1
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Zhang Y, Zhao X, Shen B, Bai Y, Chang C, Stojanovic A, Wang C, Mack A, Deng G, Skidgel RA, Cheng N, Du X. Integrin β 3 directly inhibits the Gα 13-p115RhoGEF interaction to regulate G protein signaling and platelet exocytosis. Nat Commun 2023; 14:4966. [PMID: 37587112 PMCID: PMC10432399 DOI: 10.1038/s41467-023-40531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
The integrins and G protein-coupled receptors are both fundamental in cell biology. The cross talk between these two, however, is unclear. Here we show that β3 integrins negatively regulate G protein-coupled signaling by directly inhibiting the Gα13-p115RhoGEF interaction. Furthermore, whereas β3 deficiency or integrin antagonists inhibit integrin-dependent platelet aggregation and exocytosis (granule secretion), they enhance G protein-coupled RhoA activation and integrin-independent secretion. In contrast, a β3-derived Gα13-binding peptide or Gα13 knockout inhibits G protein-coupled RhoA activation and both integrin-independent and dependent platelet secretion without affecting primary platelet aggregation. In a mouse model of myocardial ischemia/reperfusion injury in vivo, the β3-derived Gα13-binding peptide inhibits platelet secretion of granule constituents, which exacerbates inflammation and ischemia/reperfusion injury. These data establish crucial integrin-G protein crosstalk, providing a rationale for therapeutic approaches that inhibit exocytosis in platelets and possibly other cells without adverse effects associated with loss of cell adhesion.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xiaojuan Zhao
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bo Shen
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanyan Bai
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Claire Chang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aleksandra Stojanovic
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Dupage Medical Technology, Inc., Chicago, IL, 60612, USA
| | - Can Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Andrew Mack
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gary Deng
- Eli Lilly, Indianapolis, IN, 46285, USA
| | | | - Ni Cheng
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xiaoping Du
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Zhevlakova I, Xiong L, Liu H, Dudiki T, Ciocea A, Podrez E, Byzova TV. Opposite roles of Kindlin orthologs in cell survival and proliferation. Cell Prolif 2022; 55:e13280. [PMID: 35860876 PMCID: PMC9436913 DOI: 10.1111/cpr.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE It is unclear why adhesion-dependent cells such as epithelium undergo anoikis without anchorage, while adhesion-independent blood cells thrive in suspension. The adhesive machinery of these cells is similar, with the exception of Kindlin orthologs, Kindlin 2 (K2) and Kindlin 3 (K3). Here we address how Kindlins control cell survival and proliferation in anchorage-dependent and independent cells. MATERIAL AND METHODS To demonstrate the opposite roles of Kindlin's in cell survival we utilized in vivo and in vitro models and K3 and K2 knockdown and knockin cells. We used human lymphocytes from the K3 deficient patients in tumour model, K3 knockout and knockin macrophages and K2 knockout and knockin MEF cells for experiments in under conditions of adhesion and in suspension. RESULTS Depletion of K3 promotes cell proliferation and survival of anchorage-independent cells regardless of cell attachment. In contrast, the absence of K2 in anchorage-dependent cells accelerates apoptosis and limits proliferation. K3 deficiency promotes human lymphoma growth and survival in vivo. Kindlins' interaction with paxillin, is critical for their differential roles in cell anchorage. While disruption of K2-paxillin binding leads to increased apoptosis, the lack of K3-paxillin binding has an opposite effect in adhesion-independent cells. CONCLUSION Kindlin ortologs and their interaction to cytoskeletal protein paxillin define the mechanisms of anchorage dependence. Our study identifies the key elements of the cell adhesion machinery in cell survival and tumour metastasis, proposing possible targets for tumour treatment.
Collapse
Affiliation(s)
- Irina Zhevlakova
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Luyang Xiong
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Huan Liu
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Present address:
CVRC, Simiches Research CenterMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tejasvi Dudiki
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Alieta Ciocea
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Present address:
Hondros College of NursingWestervilleOhioUSA
| | - Eugene Podrez
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Tatiana V. Byzova
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
4
|
Rap1 controls epiblast morphogenesis in sync with the pluripotency states transition. Dev Cell 2022; 57:1937-1956.e8. [PMID: 35998584 DOI: 10.1016/j.devcel.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
The complex architecture of the murine fetus originates from a simple ball of pluripotent epiblast cells, which initiate morphogenesis upon implantation. In turn, this establishes an intermediate state of tissue-scale organization of the embryonic lineage in the form of an epithelial monolayer, where patterning signals delineate the body plan. However, how this major morphogenetic process is orchestrated on a cellular level and synchronized with the developmental progression of the epiblast is still obscure. Here, we identified that the small GTPase Rap1 plays a critical role in reshaping the pluripotent lineage. We found that Rap1 activity is controlled via Oct4/Esrrb input and is required for the transmission of polarization cues, which enables the de novo epithelialization and formation of tricellular junctions in the epiblast. Thus, Rap1 acts as a molecular switch that coordinates the morphogenetic program in the embryonic lineage, in sync with the cellular states of pluripotency.
Collapse
|
5
|
Zhao Y, Lykov N, Tzeng C. Talin‑1 interaction network in cellular mechanotransduction (Review). Int J Mol Med 2022; 49:60. [PMID: 35266014 PMCID: PMC8930095 DOI: 10.3892/ijmm.2022.5116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical signals within the extracellular matrix (ECM) regulate cell growth, proliferation and differentiation, and integrins function as the hub between the ECM and cellular actin. Focal adhesions (FAs) are multi‑protein, integrin‑containing complexes, acting as tension‑sensing anchoring points that bond cells to the extracellular microenvironment. Talin‑1 serves as the central protein of FAs that participates in the activation of integrins and connects them with the actin cytoskeleton. As a cytoplasmic protein, Talin‑1 consists of a globular head domain and a long rod comprised of a series of α‑helical bundles. The unique structure of the Talin‑1 rod domain permits folding and unfolding in response to the mechanical stress, revealing various binding sites. Thus, conformation changes of the Talin‑1 rod domain enable the cell to convert mechanical signals into chemical through multiple signaling pathways. The present review discusses the binding partners of Talin‑1, their interactions, effects on the cellular processes, and their possible roles in diseases.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Nikita Lykov
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Chimeng Tzeng
- Translational Medicine Research Center-Key Laboratory for Cancer T-Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
- Xiamen Chang Gung Hospital Medical Research Center, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
6
|
Lu F, Zhu L, Bromberger T, Yang J, Yang Q, Liu J, Plow EF, Moser M, Qin J. Mechanism of integrin activation by talin and its cooperation with kindlin. Nat Commun 2022; 13:2362. [PMID: 35488005 PMCID: PMC9054839 DOI: 10.1038/s41467-022-30117-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Talin-induced integrin binding to extracellular matrix ligands (integrin activation) is the key step to trigger many fundamental cellular processes including cell adhesion, cell migration, and spreading. Talin is widely known to use its N-terminal head domain (talin-H) to bind and activate integrin, but how talin-H operates in the context of full-length talin and its surrounding remains unknown. Here we show that while being capable of inducing integrin activation, talin-H alone exhibits unexpectedly low potency versus a constitutively activated full-length talin. We find that the large C-terminal rod domain of talin (talin-R), which otherwise masks the integrin binding site on talin-H in inactive talin, dramatically enhances the talin-H potency by dimerizing activated talin and bridging it to the integrin co-activator kindlin-2 via the adaptor protein paxillin. These data provide crucial insight into the mechanism of talin and its cooperation with kindlin to promote potent integrin activation, cell adhesion, and signaling.
Collapse
Affiliation(s)
- Fan Lu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, Munich, D-81675, Germany
| | - Jun Yang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Qiannan Yang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Jianmin Liu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Edward F Plow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, Munich, D-81675, Germany.
