1
|
Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, Nimgaonkar VL, Bloom DC, D'Aiuto L. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024; 30:131-145. [PMID: 38478163 PMCID: PMC11371869 DOI: 10.1007/s13365-024-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024]
Abstract
The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.
Collapse
Affiliation(s)
- Joel A Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Cecilia Bantang
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Vishwajit L Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare system at U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - David C Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, 32610, Gainesville, FL, USA
| | - Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Challagundla N, Phadnis D, Gupta A, Agrawal-Rajput R. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion. J Membr Biol 2023; 256:393-411. [PMID: 37938349 DOI: 10.1007/s00232-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Deepti Phadnis
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Aakriti Gupta
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
3
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Rani A, Tanwar M, Verma TP, Patra P, Trivedi P, Kumar R, Jha HC. Understanding the role of membrane cholesterol upon Epstein Barr virus infection in astroglial cells. Front Immunol 2023; 14:1192032. [PMID: 37876925 PMCID: PMC10591182 DOI: 10.3389/fimmu.2023.1192032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Background EBV infection has long been postulated to trigger multiple sclerosis (MS) and anti-EBV antibodies showed a consistent presence in MS patients. Previous reports from our group have shown that the EBV infects different brain cells. Entry of the virus in neuronal cells is assisted by several host factors including membrane cholesterol. By using an inhibitor, methyl-β-cyclodextrin (MβCD), we evaluated the role of membrane cholesterol in EBV infection and pathogenesis. Methodology The membrane cholesterol depleted cells were infected with EBV and its latent genes expression were assessed. Further, EBV-mediated downstream signalling molecules namely STAT3, RIP, NF-kB and TNF-α levels was checked at protein level along with spatial (periphery and nucleus) and temporal changes in biomolecular fingerprints with Raman microspectroscopy (RS). Results Upon treatment with MβCD, lmp1 and lmp2a suggested significant downregulation compared to EBV infection. Downstream molecules like STAT3 and RIP, exhibited a decrease in protein levels temporally upon exposure to MβCD while NF-kB levels were found to be increased. Further, the intensity of the Raman spectra exhibited an increase in triglycerides and fatty acids in the cytoplasm of EBV-infected LN-229 cells compared to MβCD+EBV. Likewise, the Raman peak width of cholesterol, lipid and fatty acids were found to be reduced in EBV-infected samples indicates elevation in the cholesterol specific moieties. In contrast, an opposite pattern was observed in the nucleus. Moreover, the ingenuity pathway analysis revealed protein molecules such as VLDLR, MBP and APP that are associated with altered profile of cholesterol, fatty acids and triglycerides with infection-related CNS disorders. Conclusion Taken together, our results underline the important role of membrane cholesterol over EBV entry/pathogenesis in astroglia cells which further trigger/exacerbate virus-associated neuropathologies. These results likely to aid into the prognosis of neurological disease like MS.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Manushree Tanwar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology, Indore, India
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Tarun Prakash Verma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rajesh Kumar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
5
|
Viana GDA, da Costa MDR, da Silva ME, Duque BR, de Siqueira EA, Martins AMC, Alves RDS, de Menezes RRPPB, de Queiroz MGR, Sampaio TL. Serum il-18 and rs187238 single nucleotide polymorphism are associated with high-density lipoprotein changes in covid-19 outpatients. Int Immunopharmacol 2023; 122:110645. [PMID: 37453156 DOI: 10.1016/j.intimp.2023.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
AIM COVID-19 is an inflammatory disease and its prognosis is associated with cardiovascular risk, which can be associated with changes in lipoprotein metabolism. The single nucleotide polymorphism (SNP) rs187238 of Interleukin (IL)-18 is extensively reported in association with worsening inflammatory and cardiovascular disease (CVD). This study evaluated the association of IL-18 levels and its SNP rs187238 with lipoprotein profile changes in COVID-19 outpatients. METHODS Observational, analytical, cross-sectional study that evaluated 250 patients with respiratory syndrome, 36% (n = 90) with COVID-19. Serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), apolipoproteins A-I and B (Apo A-I and Apo B) and IL-18 levels were determined. Polymorphism genotyping was done by real-time polymerase chain reaction (qPCR). The significance level was p < 0.05. RESULTS Patients with COVID-19 showed a reduction in TC and HDL-c, without difference in IL-18. HDL-c and LDL-c had a high frequency outside the reference values. There was a negative correlation of IL-18 with HDL-c and a positive correlation with Apo B/Apo A-I ratio. The frequencies of the C (wild) and G (polymorphic) alleles between patients with and without COVID-19 followed the Hardy-Weinberg equilibrium. However, COVID-19 was associated with reduced HDL-c and Apo A-I values in patients with the CC genotype. CONCLUSION IL-18 levels and its SNP rs187238 were associated with decreased HDL-c and Apo A-I in COVID-19 outpatients.
