est, Créteil, France
| | - Jean-Michel Pawlotsky
- Department of Microbiology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Team “Viruses, Hepatology, Cancer”, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, Créteil, France
| |
Collapse
|
27
|
Wang Q, Huang J, Chen X, Wang J, Fang F. Transcriptomic markers in pediatric septic shock prognosis: an integrative analysis of gene expression profiles. ACTA ACUST UNITED AC 2021; 54:e10152. [PMID: 33503200 PMCID: PMC7836399 DOI: 10.1590/1414-431x202010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify potential transcriptomic markers in
pediatric septic shock prognosis by an integrative analysis of multiple public
microarray datasets. Using the R software and bioconductor packages, we
performed a statistical analysis to identify differentially expressed (DE) genes
in pediatric septic shock non-survivors, and further performed functional
interpretation (enrichment analysis and co-expression network construction) and
classification quality evaluation of the DE genes identified. Four microarray
datasets (3 training datasets and 1 testing dataset, 252 pediatric patients with
septic shock in total) were collected for the integrative analysis. A total of
32 DE genes (18 upregulated genes; 14 downregulated genes) were identified in
pediatric septic shock non-survivors. Enrichment analysis revealed that those DE
genes were strongly associated with acute inflammatory response to antigenic
stimulus, response to yeast, and defense response to bacterium. A support vector
machine classifier (non-survivors vs survivors) was also
trained based on DE genes. In conclusion, the DE genes identified in this study
are suggested as candidate transcriptomic markers for pediatric septic shock
prognosis and provide novel insights into the progression of pediatric septic
shock.
Collapse
Affiliation(s)
- Qian Wang
- Anesthesiology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xia Chen
- Anesthesiology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Alam MJ, Xie L, Ang C, Fahimi F, Willingham SB, Kueh AJ, Herold MJ, Mackay CR, Robert R. Therapeutic blockade of CXCR2 rapidly clears inflammation in arthritis and atopic dermatitis models: demonstration with surrogate and humanized antibodies. MAbs 2020; 12:1856460. [PMID: 33347356 PMCID: PMC7757791 DOI: 10.1080/19420862.2020.1856460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neutrophils are the most abundant effector cells of the innate immune system and represent the first line of defense against infection. However, in many common pathologies, including autoimmune diseases, excessive recruitment and activation of neutrophils can drive a chronic inflammatory response leading to unwanted tissue destruction. Several strategies have been investigated to tackle pathologic neutrophil biology, and thus provide a novel therapy for chronic inflammatory diseases. The chemokine receptor CXCR2 plays a crucial role in regulating neutrophil homeostasis and is a promising pharmaceutical target. In this study, we report the discovery and validation of a humanized anti-human CXCR2 monoclonal antibody. To enable in vivo studies, we developed a surrogate anti-mouse CXCR2 antibody, as well as a human knock-in CXCR2 mouse. When administered in models of atopic dermatitis (AD) and rheumatoid arthritis (RA), the antibodies rapidly clear inflammation. Our findings support further developments of anti-CXCR2 mAb approaches not only for RA and AD, but also for other neutrophil-mediated inflammatory conditions where neutrophils are pathogenic and medical needs are unmet.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Liang Xie
- Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Caroline Ang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | | | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne , Parkville, VIC, Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne , Parkville, VIC, Australia
| | - Charles R Mackay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Remy Robert
- Department of Physiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| |
Collapse
|
29
|