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Nguyen HTT, Xu Z, Shi X, Liu S, Schulte ML, White GC, Ma YQ. Paxillin binding to the PH domain of kindlin-3 in platelets is required to support integrin αIIbβ3 outside-in signaling. J Thromb Haemost 2021; 19:3126-3138. [PMID: 34411430 PMCID: PMC9080902 DOI: 10.1111/jth.15505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Kindlin-3 is essential for supporting the bidirectional signaling of integrin αIIbβ3 in platelets by bridging the crosstalk between integrin αIIbβ3 and the cytoplasmic signaling adaptors. OBJECTIVE In this study, we identified a previously unrecognized paxillin binding site in the pleckstrin homology (PH) domain of kindlin-3 and verified its functional significance. METHODS Structure-based approaches were employed to identify the paxillin binding site in the PH domain of kindlin-3. In addition, the bidirectional signaling of integrin αIIbβ3 were evaluated in both human and mouse platelets. RESULTS In brief, we found that a β1-β2 loop in the PH domain of kindlin-3, an important part of the canonical membrane phospholipid binding pocket, was also involved in mediating paxillin interaction. Interestingly, the binding sites of paxillin and membrane phospholipids in the PH domain of kindlin-3 were mutually exclusive. Specific disruption of paxillin binding to the PH domain by point mutations inhibited platelet spreading on immobilized fibrinogen while having no inhibition on soluble fibrinogen binding to stimulated platelets. In addition, a membrane-permeable peptide derived from the β1-β2 loop in the PH domain of kindlin-3 was capable of inhibiting platelet spreading and clot retraction, but it had no effect on soluble fibrinogen binding to platelets and platelet aggregation. Treatment with this peptide significantly reduced thrombus formation in mice. CONCLUSION Taken together, these findings suggest that interaction between paxillin and the PH domain of kindlin-3 plays an important role in supporting integrin αIIbβ3 outside-in signaling in platelets, thus providing a novel antithrombotic target.
Collapse
Affiliation(s)
| | - Zhen Xu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Xiaofeng Shi
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- The second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuzhen Liu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Gilbert C. White
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, Wisconsin, USA
| | - Yan-Qing Ma
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Cui C, Wang J, Guo L, Wu C. PINCH-1 promotes Δ 1-pyrroline-5-carboxylate synthase expression and contributes to proline metabolic reprogramming in lung adenocarcinoma. Amino Acids 2021; 53:1875-1890. [PMID: 34283311 DOI: 10.1007/s00726-021-03050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Proline metabolic reprogramming is intimately involved in cancer progression. We recently identified a critical role of PINCH-1, a cell-extracellular matrix (ECM) adhesion protein whose expression is elevated in lung adenocarcinoma, in the promotion of proline biosynthesis, fibrosis and lung adenocarcinoma growth. How PINCH-1 promotes proline biosynthesis, however, was incompletely understood. In this study, we show that PINCH-1 promotes the expression of Δ1-pyrroline-5-carboxylate synthase (P5CS), a key enzyme that links glutamate metabolism to proline biosynthesis. Depletion of PINCH-1 from lung adenocarcinoma cells reduced the protein but not mRNA level of P5CS, resulting in down-regulation of the cellular level of P5C and cell proliferation. Treatment of the cells with protease inhibitor leupeptin effectively reversed PINCH-1 deficiency-induced reduction of the P5CS level. At the molecular level, PINCH-1, through its LIM2 domain, physically associated with P5CS in lung adenocarcinoma cells. Re-expression of wild type PINCH-1, but not that of the PINCH-1 LIM2 deletion mutant, in PINCH-1 deficient lung adenocarcinoma cells restored P5CS expression, proline biosynthesis and cell proliferation. Finally, P5CS expression, like that of PINCH-1, is elevated in human and mouse lung adenocarcinoma. Using a mouse model of lung adenocarcinoma in which PINCH-1 is conditionally ablated, we show that knockout of PINCH-1 from lung adenocarcinoma effectively reduced the P5CS level in vivo. Our results reveal an important role of PINCH-1 in the promotion of P5CS expression, which likely contributes to proline metabolic reprogramming and consequently lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
9
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Zhang P, Wang J, Luo W, Yuan J, Cui C, Guo L, Wu C. Kindlin-2 Acts as a Key Mediator of Lung Fibroblast Activation and Pulmonary Fibrosis Progression. Am J Respir Cell Mol Biol 2021; 65:54-69. [PMID: 33761308 DOI: 10.1165/rcmb.2020-0320oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive and fatal lung disease characterized by activation of lung fibroblasts and excessive deposition of collagen matrix. We show here that the concentrations of kindlin-2 and its binding partner PYCR1, a key enzyme for proline synthesis, are significantly increased in the lung tissues of human patients with pulmonary fibrosis. Treatment of human lung fibroblasts with TGF-β1 markedly increased the expression of kindlin-2 and PYCR1, resulting in increased kindlin-2 mitochondrial translocation, formation of the kindlin-2-PYCR1 complex, and proline synthesis. The concentrations of the kindlin-2-PYCR1 complex and proline synthesis were markedly reduced in response to pirfenidone or nintedanib, two clinically approved therapeutic drugs for pulmonary fibrosis. Furthermore, depletion of kindlin-2 alone was sufficient to suppress TGF-β1-induced increases of PYCR1 expression, proline synthesis, and fibroblast activation. Finally, using a bleomycin mouse model of pulmonary fibrosis, we show that ablation of kindlin-2 effectively reduced the concentrations of PYCR1, proline, and collagen matrix and alleviate the progression of pulmonary fibrosis in vivo. Our results suggest that kindlin-2 is a key promoter of lung fibroblast activation, collagen matrix synthesis, and pulmonary fibrosis, underscoring the therapeutic potential of targeting the kindlin-2 signaling pathway for control of this deadly lung disease.
Collapse
Affiliation(s)
- Ping Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Weiren Luo
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China; and
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Soe ZY, Park EJ, Shimaoka M. Integrin Regulation in Immunological and Cancerous Cells and Exosomes. Int J Mol Sci 2021; 22:2193. [PMID: 33672100 PMCID: PMC7926977 DOI: 10.3390/ijms22042193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Integrins represent the biologically and medically significant family of cell adhesion molecules that govern a wide range of normal physiology. The activities of integrins in cells are dynamically controlled via activation-dependent conformational changes regulated by the balance of intracellular activators, such as talin and kindlin, and inactivators, such as Shank-associated RH domain interactor (SHARPIN) and integrin cytoplasmic domain-associated protein 1 (ICAP-1). The activities of integrins are alternatively controlled by homotypic lateral association with themselves to induce integrin clustering and/or by heterotypic lateral engagement with tetraspanin and syndecan in the same cells to modulate integrin adhesiveness. It has recently emerged that integrins are expressed not only in cells but also in exosomes, important entities of extracellular vesicles secreted from cells. Exosomal integrins have received considerable attention in recent years, and they are clearly involved in determining the tissue distribution of exosomes, forming premetastatic niches, supporting internalization of exosomes by target cells and mediating exosome-mediated transfer of the membrane proteins and associated kinases to target cells. A growing body of evidence shows that tumor and immune cell exosomes have the ability to alter endothelial characteristics (proliferation, migration) and gene expression, some of these effects being facilitated by vesicle-bound integrins. As endothelial metabolism is now thought to play a key role in tumor angiogenesis, we also discuss how tumor cells and their exosomes pleiotropically modulate endothelial functions in the tumor microenvironment.