Collapse
Affiliation(s)
- Glautemberg de Almeida Viana
- Program in Pharmaceutical Sciences; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | | | - Mateus Edson da Silva
- Program in Pharmaceutical Sciences; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Bruna Ribeiro Duque
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Erlânia Alves de Siqueira
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Renata de Sousa Alves
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | | | | | - Tiago Lima Sampaio
- Program in Pharmaceutical Sciences; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil; Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil.
| |
Collapse
|
6
|
Andreu-Sánchez S, Bourgonje AR, Vogl T, Kurilshikov A, Leviatan S, Ruiz-Moreno AJ, Hu S, Sinha T, Vich Vila A, Klompus S, Kalka IN, de Leeuw K, Arends S, Jonkers I, Withoff S, Brouwer E, Weinberger A, Wijmenga C, Segal E, Weersma RK, Fu J, Zhernakova A. Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire. Immunity 2023; 56:1376-1392.e8. [PMID: 37164013 DOI: 10.1016/j.immuni.2023.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Wien, Austria.
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Angel J Ruiz-Moreno
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shixian Hu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris N Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iris Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Becerro-Recio D, Serrat J, López-García M, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Proteomics coupled with in vitro model to study the early crosstalk occurring between newly excysted juveniles of Fasciola hepatica and host intestinal cells. PLoS Negl Trop Dis 2022; 16:e0010811. [PMID: 36223411 PMCID: PMC9555655 DOI: 10.1371/journal.pntd.0010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciolosis caused by the trematode Fasciola hepatica is a zoonotic neglected disease affecting animals and humans worldwide. Infection occurs upon ingestion of aquatic plants or water contaminated with metacercariae. These release the newly excysted juveniles (FhNEJ) in the host duodenum, where they establish contact with the epithelium and cross the intestinal barrier to reach the peritoneum within 2-3 h after infection. Juveniles crawl up the peritoneum towards the liver, and migrate through the hepatic tissue before reaching their definitive location inside the major biliary ducts, where they mature into adult worms. Fasciolosis is treated with triclabendazole, although resistant isolates of the parasite are increasingly being reported. This, together with the limited efficacy of the assayed vaccines against this infection, poses fasciolosis as a veterinary and human health problem of growing concern. In this context, the study of early host-parasite interactions is of paramount importance for the definition of new targets for the treatment and prevention of fasciolosis. Here, we develop a new in vitro model that replicates the first interaction between FhNEJ and mouse primary small intestinal epithelial cells (MPSIEC). FhNEJ and MPSIEC were co-incubated for 3 h and protein extracts (tegument and soma of FhNEJ and membrane and cytosol of MPSIEC) were subjected to quantitative SWATH-MS proteomics and compared to respective controls (MPSIEC and FhNEJ left alone for 3h in culture medium) to evaluate protein expression changes in both the parasite and the host. Results show that the interaction between FhNEJ and MPSIEC triggers a rapid protein expression change of FhNEJ in response to the host epithelial barrier, including cathepsins L3 and L4 and several immunoregulatory proteins. Regarding MPSIEC, stimulation with FhNEJ results in alterations in the protein profile related to immunomodulation and cell-cell interactions, together with a drastic reduction in the expression of proteins linked with ribosome function. The molecules identified in this model of early host-parasite interactions could help define new tools against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
- * E-mail: (JG-M); (MS-L)
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- * E-mail: (JG-M); (MS-L)
| |
Collapse
|
8
|
Down-Regulation of Lipid Metabolism in the Hepatopancreas of Shrimp Litopenaeus vannamei upon Light and Heavy Infection of Enterocytozoon hepatopenaei: A Comparative Proteomic Study. Int J Mol Sci 2022; 23:ijms231911574. [PMID: 36232879 PMCID: PMC9570011 DOI: 10.3390/ijms231911574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is the pathogen of hepatopancreatic microsporidiosis (HPM) in shrimp. The diseased shrimp Litopenaeus vannamei exhibits a slow growth syndrome, which causes severe economic losses. Herein, 4D label-free quantitative proteomics was employed to analyze the hepatopancreas of L. vannamei with a light (EHPptp2 < 103 copies/50 ng hpDNA, L group) and heavy (EHPptp2 > 104 copies/50 ng hpDNA, H group) load of EHP to better understand the pathogenesis of HPM. Exactly 786 (L group) and 1056 (H group) differentially expressed proteins (DEPs) versus the EHP-free (C group) control were mainly clustered to lipid metabolism, amino acid metabolism, and energy production processing. Compared with the L group, the H group exhibited down-regulation significantly in lipid metabolism, especially in the elongation and degradation of fatty acid, biosynthesis of unsaturated fatty acid, metabolism of α-linolenic acid, sphingolipid, and glycerolipid, as well as juvenile hormone (JH) degradation. Expression pattern analysis showed that the degree of infection was positively correlated with metabolic change. About 479 EHP proteins were detected in infected shrimps, including 95 predicted transporters. These findings suggest that EHP infection induced the consumption of storage lipids and the entire down-regulation of lipid metabolism and the coupling energy production, in addition to the hormone metabolism disorder. These were ultimately responsible for the stunted growth.