Cai Q, Shi P, Yuan Y, Peng J, Ou X, Zhou W, Li J, Su T, Lin L, Cai S, He Y, Xu J. Inflammation-Associated Senescence Promotes Helicobacter pylori-Induced Atrophic Gastritis. Cell Mol Gastroenterol Hepatol 2020; 11:857-880. [PMID: 33161156 PMCID: PMC7859172 DOI: 10.1016/j.jcmgh.2020.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The association between cellular senescence and Helicobacter pylori-induced atrophic gastritis is not clear. Here, we explore the role of cellular senescence in H pylori-induced atrophic gastritis and the underlying mechanism. METHODS C57BL/6J mice were infected with H pylori for biological and mechanistic studies in vivo. Gastric precancerous lesions from patients and mouse models were collected and analyzed using senescence-associated beta-galactosidase, Sudan Black B, and immunohistochemical staining to analyze senescent cells, signaling pathways, and H pylori infection. Chromatin immunoprecipitation, luciferase reporter assays, and other techniques were used to explore the underlying mechanism in vitro. RESULTS Gastric mucosa atrophy was highly associated with cellular senescence. H pylori promoted gastric epithelial cell senescence in vitro and in vivo in a manner that depended on C-X-C motif chemokine receptor 2 (CXCR2) signaling. Interestingly, H pylori infection not only up-regulated the expression of CXCR2 ligands, C-X-C motif chemokine ligands 1 and 8, but also transcriptionally up-regulated the expression of CXCR2 via the nuclear factor-κB subunit 1 directly. In addition, CXCR2 formed a positive feedback loop with p53 to continually enhance senescence. Pharmaceutical inhibition of CXCR2 in an H pylori-infected mouse model attenuated mucosal senescence and atrophy, and delayed further precancerous lesion progression. CONCLUSIONS Our study showed a new mechanism of H pylori-induced atrophic gastritis through CXCR2-mediated cellular senescence. Inhibition of CXCR2 signaling is suggested as a potential preventive therapy for targeting H pylori-induced atrophic gastritis. GEO data set accession numbers: GSE47797 and GSE3556.
Collapse
Affiliation(s)
- Qinbo Cai
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Shi
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujie Yuan
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China
| | - Jianjun Peng
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China
| | - Xinde Ou
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Zhou
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Li
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Taiqiang Su
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangliang Lin
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China
| | - Shirong Cai
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China
| | - Yulong He
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China; Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jianbo Xu
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
30
|
Zhu F, He H, Fan L, Ma C, Xu Z, Xue Y, Wang Y, Zhang C, Zhou G. Blockade of CXCR2 suppresses proinflammatory activities of neutrophils in ulcerative colitis. Am J Transl Res 2020; 12:5237-5251. [PMID: 33042416 PMCID: PMC7540107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Ulcerative colitis (UC) is one chronically remittent and progressive inflammatory disorder. Chemokine receptor CXCR2 is reported to be involved in the pathogenesis of several inflammatory diseases. However, how CXCR2 modulate mucosal inflammation in UC is still obscure. In this study, CXCR2 expression was determined in inflamed mucosa and peripheral blood cells from patients with UC by qRT-PCR. Neutrophils isolated from peripheral blood were pretreated with CXCR2 inhibitor (SB225002), and proinflammatory mediators were examined by qRT-PCR, ELISA and IF. The migratory capacity of neutrophils after SB225002 treatment was examined by using Transwell plate. Furthermore, SB225002 was administrated daily in DSS-induced colitis mice. We found that CXCR2 expression was significantly increased in colonic mucosal tissues and peripheral blood cells from patients with active UC. Besides, CXCR2 was highly expressed in neutrophils, and was positively correlated with disease activity. Inhibition of CXCR2 in neutrophils decreased the production of proinflammatory mediators, such as reactive oxygen species (ROS), MPO, S100a8, S100a9, TNF-α, IL-1β, IL-8 and IL-6, and the migratory capacity of neutrophils was markedly impaired after SB225002 treatment. Moreover, blockade of CXCR2 with SB225002 could markedly ameliorate DSS-induced colitis in mice. In summary, CXCR2 plays a critical role in the pathogenesis of UC through modulating immune responses of neutrophils. Blockade of CXCR2 may serve as a new therapeutic approach for treatment of UC.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Li Fan
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Yuan Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, P. R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
- Institute of Immunology and Molecular Medicine, Jining Medical UniversityJining 272000, Shandong, P. R. China
| |
Collapse
|
31
|