Collapse
Affiliation(s)
- Zay Yar Soe
- Department of Physiology, University of Medicine, Magway, 7th Mile, Natmauk Road, Magway City 04012, Magway Region, Myanmar
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan;
| |
Collapse
|
12
|
Liu J, Liu Z, Chen K, Chen W, Fang X, Li M, Zhou X, Ding N, Lei H, Guo C, Qian T, Wang Y, Liu L, Chen Y, Zhao H, Sun Y, Deng Y, Wu C. Kindlin-2 promotes rear focal adhesion disassembly and directional persistence during cell migration. J Cell Sci 2021; 134:jcs244616. [PMID: 33277381 DOI: 10.1242/jcs.244616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/22/2020] [Indexed: 01/13/2023] Open
Abstract
Cell migration involves front-to-rear asymmetric focal adhesion (FA) dynamics, which facilitates trailing edge detachment and directional persistence. Here, we show that kindlin-2 is crucial for FA sliding and disassembly in migrating cells. Loss of kindlin-2 markedly reduced FA number and selectively impaired rear FA sliding and disassembly, resulting in defective rear retraction and reduced directional persistence during cell migration. Kindlin-2-deficient cells failed to develop serum-induced actomyosin-dependent tension at FAs. At the molecular level, kindlin-2 directly interacted with myosin light chain kinase (MYLK, hereafter referred to as MLCK), which was enhanced in response to serum stimulation. Serum deprivation inhibited rear FA disassembly, which was released in response to serum stimulation. Overexpression of the MLCK-binding kindlin-2 F0F1 fragment (amino acid residues 1-167), which inhibits the interaction of endogenous kindlin-2 with MLCK, phenocopied kindlin-2 deficiency-induced migration defects. Inhibition of MLCK, like loss of kindlin-2, also impaired trailing-edge detachment, rear FA disassembly and directional persistence. These results suggest a role of kindlin-2 in promoting actomyosin contractility at FAs, leading to increased rear FA sliding and disassembly, and directional persistence during cell migration.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongzhen Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keng Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiyuan Fang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Li
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuening Zhou
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Ding
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Lei
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Qian
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nan Kai University, Tianjin, 300071, China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Kindlin-3 mutation in mesenchymal stem cells results in enhanced chondrogenesis. Exp Cell Res 2021; 399:112456. [PMID: 33417921 DOI: 10.1016/j.yexcr.2020.112456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/20/2022]
Abstract
Identifying patient mutations driving skeletal development disorders has driven our understanding of bone development. Integrin adhesion deficiency disease is caused by a Kindlin-3 (fermitin family member 3) mutation, and its inactivation results in bleeding disorders and osteopenia. In this study, we uncover a role for Kindlin-3 in the differentiation of bone marrow mesenchymal stem cells (BMSCs) down the chondrogenic lineage. Kindlin-3 expression increased with chondrogenic differentiation, similar to RUNX2. BMSCs isolated from a Kindlin-3 deficient patient expressed chondrocyte markers, including SOX9, under basal conditions, which were further enhanced with chondrogenic differentiation. Rescue of integrin activation by a constitutively activated β3 integrin construct increased adhesion to multiple extracellular matrices and reduced SOX9 expression to basal levels. Growth plates from mice expressing a mutated Kindlin-3 with the integrin binding site ablated demonstrated alterations in chondrocyte maturation similar to that seen with the human Kindlin-3 deficient BMSCs. These findings suggest that Kindlin-3 expression mirrors RUNX2 during chondrogenesis.
Collapse
|
14
|
Zhu L, Plow EF, Qin J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view. Protein Sci 2020; 30:531-542. [PMID: 33336515 DOI: 10.1002/pro.4014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are integrin-containing protein complexes regulated by a network of hundreds of protein-protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion-dependent physiological and pathological responses.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Xia Q, Li Y, Han D, Dong L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther 2020; 28:551-565. [PMID: 33204002 DOI: 10.1038/s41417-020-00255-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
16
|
Sossey-Alaoui K. Perspectives on molecular signaling in cancer and update on therapeutic options for the treatment of metastatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:899. [PMID: 32793743 DOI: 10.21037/atm-2019-cm-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Medicine, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Rammelkamp Center for Research, Cleveland, OH 44109, USA. (; )
| |
Collapse
|
17
|
Yu D, Liu C, Guo L. Mitochondrial metabolism and cancer metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:904. [PMID: 32793748 DOI: 10.21037/atm.2020.03.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is regarded as the most important cause of cancer-related deaths around the world. During the complicated metastatic cascade, altered mitochondrial metabolism adapts to serve distinct conditions and microenvironments. In this review, we discuss how cells regulate their mitochondria metabolism to adapt to environmental cues during the metastasis, as well as how cancer cells and their tumor micro-environment (TME) are metabolically coupled during the metastatic cascade. We place a strong emphasis on how mitochondrial proline metabolism and extracellular matrix (ECM) are coupled.
Collapse
Affiliation(s)
- Dandan Yu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies, and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies, and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies, and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Haydari Z, Shams H, Jahed Z, Mofrad MRK. Kindlin Assists Talin to Promote Integrin Activation. Biophys J 2020; 118:1977-1991. [PMID: 32191864 DOI: 10.1016/j.bpj.2020.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Integrin αIIbβ3 is a predominant type of integrin abundantly expressed on the surface of platelets and its activation regulates the process of thrombosis. Talin and kindlin are cytoplasmic proteins that bind to integrin and modulate its affinity for extracellular ligands. Although the molecular details of talin-mediated integrin activation are known, the mechanism of kindlin involvement in this process remains elusive. Here, we demonstrate that the interplay between talin and kindlin promotes integrin activation. Our all-atomic molecular dynamics simulations on complete transmembrane and cytoplasmic domains of integrin αIIbβ3, talin1 F2/F3 subdomains, and the kindlin2 FERM domain in an explicit lipid-water environment over a microsecond timescale unraveled the role of kindlin as an enhancer of the talin interaction with the membrane proximal region of β-integrin. The cooperation of kindlin with talin results in a complete disruption of salt bridges between R995 on αIIb and D723/E726 on β3. Furthermore, kindlin modifies the molecular mechanisms of inside-out activation by decreasing the crossing angle between transmembrane helices of integrin αIIbβ3, which eventually results in parallelization of integrin dimer. In addition, our control simulation featuring integrin in complex with kindlin reveals that kindlin binding is not sufficient for unclasping the inner-membrane and outer-membrane interactions of integrin dimer, thus ruling out the possibility of solitary action of kindlin in integrin activation.
Collapse
Affiliation(s)
- Zainab Haydari
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
19
|
Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, Ma L, Chen D, Kanaporis G, Wang J, Li L, Cheng T, Wang Y, Wu C, Xiao G. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun 2020; 11:484. [PMID: 31980627 PMCID: PMC6981167 DOI: 10.1038/s41467-019-14186-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
β-Cell dysfunction and reduction in β-cell mass are hallmark events of diabetes mellitus. Here we show that β-cells express abundant Kindlin-2 and deleting its expression causes severe diabetes-like phenotypes without markedly causing peripheral insulin resistance. Kindlin-2, through its C-terminal region, binds to and stabilizes MafA, which activates insulin expression. Kindlin-2 loss impairs insulin secretion in primary human and mouse islets in vitro and in mice by reducing, at least in part, Ca2+ release in β-cells. Kindlin-2 loss activates GSK-3β and downregulates β-catenin, leading to reduced β-cell proliferation and mass. Kindlin-2 loss reduces the percentage of β-cells and concomitantly increases that of α-cells during early pancreatic development. Genetic activation of β-catenin in β-cells restores the diabetes-like phenotypes induced by Kindlin-2 loss. Finally, the inducible deletion of β-cell Kindlin-2 causes diabetic phenotypes in adult mice. Collectively, our results establish an important function of Kindlin-2 and provide a potential therapeutic target for diabetes. Beta cell dysfunction and reduction in beta cell mass are hallmark events in the pathogenesis of diabetes mellitus. We identify focal adhesion protein Kindlin-2 as a key factor that controls insulin synthesis and secretion and beta cell mass by modulating MafA and beta-catenin proteins in pancreatic beta cells.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Liting Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Giedrius Kanaporis
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Junqi Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and Nankai University College of Pharmacy, 300071, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Yong Wang
- UVA Islet Microfluidic Laboratory, Department of Surgery, the University of Virginia, Charlottesville, VA, 22908, USA