Collapse
|
9
|
Roncato R, Angelini J, Pani A, Talotta R. Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection? Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159140. [PMID: 35248801 PMCID: PMC8894694 DOI: 10.1016/j.bbalip.2022.159140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a carattere Scientifico (IRCCS), via Gallini, 33081 Aviano (PN), Italy
| | - Jacopo Angelini
- Clinical Pharmacology Institute, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), via Pozzuolo, 33100 Udine, Italy
| | - Arianna Pani
- Toxicology Department of Oncology and Hemato-Oncology, University of Milan, via Vanvitelli, 20133 Milan, Italy
| | - Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, 98100 Messina, Italy
| |
Collapse
|
10
|
Jia M, Sun M, Tang YD, Zhang YY, Wang H, Cai X, Meng F. Senecavirus A Entry Into Host Cells Is Dependent on the Cholesterol-Mediated Endocytic Pathway. Front Vet Sci 2022; 9:840655. [PMID: 35498725 PMCID: PMC9040607 DOI: 10.3389/fvets.2022.840655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Senecavirus A (SVA), an important member of the Picornaviridae family, causes vesicular disease in pigs. Here, we generated an EGFP-expressing recombinant SVA re-SVA-EGFP, which exhibited similar growth kinetics to its parental virus. The reporter SVA was used to study the role of pig ANTXR1 (pANTXR1) in SVA infection in a porcine alveolar macrophage cell line (PAM-Tang cells). Knockdown of the pANTXR1 significantly reduced SVA infection and replication in PAM-Tang cells, while re-expression of the pANTXR1 promoted the cell susceptibility to SVA infection. The results indicated that pANTXR1 is a crucial receptor mediating SVA infection. Subsequently, the viral endocytosis pathways for SVA entry into pig cells were investigated and the results showed that cholesterol played an essential role in receptor-mediated SVA entry. Together, these results demonstrated that SVA entered into host cells through the pANTXR1-mediated cholesterol pathway. Our findings provide potential targets to develop antiviral drugs for the prevention of SVA infection in the pig population.
Collapse
Affiliation(s)
- Meiyu Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu-Yuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Xuehui Cai
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Fandan Meng
| |
Collapse
|
11
|
Lee MS, Bensinger SJ. Reprogramming cholesterol metabolism in macrophages and its role in host defense against cholesterol-dependent cytolysins. Cell Mol Immunol 2022; 19:327-336. [PMID: 35017717 PMCID: PMC8891295 DOI: 10.1038/s41423-021-00827-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a critical lipid for all mammalian cells, ensuring proper membrane integrity, fluidity, and biochemical function. Accumulating evidence indicates that macrophages rapidly and profoundly reprogram their cholesterol metabolism in response to activation signals to support host defense processes. However, our understanding of the molecular details underlying how and why cholesterol homeostasis is specifically reshaped during immune responses remains less well understood. This review discusses our current knowledge of cellular cholesterol homeostatic machinery and introduces emerging concepts regarding how plasma membrane cholesterol is partitioned into distinct pools. We then discuss how proinflammatory signals can markedly reshape the cholesterol metabolism of macrophages, with a focus on the differences between MyD88-dependent pattern recognition receptors and the interferon signaling pathway. We also discuss recent work investigating the capacity of these proinflammatory signals to selectively reshape plasma membrane cholesterol homeostasis. We examine how these changes in plasma membrane cholesterol metabolism influence sensitivity to a set of microbial pore-forming toxins known as cholesterol-dependent cytolysins that specifically target cholesterol for their effector functions. We also discuss whether lipid metabolic reprogramming can be leveraged for therapy to mitigate tissue damage mediated by cholesterol-dependent cytolysins in necrotizing fasciitis and other related infections. We expect that advancing our understanding of the crosstalk between metabolism and innate immunity will help explain how inflammation underlies metabolic diseases and highlight pathways that could be targeted to normalize metabolic homeostasis in disease states.