Dieckmann L, Cole S, Kumsta R. Stress genomics revisited: gene co-expression analysis identifies molecular signatures associated with childhood adversity. Transl Psychiatry 2020; 10:34. [PMID: 32066736 PMCID: PMC7026041 DOI: 10.1038/s41398-020-0730-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Childhood adversity is related to an increased risk for psychopathology in adulthood. Altered regulation of stress response systems, as well as the changes in stress-immune interplay have been suggested as potential mechanisms underlying these long-term effects. We have previously shown altered transcriptional responses to acute psychosocial stress in adults reporting the experience of childhood adversity. Here, we extend these analyses using a network approach. We performed a co-expression network analysis of genome-wide mRNA data derived from isolated monocytes, sampled 3 h after stress exposure from healthy adults, who experienced childhood adversity and a matched control group without adverse childhood experiences. Thirteen co-expression modules were identified, of which four modules were enriched for genes related to immune system function. Gene set enrichment analysis showed differential module activity between the early adversity and control group. In line with previous findings reporting a pro-inflammatory bias following childhood adversity, one module included genes associated with pro-inflammatory function (hub genes: IL6, TM4SF1, ADAMTS4, CYR61, CCDC3), more strongly expressed in the early adversity group. Another module downregulated in the early adversity group was related to platelet activation and wound healing (hub genes: GP9, CMTM5, TUBB1, GNG11, PF4), and resembled a co-expression module previously found over-expressed in post-traumatic stress disorder resilient soldiers. These discovery analysis results provide a system wide and more holistic understanding of gene expression programs associated with childhood adversity. Furthermore, identified hub genes can be used in directed hypothesis testing in future studies.
Collapse
Affiliation(s)
- Linda Dieckmann
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Steve Cole
- grid.19006.3e0000 0000 9632 6718Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA USA
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
32
|
Shahoei SH, Kim YC, Cler SJ, Ma L, Anakk S, Kemper JK, Nelson ER. Small Heterodimer Partner Regulates Dichotomous T Cell Expansion by Macrophages. Endocrinology 2019; 160:1573-1589. [PMID: 31050726 PMCID: PMC6549582 DOI: 10.1210/en.2019-00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
The involvement of small heterodimer partner (SHP) in the inhibition of hepatic bile acid synthesis from cholesterol has been established. However, extrahepatic expression of SHP implies that SHP may have regulatory functions other than those in the liver. Here, we find that SHP mRNA expression is high in murine bone marrow cells, suggesting a physiological role within macrophages. Indeed, expression of SHP in macrophages decreases the transcriptional activity and nuclear localization of nuclear factor κB, whereas downregulation of SHP has the opposite effects. Expression of genes associated with macrophage-T cell crosstalk were altered by overexpression or downregulation of SHP. Intriguingly, increasing SHP expression in macrophages resulted in decreased T cell expansion, a hallmark of T cell activation, whereas knockdown of SHP resulted in increased expansion. Analyses of the expanded T cells revealed a dichotomous skewing between effector T cells and regulatory T cells (Tregs), with SHP overexpression reducing Tregs and downregulation of SHP increasing their expansion. The expanded Tregs were confirmed to be suppressive via adoptive transfers. IL-2 and TGF-β, known inducers of Treg differentiation, were found to be regulated by SHP. Furthermore, SHP occupancy at the promoter region of IL-2 was increased after macrophages were challenged with lipopolysaccharide. Neutralizing antibodies to IL-2 and TGF-β inhibited the expansion of Tregs mediated by downregulation of SHP. This study demonstrates that expression and activity of SHP within macrophages can alter T cell fate and identifies SHP as a potential therapeutic target for autoimmune diseases or solid cancers.
Collapse
Affiliation(s)
- Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Samuel J Cler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jongsook K Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Correspondence: Erik R. Nelson, PhD, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue (MC-114), Urbana, Illinois 61801. E-mail:
| |
Collapse
|