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China. .,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Qiu Z, Sheesley P, Ahn JH, Yu EJ, Lee M. A Novel Mutation in an NPXY Motif of β Integrin Reveals Phenotypes Similar to him-4/hemicentin. Front Cell Dev Biol 2019; 7:247. [PMID: 31720287 PMCID: PMC6827421 DOI: 10.3389/fcell.2019.00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Integrin, an αβ heterodimeric cell surface receptor for the extracellular matrix (ECM), carries two tyrosine phosphorylation motifs in the cytoplasmic tail of the β subunit. NPXY (Asn-Pro-x-Tyr) is a conserved tyrosine phosphorylation motif that binds to the phospho-tyrosine binding (PTB) domain. We generated a tyrosine to glutamic acid (E) mutation to modify tyrosine (Y) into a negatively charged amino NPXY in the βpat-3 integrin of Caenorhabditis elegans. The transgenic rescue animal displayed defects in gonad migration and tail morphology. Also, the mutant animals produced a high number of males, suggesting that the Y to E mutation in βpat-3 integrin causes a phenotype similar to that of Him mutant. Further analyses revealed that males of pat-3(Y804E) and him-4/hemicentin share additional phenotypes such as abnormal gonad and unsuccessful mating. A pat-3 transgenic rescue mutant with a non-polar phenylalanine (F) in NPXY, pat-3(Y792/804F), suppressed the high male number, defective mating, inviable zygote, and the abnormal gonad of him-4 mutants, indicating that Y to F mutation in both NPXY motifs suppressed the him-4 phenotypes. This finding supports the idea that the ECM determines the activation state in integrin NPXY motifs; him-4/hemicentin may directly or indirectly interact with integrins and maintain the NPXY non-charged. Our findings provide new insight into a suppressive role of an ECM molecule in integrin NPXY phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
21
|
Zhu L, Liu H, Lu F, Yang J, Byzova TV, Qin J. Structural Basis of Paxillin Recruitment by Kindlin-2 in Regulating Cell Adhesion. Structure 2019; 27:1686-1697.e5. [PMID: 31590942 DOI: 10.1016/j.str.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022]
Abstract
Activation of cell surface receptor integrin has been extensively studied as the first key step to trigger cell adhesion, but the subsequent events, widely regarded as integrin "outside-in" signaling to form supramolecular complexes (focal adhesions [FAs]) to promote dynamic cell adhesion, remain poorly elucidated. Integrin activator kindlin-2 was recently found to associate with paxillin in nascent FAs, implicating an early yet undefined integrin outside-in signaling event. Here we show structurally that kindlin-2 recognizes paxillin via a distinct interface involving the ubiquitin-like kindlin-2 F0 domain and the paxillin LIM4 domain. The interface is adjacent to the membrane binding site of kindlin-2 F0, suggesting a mechanism for kindlin-2 to recruit paxillin to the membrane-proximal site where FA assembly is initiated. Disruption of the interface impaired the localization of paxillin, causing strong defects in FA assembly and cell migration. These data unveil a structural basis of the kindlin-2/paxillin interaction in controlling dynamic cell adhesion.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Huan Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Fan Lu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jun Yang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Gao J, Bao Y, Ge S, Sun P, Sun J, Liu J, Chen F, Han L, Cao Z, Qin J, White GC, Xu Z, Ma YQ. Sharpin suppresses β1-integrin activation by complexing with the β1 tail and kindlin-1. Cell Commun Signal 2019; 17:101. [PMID: 31429758 PMCID: PMC6700787 DOI: 10.1186/s12964-019-0407-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background Previously sharpin has been identified as an endogenous inhibitor of β1-integrin activation by directly binding to a conserved region in the cytoplasmic tails (CTs) of the integrin β1-associated α subunits. Methods Here we employed biochemical approaches and cellular analyses to evaluate the function and molecular mechanism of the sharpin-kindlin-1 complex in regulating β1-integrin activation. Results In this study, we found that although the inhibition of sharpin on β1-integrin activation could be confirmed, sharpin had no apparent effect on integrin αIIbβ3 activation in CHO cell system. Notably, a direct interaction between sharpin and the integrin β1 CT was detected, while the interaction of sharpin with the integrin αIIb and the β3 CTs were substantially weaker. Importantly, sharpin was able to inhibit the talin head domain binding to the integrin β1 CT, which can mechanistically contribute to inhibiting β1-integrin activation. Interestingly, we also found that sharpin interacted with kindlin-1, and the interaction between sharpin and the integrin β1 CT was significantly enhanced when kindlin-1 was present. Consistently, we observed that instead of acting as an activator, kindlin-1 actually suppressed the talin head domain mediated β1-integrin activation, indicating that kindlin-1 may facilitate recruitment of sharpin to the integrin β1 CT. Conclusion Taken together, our findings suggest that sharpin may complex with both kindlin-1 and the integrin β1 CT to restrict the talin head domain binding, thus inhibiting β1-integrin activation.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Yun Bao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Shushu Ge
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Jiaojiao Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Jianmin Liu
- Department of Molecular Cardiology, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Feng Chen
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Li Han
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Gilbert C White
- Blood Research Institute, Versiti, 8727 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Milwaukee, WI, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China. .,Blood Research Institute, Versiti, 8727 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China. .,Blood Research Institute, Versiti, 8727 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Biochemistry, Medical College of Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Guo L, Wu C. Mechano-regulation of proline metabolism and cancer progression by kindlin-2. Mol Cell Oncol 2019; 6:1596003. [PMID: 31131313 PMCID: PMC6512932 DOI: 10.1080/23723556.2019.1596003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Alterations of cell mechano-environment and metabolism are common features of malignant neoplasm. We recently showed that increased stiffness of extracellular matrix is intrinsically linked to up-regulation of proline synthesis through a mechano-responsive fermitin family homolog 2 (FERMT2, best known as kindlin-2) and pyrroline-5-carboxylate reductase 1(PYCR1) complex, which in turn promotes collagen matrix synthesis, cell proliferation, survival, and cancer progression.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Guo L, Cui C, Zhang K, Wang J, Wang Y, Lu Y, Chen K, Yuan J, Xiao G, Tang B, Sun Y, Wu C. Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun 2019; 10:845. [PMID: 30783087 PMCID: PMC6381112 DOI: 10.1038/s41467-019-08772-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Cell metabolism is strongly influenced by mechano-environment. We show here that a fraction of kindlin-2 localizes to mitochondria and interacts with pyrroline-5-carboxylate reductase 1 (PYCR1), a key enzyme for proline synthesis. Extracellular matrix (ECM) stiffening promotes kindlin-2 translocation into mitochondria and its interaction with PYCR1, resulting in elevation of PYCR1 level and consequent increase of proline synthesis and cell proliferation. Depletion of kindlin-2 reduces PYCR1 level, increases reactive oxygen species (ROS) production and apoptosis, and abolishes ECM stiffening-induced increase of proline synthesis and cell proliferation. In vivo, both kindlin-2 and PYCR1 levels are markedly increased in lung adenocarcinoma. Ablation of kindlin-2 in lung adenocarcinoma substantially reduces PYCR1 and proline levels, and diminishes fibrosis in vivo, resulting in marked inhibition of tumor growth and reduction of mortality rate. Our findings reveal a mechanoresponsive kindlin-2-PYCR1 complex that links mechano-environment to proline metabolism and signaling, and suggest a strategy to inhibit tumor growth.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yilin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yixuan Lu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ka Chen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Bin Tang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ying Sun
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA.
| |
Collapse
|
25
|
|
26
|
Ying J, Luan W, Lu L, Zhang S, Qi F. Knockdown of the KINDLIN-2 Gene and Reduced Expression of Kindlin-2 Affects Vascular Permeability in Angiogenesis in a Mouse Model of Wound Healing. Med Sci Monit 2018; 24:5376-5383. [PMID: 30070977 PMCID: PMC6085983 DOI: 10.12659/msm.910059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Angiogenesis is an important component of wound healing and tissue repair. Kindlin-2 is an integrin-associated protein, encoded by the KINDLIN-2 gene, which has been shown to affect cell adhesion and migration of cells, including endothelial cells. The aim of this study was to use a mouse model of wound healing to evaluate the effects of expression of KINDLIN-2 on angiogenesis in wound healing in vivo. Material/Methods Thirty-six male C57BL/6 mice were studied in an established model that used a wound created on the back. Mice were divided randomly into three groups: the normal group (n=12) received injections of normal (0.9%) saline; the KINDLIN-2(−) group (n=12) received injections of adeno-associated virus with small interfering (si)RNA targeting the KINDLIN-2 gene (AAV-KINDLIN-2-siRNA); and the control (group (n=12) received injections of adeno-associated virus containing a scrambled RNA sequence (AAV-control-RNA). Wound healing was analyzed by biochemical examination of the exudates and histology. Evans blue dye was injected into the caudal vein of each mouse, two weeks after wound healing to assess neovascular permeability. Results Wound healing was significantly delayed in the KINDLIN-2 gene knockdown mice (AAV-KINDLIN-2-siRNA) compared with that of the normal group and the control group, and neovascular permeability was increased. In the AAV-KINDLIN-2-siRNA group, blood vessels were shorter and thinner compared with the normal group and the control group. Conclusions In a mouse model of wound healing, KINDLIN-2 gene knockdown inhibited wound healing, and increased neovascular permeability in vivo.