Collapse
Affiliation(s)
- Min-Sub Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Cure E, Cumhur Cure M. Strong relationship between cholesterol, low-density lipoprotein receptor, Na +/H + exchanger, and SARS-COV-2: this association may be the cause of death in the patient with COVID-19. Lipids Health Dis 2021; 20:179. [PMID: 34895256 PMCID: PMC8666266 DOI: 10.1186/s12944-021-01607-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipids have a wide variety and vital functions. Lipids play roles in energy metabolism, intracellular and extracellular signal traffic, and transport of fat-soluble vitamins. Also, they form the structure of the cell membrane. SARS-CoV-2 interacts with lipids since its genetic material contains lipid-enveloped ribonucleic acid (RNA). Previous studies have shown that total cholesterol, high-density lipoprotein, and low-density lipoprotein (LDL) levels are lower in patients with severe novel coronavirus disease 2019 (COVID-19) compared to patients with non-severe COVID-19.Na+/H+ Exchanger (NHE) is an important antiport that keeps the intracellular pH value within physiological limits. When the intracellular pH falls, NHE is activated and pumps H+ ions outward. However, prolonged NHE activation causes cell damage and atherosclerosis. Prolonged NHE activation may increase susceptibility to SARS-CoV-2 infection and severity of COVID-19.In COVID-19, increased angiotensin II (Ang II) due to angiotensin-converting enzyme-2 (ACE2) dysfunction stimulates NHE. Lipids are in close association with the NHE pump. Prolonged NHE activity increases the influx of H+ ions and free fatty acid (FFA) inward. Ang II also causes increased low-density lipoprotein receptor (LDLR) levels by inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9). Thus, intracellular atheroma plaque formation is accelerated.Besides, SARS-CoV-2 may replicate more rapidly as intracellular cholesterol increases. SARS-CoV-2 swiftly infects the cell whose intracellular pH decreases with NHE activation and FFA movement. Novel treatment regimens based on NHE and lipids should be explored for the treatment of COVID-19.
Collapse
Affiliation(s)
- Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, 34200 Istanbul, Turkey
| | - Medine Cumhur Cure
- Department of Biochemistry, Private Kucukcekmece Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Cure E, Cumhur Cure M. Strong relationship between cholesterol, low-density lipoprotein receptor, Na +/H + exchanger, and SARS-COV-2: this association may be the cause of death in the patient with COVID-19. Lipids Health Dis 2021. [PMID: 34895256 DOI: 10.1186/s12944-021-01607-5.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Lipids have a wide variety and vital functions. Lipids play roles in energy metabolism, intracellular and extracellular signal traffic, and transport of fat-soluble vitamins. Also, they form the structure of the cell membrane. SARS-CoV-2 interacts with lipids since its genetic material contains lipid-enveloped ribonucleic acid (RNA). Previous studies have shown that total cholesterol, high-density lipoprotein, and low-density lipoprotein (LDL) levels are lower in patients with severe novel coronavirus disease 2019 (COVID-19) compared to patients with non-severe COVID-19.Na+/H+ Exchanger (NHE) is an important antiport that keeps the intracellular pH value within physiological limits. When the intracellular pH falls, NHE is activated and pumps H+ ions outward. However, prolonged NHE activation causes cell damage and atherosclerosis. Prolonged NHE activation may increase susceptibility to SARS-CoV-2 infection and severity of COVID-19.In COVID-19, increased angiotensin II (Ang II) due to angiotensin-converting enzyme-2 (ACE2) dysfunction stimulates NHE. Lipids are in close association with the NHE pump. Prolonged NHE activity increases the influx of H+ ions and free fatty acid (FFA) inward. Ang II also causes increased low-density lipoprotein receptor (LDLR) levels by inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9). Thus, intracellular atheroma plaque formation is accelerated.Besides, SARS-CoV-2 may replicate more rapidly as intracellular cholesterol increases. SARS-CoV-2 swiftly infects the cell whose intracellular pH decreases with NHE activation and FFA movement. Novel treatment regimens based on NHE and lipids should be explored for the treatment of COVID-19.
Collapse
Affiliation(s)
- Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, 34200, Istanbul, Turkey.
| | - Medine Cumhur Cure
- Department of Biochemistry, Private Kucukcekmece Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
15
|
Casto AM, Seo S, Levine DM, Storer BE, Dong X, Hansen JA, Boeckh M, Martin PJ. Genetic variants associated with cytomegalovirus infection after allogeneic hematopoietic cell transplantation. Blood 2021; 138:1628-1636. [PMID: 34269803 PMCID: PMC8554648 DOI: 10.1182/blood.2021012153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (CMV) reactivation is a frequent complication of allogeneic hematopoietic cell transplantation (HCT). Despite routine screening for CMV reactivation and early antiviral treatment, the rates of CMV-related complications after HCT remain high. Genetic variants in both the donor and recipient have been associated with the risk of CMV reactivation and disease after HCT, but these associations have not been validated, and their clinical importance remains unclear. In this study, we assessed 117 candidate variants previously associated with CMV-related phenotypes for association with CMV reactivation and disease in a cohort of 2169 CMV-seropositive HCT recipients. We also carried out a genome-wide association study (GWAS) for CMV reactivation and disease in the same cohort. Both analyses used a prespecified discovery and replication approach to control the risk of false-positive results. Among the 117 candidate variants, our analysis implicates only the donor ABCB1 rs1045642 genotype as a risk factor for CMV reactivation. This synonymous variant in P-glycoprotein may influence the risk of CMV reactivation by altering the efflux of cyclosporine and tacrolimus from donor lymphocytes. In the GWAS analysis, the donor CDC42EP3 rs11686168 genotype approached the significance threshold for association with CMV reactivation, although we could not identify a mechanism to explain this association. The results of this study suggest that most genomic variants previously associated with CMV phenotypes do not significantly alter the risk for CMV reactivation or disease after HCT.
Collapse
Affiliation(s)
- Amanda M Casto
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sachiko Seo
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - David M Levine
- Department of Biostatistics, University of Washington, Seattle, WA; and
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xinyuan Dong
- Department of Biostatistics, University of Washington, Seattle, WA; and
| | - John A Hansen
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michael Boeckh
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul J Martin
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
16
|
Low-Density Lipoprotein Receptor Suppresses the Endogenous Cholesterol Synthesis Pathway To Oppose Gammaherpesvirus Replication in Primary Macrophages. J Virol 2021; 95:e0064921. [PMID: 34105999 PMCID: PMC8354329 DOI: 10.1128/jvi.00649-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in >95% of adults worldwide and are associated with several cancers. We have shown that endogenous cholesterol synthesis supports gammaherpesvirus replication. However, the role of exogenous cholesterol exchange and signaling during infection remains poorly understood. Extracellular cholesterol is carried in the serum by several lipoproteins, including low-density lipoproteins (LDL). The LDL receptor (LDL-R) mediates the endocytosis of these cholesterol-rich LDL particles into the cell, thereby supplying the cell with cholesterol. We found that LDL-R expression attenuates gammaherpesvirus replication during the early stages of the replication cycle, as evident by increased viral gene expression in LDL-R-/- primary macrophages. This was not observed in primary fibroblasts, indicating that the antiviral effects of LDL-R are cell type specific. Increased viral gene expression in LDL-R-/- primary macrophages was due to increased activity of the endogenous cholesterol synthesis pathway. Intriguingly, despite type I interferon-driven increase in LDL-R mRNA levels in infected macrophages, protein levels of LDL-R continually decreased over the single cycle of viral replication. Thus, our study has uncovered an intriguing tug of war between the LDL-R-driven antiviral effect on cholesterol metabolism and the viral targeting of the LDL-R protein. IMPORTANCE LDL-R is a cell surface receptor that mediates the endocytosis of cholesterol-rich low-density lipoproteins, allowing cells to acquire cholesterol exogenously. Several RNA viruses usurp LDL-R function to facilitate replication; however, the role of LDL-R in DNA virus infection remains unknown. Gammaherpesviruses are double-stranded DNA viruses that are associated with several cancers. Here, we show that LDL-R attenuates gammaherpesvirus replication in primary macrophages by decreasing endogenous cholesterol synthesis activity, a pathway known to support gammaherpesvirus replication. In response, LDL-R protein levels are decreased in infected cells to mitigate the antiviral effects, revealing an intriguing tug of war between the virus and the host.