Collapse
Affiliation(s)
- Jianghui Ying
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Wenjie Luan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Lu Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Simin Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
27
|
Ghosh K. Glanzmann thrombasthenia: an editorial perspective. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1419128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kanjaksha Ghosh
- Department of Haematology and Transfusion Medicine, Surat Raktadan Kendra & Research Centre, Surat, India
| |
Collapse
|
28
|
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, Wang J, White GC, Xu Z, Ma YQ. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci 2017; 130:3764-3775. [PMID: 28954813 DOI: 10.1242/jcs.205641] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Kindlins play an important role in supporting integrin activation by cooperating with talin; however, the mechanistic details remain unclear. Here, we show that kindlins interacted directly with paxillin and that this interaction could support integrin αIIbβ3 activation. An exposed loop in the N-terminal F0 subdomain of kindlins was involved in mediating the interaction. Disruption of kindlin binding to paxillin by structure-based mutations significantly impaired the function of kindlins in supporting integrin αIIbβ3 activation. Both kindlin and talin were required for paxillin to enhance integrin activation. Interestingly, a direct interaction between paxillin and the talin head domain was also detectable. Mechanistically, paxillin, together with kindlin, was able to promote the binding of the talin head domain to integrin, suggesting that paxillin complexes with kindlin and talin to strengthen integrin activation. Specifically, we observed that crosstalk between kindlin-3 and the paxillin family in mouse platelets was involved in supporting integrin αIIbβ3 activation and in vivo platelet thrombus formation. Taken together, our findings uncover a novel mechanism by which kindlin supports integrin αIIbβ3 activation, which might be beneficial for developing safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Ming Huang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Jingjing Lai
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Kaijun Mao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Youpei Hu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Yingying Zhang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Marie L Schulte
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Gilbert C White
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| |
Collapse
|
29
|
Pluskota E, Bledzka KM, Bialkowska K, Szpak D, Soloviev DA, Jones SV, Verbovetskiy D, Plow EF. Kindlin-2 interacts with endothelial adherens junctions to support vascular barrier integrity. J Physiol 2017; 595:6443-6462. [PMID: 28799653 DOI: 10.1113/jp274380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS A reduction in Kindlin-2 levels in endothelial cells compromises vascular barrier function. Kindlin-2 is a previously unrecognized component of endothelial adherens junctions. By interacting directly and simultaneously with β- or γ-catenin and cortical actin filaments, Kindlin-2 stabilizes adherens junctions. The Kindlin-2 binding sites for β- and γ-catenin reside within its F1 and F3 subdomains. Although Kindlin-2 does not associate directly with tight junctions, its downregulation also destabilizes these junctions. Thus, impairment of both adherens and tight junctions may contribute to enhanced leakiness of vasculature in Kindlin-2+/- mice. ABSTRACT Endothelial cells (EC) establish a physical barrier between the blood and surrounding tissue. Impairment of this barrier can occur during inflammation, ischaemia or sepsis and cause severe organ dysfunction. Kindlin-2, which is primarily recognized as a focal adhesion protein in EC, was not anticipated to have a role in vascular barrier. We tested the role of Kindlin-2 in regulating vascular integrity using several different approaches to decrease Kindlin-2 levels in EC. Reduced levels of Kindlin-2 in Kindlin-2+/- mice aortic endothelial cells (MAECs) from these mice, and human umbilical ECs (HUVEC) treated with Kindlin-2 siRNA showed enhanced basal and platelet-activating factor (PAF) or lipopolysaccharide-stimulated vascular leakage compared to wild-type (WT) counterparts. PAF preferentially disrupted the Kindlin-2+/- MAECs barrier to BSA and dextran and reduced transendothelial resistance compared to WT cells. Kindlin-2 co-localized and co-immunoprecipitated with vascular endothelial cadherin-based complexes, including β- and γ-catenin and actin, components of adherens junctions (AJ). Direct interaction of Kindlin-2 with β- and γ-catenin and actin was demonstrated in co-immunoprecipitation and surface plasmon resonance experiments. In thrombin-stimulated HUVECs, Kindlin-2 and cortical actin dissociated from stable AJs and redistributed to radial actin stress fibres of remodelling focal AJs. The β- and γ-catenin binding site resides within the F1 and F3 subdomains of Kindlin-2 but not the integrin binding site in F3. These results establish a previously unrecognized and vital role of Kindlin-2 with respect to maintaining the vascular barrier by linking Vascuar endothelial cadherin-based complexes to cortical actin and thereby stabilizing AJ.
Collapse
Affiliation(s)
- Elzbieta Pluskota
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Kamila M Bledzka
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Katarzyna Bialkowska
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Dorota Szpak
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Dmitry A Soloviev
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Sidney V Jones
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Dmitriy Verbovetskiy
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Edward F Plow
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA
| |
Collapse
|
30
|
Sun Y, Guo C, Ma P, Lai Y, Yang F, Cai J, Cheng Z, Zhang K, Liu Z, Tian Y, Sheng Y, Tian R, Deng Y, Xiao G, Wu C. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury. J Am Soc Nephrol 2017; 28:3545-3562. [PMID: 28775002 DOI: 10.1681/asn.2016091021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/26/2017] [Indexed: 01/08/2023] Open
Abstract
Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor α (RhoGDIα) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDIα and resulted in the dissociation of Rac1 from RhoGDIα, leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDIα-Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases.
Collapse
Affiliation(s)
- Ying Sun
- Departments of Biology and .,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | | | | | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois; and
| | | | | | | | | | | | | | | | - Ruijun Tian
- Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.,Chemistry, and
| | - Yi Deng
- Departments of Biology and.,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Departments of Biology and .,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois; and
| | - Chuanyue Wu
- Departments of Biology and .,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Sossey-Alaoui K, Pluskota E, Bialkowska K, Szpak D, Parker Y, Morrison CD, Lindner DJ, Schiemann WP, Plow EF. Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1-Mediated Macrophage Infiltration. Cancer Res 2017; 77:5129-5141. [PMID: 28687620 DOI: 10.1158/0008-5472.can-16-2337] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/03/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
Interplay between tumor cells and host cells in the tumor microenvironment dictates the development of all cancers. In breast cancer, malignant cells educate host macrophages to adopt a protumorigenic phenotype. In this study, we show how the integrin-regulatory protein kindlin-2 (FERMT2) promotes metastatic progression of breast cancer through the recruitment and subversion of host macrophages. Kindlin-2 expression was elevated in breast cancer biopsy tissues where its levels correlated with reduced patient survival. On the basis of these observations, we used CRISPR/Cas9 technology to ablate Kindlin-2 expression in human MDA-MB-231 and murine 4T1 breast cancer cells. Kindlin-2 deficiency inhibited invasive and migratory properties in vitro without affecting proliferation rates. However, in vivo tumor outgrowth was inhibited by >80% in a manner associated with reduced macrophage infiltration and secretion of the macrophage attractant and growth factor colony-stimulating factor-1 (CSF-1). The observed loss of CSF-1 appeared to be caused by a more proximal deficiency in TGFβ-dependent signaling in Kindlin-2-deficient cells. Collectively, our results illuminate a Kindlin-2/TGFβ/CSF-1 signaling axis employed by breast cancer cells to capture host macrophage functions that drive tumor progression. Cancer Res; 77(18); 5129-41. ©2017 AACR.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio
| | | | - Dorota Szpak
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio
| | - Yvonne Parker
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
32
|
Hirbawi J, Bialkowska K, Bledzka KM, Liu J, Fukuda K, Qin J, Plow EF. The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J Biol Chem 2017; 292:14258-14269. [PMID: 28652408 DOI: 10.1074/jbc.m117.776195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/17/2017] [Indexed: 12/25/2022] Open
Abstract
Kindlin-2 (K2), a 4.1R-ezrin-radixin-moesin (FERM) domain adaptor protein, mediates numerous cellular responses, including integrin activation. The C-terminal 15-amino acid sequence of K2 is remarkably conserved across species but is absent in canonical FERM proteins, including talin. In CHO cells expressing integrin αIIbβ3, co-expression of K2 with talin head domain resulted in robust integrin activation, but this co-activation was lost after deletion of as few as seven amino acids from the K2 C terminus. This dependence on the C terminus was also observed in activation of endogenous αIIbβ3 in human erythroleukemia (HEL) cells and β1 integrin activation in macrophage-like RAW264.1 cells. Kindlin-1 (K1) exhibited a similar dependence on its C terminus for integrin activation. Expression of the K2 C terminus as an extension of membrane-anchored P-selectin glycoprotein ligand-1 (PSGL-1) inhibited integrin-dependent cell spreading. Deletion of the K2 C terminus did not affect its binding to the integrin β3 cytoplasmic tail, but combined biochemical and NMR analyses indicated that it can insert into the F2 subdomain. We suggest that this insertion determines the topology of the K2 FERM domain, and its deletion may affect the positioning of the membrane-binding functions of the F2 subdomain and the integrin-binding properties of its F3 subdomain. Free C-terminal peptide can still bind to K2 and displace the endogenous K2 C terminus but may not restore the conformation needed for integrin co-activation. Our findings indicate that the extreme C terminus of K2 is essential for integrin co-activation and highlight the importance of an atypical architecture of the K2 FERM domain in regulating integrin activation.