Collapse
|
17
|
Ristovski M, Farhat D, Bancud SEM, Lee JY. Lipid Transporters Beam Signals from Cell Membranes. MEMBRANES 2021; 11:562. [PMID: 34436325 PMCID: PMC8399137 DOI: 10.3390/membranes11080562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.
Collapse
Affiliation(s)
- Miliça Ristovski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Biomedical Sciences Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Shelly Ellaine M. Bancud
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
| |
Collapse
|
18
|
Le LHM, Ying L, Ferrero RL. Nuclear trafficking of bacterial effector proteins. Cell Microbiol 2021; 23:e13320. [PMID: 33600054 DOI: 10.1111/cmi.13320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens can subvert host responses by producing effector proteins that directly target the nucleus of eukaryotic cells in animals and plants. Nuclear-targeting proteins are categorised as either: "nucleomodulins," which have epigenetic-modulating activities; or "cyclomodulins," which specifically interfere with the host cell cycle. Bacteria can deliver these effector proteins to eukaryotic cells via a range of strategies. Despite an increasing number of reports describing the effects of bacterial effector proteins on nuclear processes in host cells, the intracellular pathways used by these proteins to traffic to the nucleus have yet to be fully elucidated. This review will describe current knowledge about how nucleomodulins and cyclomodulins enter eukaryotic cells, exploit endocytic pathways and translocate to the nucleus. We will also discuss the secretion of nuclear-targeting proteins or their release in bacterial membrane vesicles and the trafficking pathways employed by each of these forms. Besides their importance for bacterial pathogenesis, some nuclear-targeting proteins have been implicated in the development of chronic diseases and even cancer. A greater understanding of nuclear-targeting proteins and their actions will provide new insights into the pathogenesis of infectious diseases, as well as contribute to advances in the development of novel therapies against bacterial infections and possibly cancer.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
20
|
Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep 2021; 11:2149. [PMID: 33495500 PMCID: PMC7835236 DOI: 10.1038/s41598-020-77881-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The myxozoan parasite, Tetracapsuloidesbryosalmonae has a two-host life cycle alternating between freshwater bryozoans and salmonid fish. Infected fish can develop Proliferative Kidney Disease, characterised by a gross lymphoid-driven kidney pathology in wild and farmed salmonids. To facilitate an in-depth understanding of T.bryosalmonae-host interactions, we have used a two-host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the first derived from parasite spore sacs isolated from infected bryozoans and the second from infected fish kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T.bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT-rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell-to-cell communication and proteins of unknown function, establishing their potential importance in each host by RT-qPCR. Host-specific expression profiles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confirm for the first time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
Collapse
|
21
|
Richter FC, Alrubayyi A, Teijeira Crespo A, Hulin-Curtis S. Impact of obesity and SARS-CoV-2 infection: implications for host defence - a living review. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab001. [PMID: 34192269 PMCID: PMC7928648 DOI: 10.1093/oxfimm/iqab001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
The role of obesity in the pathophysiology of respiratory virus infections has become particularly apparent during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, where obese patients are twice as likely to suffer from severe coronavirus disease 2019 (COVID-19) than healthy weight individuals. Obesity results in disruption of systemic lipid metabolism promoting a state of chronic low-grade inflammation. However, it remains unclear how these underlying metabolic and cellular processes promote severe SARS-CoV-2 infection. Emerging data in SARS-CoV-2 and Influenza A virus (IAV) infections show that viruses can further subvert the host's altered lipid metabolism and exploit obesity-induced alterations in immune cell metabolism and function to promote chronic inflammation and viral propagation. In this review, we outline the systemic metabolic and immune alterations underlying obesity and discuss how these baseline alterations impact the immune response and disease pathophysiology. A better understanding of the immunometabolic landscape of obese patients may aid better therapies and future vaccine design.