Collapse
Affiliation(s)
- Jamila Hirbawi
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Katarzyna Bialkowska
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kamila M Bledzka
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jianmin Liu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Koichi Fukuda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F Plow
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
33
|
Wei X, Wang X, Zhan J, Chen Y, Fang W, Zhang L, Zhang H. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol 2017; 216:1455-1471. [PMID: 28408404 PMCID: PMC5412569 DOI: 10.1083/jcb.201609073] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/11/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
Integrin-mediated cellular functions require integrin activation by the proteins Kindlin-2 and Talin. Wei et al. show that the E3 ligase Smurf1 permits precise modulation of integrin-mediated adhesion by interacting with and promoting Kindlin-2 ubiquitination and degradation. Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kindlin-2 ubiquitination and degradation. Smurf1 selectively mediates degradation of Kindlin-2 but not Talin, leading to inhibition of αIIbβ3 integrin activation in Chinese hamster ovary cells and β1 integrin activation in fibroblasts. Enhanced activation of β1 integrin was found in Smurf1-knockout mouse embryonic fibroblasts, which correlates with an increase in Kindlin-2 protein levels. Similarly, a reciprocal relationship between Smurf1 and Kindlin-2 protein levels is found in tissues from colon cancer patients, suggesting that Smurf1 mediates Kindlin-2 degradation in vivo. Collectively, we demonstrate that Smurf1 acts as a brake for integrin activation by controlling Kindlin-2 protein levels, a new mechanism that permits precise modulation of integrin-mediated cellular functions.
Collapse
Affiliation(s)
- Xiaofan Wei
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xiang Wang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Weigang Fang
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
34
|
Yoshida N, Masamune A, Hamada S, Kikuta K, Takikawa T, Motoi F, Unno M, Shimosegawa T. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer. Cancer Lett 2017; 390:103-114. [PMID: 28093281 DOI: 10.1016/j.canlet.2017.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with pancreatic ductal adenocarcinoma (PDAC). Kindlin-2 is a focal adhesion protein that regulates the activation of integrins. This study aimed to clarify the role of kindlin-2 in PSCs in pancreatic cancer. Kindlin-2 expression in 79 resected pancreatic cancer tissues was examined by immunohistochemical staining. Kindlin-2-knockdown immortalized human PSCs were established using small interfering RNA. Pancreatic cancer cells were treated with conditioned media of PSCs, and the cell proliferation and migration were examined. SUIT-2 pancreatic cancer cells were subcutaneously injected into nude mice alone or with PSCs and the size of the tumors was monitored. Kindlin-2 expression was observed in PDAC and the peritumoral stroma. Stromal kindlin-2 expression was associated with shorter recurrence-free survival time after R0 resection. Knockdown of kindlin-2 resulted in decreased proliferation, migration, and cytokine expression in PSCs. The PSC-induced proliferation and migration of pancreatic cancer cells were suppressed by kindlin-2 knockdown in PSCs. In vivo, co-injection of PSCs increased the size of the tumors, but this effect was abolished by kindlin-2 knockdown in PSCs. In conclusion, kindlin-2 in PSCs promoted the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
35
|
Ning K, Zhang H, Wang Z, Li K. Prognostic implications of Kindlin proteins in human osteosarcoma. Onco Targets Ther 2017; 10:657-665. [PMID: 28223823 PMCID: PMC5308570 DOI: 10.2147/ott.s125418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Kindlin protein family, comprising Kindlin-1, Kindlin-2 and Kindlin-3, play important roles in various human cancers. Here, to explore the clinical significance of Kindlins in human osteosarcomas, quantitative real-time PCR and Western blot analyses were performed to detect the expression of Kindlin-1, Kindlin-2 and Kindlin-3 mRNAs and proteins in 20 self-pairs of osteosarcoma and adjacent noncancerous tissues. Then, immunohistochemistry was performed to examine subcellular localizations and expression patterns of Kindlin proteins in 100 osteosarcoma and matched adjacent noncancerous tissues. Kindlin-1, Kindlin-2 and Kindlin-3 protein immunostainings were localized in the cytoplasm, nucleus and cytoplasm, respectively, of tumor cells in primary osteosarcoma tissues. Statistically, the expression levels of Kindlin-1 and Kindlin-2 mRNAs and proteins in osteosarcoma tissues were all significantly higher (both P<0.01), but those of Kindlin-3 mRNA and protein were both dramatically lower (both P<0.05), than in matched adjacent noncancerous tissues. In addition, the overexpressions of Kindlin-1 and Kindlin-2 proteins were both significantly associated with high tumor grade (both P=0.01), presence of metastasis (both P=0.006), recurrence (both P=0.006) and poor response to chemotherapy (both P=0.02). Moreover, Kindlin-1 and Kindlin-2 expressions were both identified as independent prognostic factors for overall (both P=0.01) and disease-free (P=0.02 and 0.01, respectively) survivals of osteosarcoma patients. However, no associations were observed between Kindlin-3 expression and various clinicopathologic features and patients’ prognosis. In conclusion, aberrant expression of Kindlin-1 and Kindlin-2 may function as reliable markers for progression and prognosis in osteosarcoma patients, especially for tumor recurrence.
Collapse
Affiliation(s)
- Kai Ning
- Department of Orthopedics Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Zhigang Wang
- Department of Orthopedics Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Kun Li
- Department of Orthopedics Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| |
Collapse
|
36
|
Abstract
Kindlins are 4.1-ezrin-ridixin-moesin (FERM) domain containing proteins. There are three kindlins in mammals, which share high sequence identity. Kindlin-1 is expressed primarily in epithelial cells, kindlin-2 is widely distributed and is particularly abundant in adherent cells, and kindlin-3 is expressed primarily in hematopoietic cells. These distributions are not exclusive; some cells express multiple kindlins, and transformed cells often exhibit aberrant expression, both in the isoforms and the levels of kindlins. Great interest in the kindlins has emerged from the recognition that they play major roles in controlling integrin function. In vitro studies, in vivo studies of mice deficient in kindlins, and studies of patients with genetic deficiencies of kindlins have clearly established that they regulate the capacity of integrins to mediate their functions. Kindlins are adaptor proteins; their function emanate from their interaction with binding partners, including the cytoplasmic tails of integrins and components of the actin cytoskeleton. The purpose of this review is to provide a brief overview of kindlin structure and function, a consideration of their binding partners, and then to focus on the relationship of each kindlin family member with cancer. In view of many correlations of kindlin expression levels and neoplasia and the known association of integrins with tumor progression and metastasis, we consider whether regulation of kindlins or their function would be attractive targets for treatment of cancer.
Collapse
Affiliation(s)
- Edward F Plow
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mitali Das
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Katarzyna Bialkowska
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
37
|
The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 2016; 128:479-87. [PMID: 27207789 DOI: 10.1182/blood-2015-12-638700] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.
Collapse
|
38
|
Niki M, Nayak MK, Jin H, Bhasin N, Plow EF, Pandolfi PP, Rothman PB, Chauhan AK, Lentz SR. Dok-1 negatively regulates platelet integrin αIIbβ3 outside-in signalling and inhibits thrombosis in mice. Thromb Haemost 2016; 115:969-78. [PMID: 26790499 DOI: 10.1160/th15-05-0373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/23/2015] [Indexed: 01/10/2023]
Abstract
Adaptor proteins play a critical role in the assembly of signalling complexes after engagement of platelet receptors by agonists such as collagen, ADP and thrombin. Recently, using proteomics, the Dok (downstream of tyrosine kinase) adapter proteins were identified in human and mouse platelets. In vitro studies suggest that Dok-1 binds to platelet integrin β3, but the underlying effects of Dok-1 on αIIbβ3 signalling, platelet activation and thrombosis remain to be elucidated. In the present study, using Dok-1-deficient (Dok-1-/-) mice, we determined the phenotypic role of Dok-1 in αIIbβ3 signalling. We found that platelets from Dok-1-/- mice displayed normal aggregation, activation of αIIbβ3 (assessed by binding of JON/A), P-selectin surface expression (assessed by anti-CD62P), and soluble fibrinogen binding. These findings indicate that Dok-1 does not affect "inside-out" platelet signalling. Compared with platelets from wild-type (WT) mice, platelets from Dok-1-/- mice exhibited increased clot retraction (p < 0.05 vs WT), increased PLCγ2 phosphorylation, and enhanced spreading on fibrinogen after thrombin stimulation (p < 0.01 vs WT), demonstrating that Dok-1 negatively regulates αIIbβ3 "outside-in" signalling. Finally, we found that Dok-1-/- mice exhibited significantly shortened bleeding times and accelerated carotid artery thrombosis in response to photochemical injury (p < 0.05 vs WT mice). We conclude that Dok-1 modulates thrombosis and haemostasis by negatively regulating αIIbβ3 outside-in signalling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Steven R Lentz
- Steven R. Lentz, MD, PhD, Department of Internal Medicine, University of Iowa, C21 GH, 200 Hawkins Drive, Iowa City, IA 52242, USA, Tel.: +1 319 356 4048, Fax: +1 319 353 8383, E-mail:
| |
Collapse
|
39
|
Sossey-Alaoui K, Plow EF. miR-138-Mediated Regulation of KINDLIN-2 Expression Modulates Sensitivity to Chemotherapeutics. Mol Cancer Res 2015; 14:228-38. [PMID: 26474967 DOI: 10.1158/1541-7786.mcr-15-0299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/12/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED Prostate cancer is the second leading cause of cancer-related death in men, second only to lung cancer, mainly due to disease reoccurrence as a result to lack of response to androgen deprivation therapies (ADT) after castration. Patients with metastatic castration-resistant prostate cancer (mCRPC) have very limited treatment options, with docetaxel as the first-line standard of care, for which resistance to this chemotherapeutic ultimately develops. Therefore, finding ways to sensitize tumors to chemotherapies and to limit chemoresistance provides a viable strategy to extend the survival of mCRPC patients. This study investigated the role of Kindlin-2 (FERMT2/K2), a member of the Kindlin family of FERM domain proteins and key regulators of the adhesive functions mediated by integrin, in the sensitization of mCRPC to chemotherapeutics. Loss of K2, which is overexpressed in prostate cancer cells derived from mCRPC tumors, compared with those cells derived from androgen-dependent tumors, significantly enhanced apoptosis and cell death of docetaxel-treated PC3 cells. Furthermore, it was determined that K2-mediated sensitization to docetaxel treatment is the result of inhibition of β1-integrin signaling. Finally, miR-138 specifically targeted K2 and inhibited its expression, thereby regulating a miR-138/K2/β1-integrin signaling axis in mCRPC that is critical for the modulation of sensitivity to chemotherapeutics. Thus, these data identify a novel signaling axis where K2 in combination with chemotherapeutics provides a new target for the treatment of mCRPC. IMPLICATIONS Targeted inhibition of Kindlin-2 in combination with chemotherapy represents an effective treatment option for mCRPC.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
40
|
Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun 2015; 6:7531. [PMID: 26151572 PMCID: PMC4498276 DOI: 10.1038/ncomms8531] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/14/2015] [Indexed: 02/08/2023] Open
Abstract
The signals that control skeletogenesis are incompletely understood. Here we show that deleting Kindlin-2 in Prx1-expressing mesenchymal progenitors in mice causes neonatal lethality, chondrodysplasia and loss of the skull vault. Kindlin-2 ablation reduces chondrocyte density by decreasing cell proliferation and increasing apoptosis, and disrupts column formation, thus impairing the formation of the primary ossification center and causing severe limb shortening. Remarkably, Kindlin-2 localizes to not only focal adhesions, but also to the nuclei of chondrocytes. Loss of Kindlin-2 reduces, while the overexpression of Kindlin-2 increases, Sox9 expression. Furthermore, the overexpression of Sox9 restores the defects in chondrogenic differentiation induced by Kindlin-2 deletion in vitro. In addition, Kindlin-2 ablation inhibits TGF-β1-induced Smad2 phosphorylation and chondrocyte differentiation. Finally, deleting Kindlin-2 in chondrocytes directly impairs chondrocyte functions, resulting in progressive dwarfism and kyphosis in mice. These studies uncover a previously unrecognized function for Kindlin-2 and a mechanism for regulation of the chondrocyte differentiation programme and chondrogenesis. The Kidlins are proteins found in cell focal adhesion sites where they regulate integrins, and in the nucleus where their role is unknown. Here the authors show that Kindlin-2 controls chondrogenesis by regulating integrin b1 activation and Sox9 and TGF-β nuclear signalling.
Collapse
|
41
|
Abstract
In this issue of Blood, Liao et al report that kindlin-2 is necessary for angiogenic sprouting in vitro and for developmental and tumor angiogenesis in vivo. The process of blood vessel sprouting is known to involve the αVβ3 vitronectin integrin on endothelium. Kindlin-2 linkage to the C-terminal tail of β3 completed the outside-in circuit necessary for integrin signaling that is critical for navigation of new vessel sprouts.
Collapse
|
42
|
Interaction of kindlin-2 with integrin β3 promotes outside-in signaling responses by the αVβ3 vitronectin receptor. Blood 2015; 125:1995-2004. [PMID: 25587038 DOI: 10.1182/blood-2014-09-603035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bidirectional signaling and hemostatic functions of platelet αIIbβ3 are regulated by kindlin-3 through interactions with the β3 cytoplasmic tail. Little is known about kindlin regulation of the related "vitronectin receptor," αVβ3. These relationships were investigated in endothelial cells, which express αVβ3 and kindlin-2 endogenously. "β3ΔRGT" knock-in mice lack the 3 C-terminal β3 tail residues, whereas in "β3/β1(EGK)" mice, RGT is replaced by the corresponding residues of β1. The wild-type β3 tail pulled down kindlin-2 and c-Src in vitro, whereas β3ΔRGT bound neither protein and β3/β1(EGK) bound kindlin-2, but not c-Src. β3ΔRGT endothelial cells, but not β3/β1(EGK) endothelial cells, exhibited migration and spreading defects on vitronectin and reduced sprouting in 3-dimensional fibrin. Short hairpin RNA silencing of kindlin-2, but not c-Src, blocked sprouting by β3 wild-type endothelial cells. Moreover, defective sprouting by β3ΔRGT endothelial cells could be rescued by conditional, forced interaction of αVβ3ΔRGT with kindlin-2. Stimulation of β3ΔRGT endothelial cells led to normal extracellular ligand binding to αVβ3, pin-pointing their defect to one of outside-in αVβ3 signaling. β3ΔRGT mice, but not β3/β1(EGK) mice, exhibited defects in both developmental and tumor angiogenesis, responses that require endothelial cell function. Thus, the β3/kindlin-2 interaction promotes outside-in αVβ3 signaling selectively, with biological consequences in vivo.
Collapse
|
43
|
Meller J, Rogozin IB, Poliakov E, Meller N, Bedanov-Pack M, Plow EF, Qin J, Podrez EA, Byzova TV. Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness. Mol Biol Cell 2014; 26:786-96. [PMID: 25540429 PMCID: PMC4325847 DOI: 10.1091/mbc.e14-08-1294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kindlins are integrin-interacting proteins essential for integrin-mediated cell adhesiveness. In this study, we focused on the evolutionary origin and functional specialization of kindlins as a part of the evolutionary adaptation of cell adhesive machinery. Database searches revealed that many members of the integrin machinery (including talin and integrins) existed before kindlin emergence in evolution. Among the analyzed species, all metazoan lineages—but none of the premetazoans—had at least one kindlin-encoding gene, whereas talin was present in several premetazoan lineages. Kindlin appears to originate from a duplication of the sequence encoding the N-terminal fragment of talin (the talin head domain) with a subsequent insertion of the PH domain of separate origin. Sequence analysis identified a member of the actin filament-associated protein 1 (AFAP1) superfamily as the most likely origin of the kindlin PH domain. The functional divergence between kindlin paralogues was assessed using the sequence swap (chimera) approach. Comparison of kindlin 2 (K2)/kindlin 3 (K3) chimeras revealed that the F2 subdomain, in particular its C-terminal part, is crucial for the differential functional properties of K2 and K3. The presence of this segment enables K2 but not K3 to localize to focal adhesions. Sequence analysis of the C-terminal part of the F2 subdomain of K3 suggests that insertion of a variable glycine-rich sequence in vertebrates contributed to the loss of constitutive K3 targeting to focal adhesions. Thus emergence and subsequent functional specialization of kindlins allowed multicellular organisms to develop additional tissue-specific adaptations of cell adhesiveness.
Collapse
Affiliation(s)
- Julia Meller
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nahum Meller
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Mark Bedanov-Pack
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jun Qin
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Eugene A Podrez
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
44
|
Qu H, Tu Y, Guan JL, Xiao G, Wu C. Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J Biol Chem 2014; 289:31001-13. [PMID: 25237194 DOI: 10.1074/jbc.m114.580811] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) adhesion is critical for control of intracellular signaling; however, the mechanisms underlying this "outside-in" signaling are incompletely understood. Here we show that depletion of kindlin-2 impairs integrin outside-in signaling. Kindlin-2 is tyrosine-phosphorylated upon cell-ECM adhesion. Furthermore, kindlin-2 binds Src in a cell-ECM adhesion-regulatable fashion. At the molecular level, the kindlin-2·Src interaction is mediated by the kindlin-2 F0 and the Src SH2 and SH3 domains. Src activation increases kindlin-2 tyrosine phosphorylation and the kindlin-2·Src interaction. Conversely, inhibition of Src reduces kindlin-2 tyrosine phosphorylation and diminishes the kindlin-2·Src interaction. Finally, disruption of the kindlin-2·Src interaction, unlike depletion of kindlin-2, impairs neither cell-ECM adhesion nor cell-ECM adhesion-induced focal adhesion kinase Tyr-397 phosphorylation. However, it markedly inhibits cell-ECM adhesion-induced paxillin tyrosine phosphorylation, cell migration, and proliferation. These results suggest that kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch downstream of focal adhesion kinase in the integrin outside-in signaling circuit, relaying signals from cell-ECM adhesion to paxillin that control cell migration and proliferation.
Collapse
Affiliation(s)
- Hong Qu
- From the Department of Pathology, University of Pittsburgh, Pittsburgh, Pittsburgh 15261
| | - Yizeng Tu
- From the Department of Pathology, University of Pittsburgh, Pittsburgh, Pittsburgh 15261
| | - Jun-Lin Guan
- the Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, and
| | - Guozhi Xiao
- the Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612
| | - Chuanyue Wu
- From the Department of Pathology, University of Pittsburgh, Pittsburgh, Pittsburgh 15261,
| |
Collapse
|
45
|
Fukuda K, Bledzka K, Yang J, Perera HD, Plow EF, Qin J. Molecular basis of kindlin-2 binding to integrin-linked kinase pseudokinase for regulating cell adhesion. J Biol Chem 2014; 289:28363-75. [PMID: 25160619 DOI: 10.1074/jbc.m114.596692] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integrin-linked kinase (ILK) is a distinct intracellular adaptor essential for integrin-mediated cell-extracellular matrix adhesion, cell spreading, and migration. Acting as a major docking platform in focal adhesions, ILK engages many proteins to dynamically link integrins with the cytoskeleton, but the underlying mechanism remains elusive. Here, we have characterized the interaction of ILK with kindlin-2, a key regulator for integrin bidirectional signaling. We show that human kindlin-2 binds to human ILK with high affinity. Using systematic mapping approaches, we have identified a major ILK binding site involving a 20-residue fragment (residues 339-358) in kindlin-2. NMR-based analysis reveals a helical conformation of this fragment that utilizes its leucine-rich surface to recognize the ILK pseudokinase domain in a mode that is distinct from another ILK pseudokinase domain binding protein, α-parvin. Structure-based mutational experiments further demonstrate that the kindlin-2 binding to ILK is crucial for the kindlin-2 localization to focal adhesions and cell spreading (integrin outside-in signaling) but dispensable for the kindlin-2-mediated integrin activation (integrin inside-out signaling). These data define a specific mode of the kindlin-2/ILK interaction with mechanistic implications as to how it spatiotemporally mediates integrin signaling and cell adhesion.
Collapse
Affiliation(s)
- Koichi Fukuda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kamila Bledzka
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Yang
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - H Dhanuja Perera
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F Plow
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
46
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Xu Z, Chen X, Zhi H, Gao J, Bialkowska K, Byzova TV, Pluskota E, White GC, Liu J, Plow EF, Ma YQ. Direct interaction of kindlin-3 with integrin αIIbβ3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:1961-7. [PMID: 24969775 DOI: 10.1161/atvbaha.114.303851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbβ3-mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbβ3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbβ3 in platelets in supporting integrin αIIbβ3-mediated platelet functions. APPROACH AND RESULTS We generated a strain of kindlin-3 knockin (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbβ3 on platelets similar to their wild-type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbβ3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. CONCLUSIONS These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbβ3 is involved in supporting integrin αIIbβ3 activation and integrin αIIbβ3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation.
Collapse
Affiliation(s)
- Zhen Xu
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Xue Chen
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Huiying Zhi
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Juan Gao
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Katarzyna Bialkowska
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Tatiana V Byzova
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Elzbieta Pluskota
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Gilbert C White
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Junling Liu
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Edward F Plow
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Yan-Qing Ma
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.).
| |
Collapse
|
48
|
Sossey-Alaoui K, Pluskota E, Davuluri G, Bialkowska K, Das M, Szpak D, Lindner DJ, Downs-Kelly E, Thompson CL, Plow EF. Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. FASEB J 2014; 28:2260-71. [PMID: 24469992 DOI: 10.1096/fj.13-244004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The FERM domain containing protein Kindlin-3 has been recognized as a major regulator of integrin function in hematopoietic cells, but its role in neoplasia is totally unknown. We have examined the relationship between Kindlin-3 and breast cancer in mouse models and human tissues. Human breast tumors showed a ∼7-fold elevation in Kindlin-3 mRNA compared with nonneoplastic tissue by quantitative polymerase chain reaction. Kindlin-3 overexpression in a breast cancer cell line increased primary tumor growth and lung metastasis by 2.5- and 3-fold, respectively, when implanted into mice compared with cells expressing vector alone. Mechanistically, the Kindlin-3-overexpressing cells displayed a 2.2-fold increase in vascular endothelial growth factor (VEGF) secretion and enhanced β1 integrin activation. Increased VEGF secretion resulted from enhanced production of Twist, a transcription factor that promotes tumor angiogenesis. Knockdown of Twist diminished VEGF production, and knockdown of β1 integrins diminished Twist and VEGF production by Kindlin-3-overexpressing cells, while nontargeting small interfering RNA had no effect on expression of these gene products. Thus, Kindlin-3 influences breast cancer progression by influencing the crosstalk between β1 integrins and Twist to increase VEGF production. This signaling cascade enhances breast cancer cell invasion and tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- 2Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave. NB50, Cleveland, OH 44195, USA. E.F.P.,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
50
|
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14:503-17. [PMID: 23860236 PMCID: PMC4116690 DOI: 10.1038/nrm3624] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.
Collapse
Affiliation(s)
- David A Calderwood
- Departments of Pharmacology and of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, S. Parks Rd., Oxford, OX1 3QU, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH
| |
Collapse
|