Collapse
Affiliation(s)
- Felix Clemens Richter
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Alicia Teijeira Crespo
- Division of Cancer and Genetics, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | | | - Sarah Hulin-Curtis
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| |
Collapse
|
22
|
Fares A, Borrmann D, Ivester JR. Are statins beneficial for the treatment of SARS-CoV-2 infection? J Infect Prev 2021; 22:177-180. [PMID: 34295380 DOI: 10.1177/1757177420982049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) is a highly infectious, rapidly spreading viral disease and has emerged as a public health emergency of international concern. As of this time, there are no specific antiviral therapies available for the treatment of COVID-19. However, it is possible that some existing drugs, usually used for other conditions, may have some benefits. Statins have been widely reported to exert antiviral activity against many enveloped viruses by inhibiting the cholesterol biosynthesis pathway. Cholesterol likewise contributes to the coronavirus's life cycle, including viral entry, fusion and budding. In addition, statins have been ascribed beneficial anti-inflammatory, immunomodulatory effects and promote haemodynamic stability. Therefore, statins, which are cholesterol-lowering drugs with anti-inflammatory, immunomodulatory and antiviral properties, may play a role in SARS-CoV-2 therapy. The aim of the present minireview was to delineate the potential beneficial therapeutic effects of statins in treating SARS-CoV-2 infections. Nevertheless, large, randomised trials are needed to confirm the beneficial effects and safety profile of the statins in patients with SARS-CoV-2.
Collapse
Affiliation(s)
- Auda Fares
- St. Willibrord- Spital Emmerich-Rees Hospital, Acute Geriatrics Medicine and Rehabilitation, Emmerich am Rhein/ Germany
| | - Dieter Borrmann
- St. Willibrord- Spital Emmerich-Rees Hospital, Acute Geriatrics Medicine and Rehabilitation, Emmerich am Rhein/ Germany
| | - Julius R Ivester
- Department of Anaesthesia and Pain Management, Roper Hospital, Charleston, SC, USA
| |
Collapse
|
23
|
Mazzacane F, Leuci E, Persico A, Micieli G, Candeloro E, Cavallini A, Morotti A. Association between cholesterol levels and infections after ischemic stroke. Eur J Neurol 2020; 27:2036-2040. [DOI: 10.1111/ene.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Affiliation(s)
- F. Mazzacane
- U.C. Malattie Cerebrovascolari e Stroke Unit IRCCS Fondazione Mondino Pavia Italy
| | - E. Leuci
- U.C. Malattie Cerebrovascolari e Stroke Unit IRCCS Fondazione Mondino Pavia Italy
| | - A. Persico
- U.C. Malattie Cerebrovascolari e Stroke Unit IRCCS Fondazione Mondino Pavia Italy
| | - G. Micieli
- Dipartimento di Neurologia d’Urgenza IRCCS Fondazione Mondino Pavia Italy
| | - E. Candeloro
- Neurologia e Stroke Unit Ospedale di Circolo ASST Settelaghi Varese Italy
| | - A. Cavallini
- U.C. Malattie Cerebrovascolari e Stroke Unit IRCCS Fondazione Mondino Pavia Italy
| | - A. Morotti
- ASST Valcamonica Ospedale di Esine UOSD Neurologia Esine Italy
| |
Collapse
|
24
|
Tesfanchal B, Gebremichail G, Belay G, Gebremariam G, Teklehaimanot G, Haileslasie H, Kahsu G, Gebrewahd A, Mardu F, Adhanom G, Berhe B, Teame H, Tsegaye A, Wolde M. Alteration of Clinical Chemistry Parameters Among Visceral Leishmaniasis Patients in Western Tigrai, Ethiopia, 2018/2019: A Comparative Cross-Sectional Study. Infect Drug Resist 2020; 13:3055-3062. [PMID: 32943889 PMCID: PMC7467734 DOI: 10.2147/idr.s261698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis causes alterations of lipid metabolism and it is associated with hypocholesterolemia and severe hypertriglyceridemia. Hepatic dysfunction and life-threatening hepatitis are associated with visceral leishmaniasis. Kidney damage is frequently associated with increased morbidity and mortality in visceral leishmaniasis patients. METHODS A cross-sectional study was carried out to assess the alterations of clinical chemistry parameters among visceral leishmaniasis patients attending Kahsay Abera and Mearg hospitals, Northwest Ethiopia. A total of 100 visceral leishmaniasis patients and 100 healthy controls without visceral leishmaniasis were selected by using convenient sampling techniques. Data were entered and analyzed using statistical package for social sciences (SPSS) version 23. RESULTS Results were showed that the mean value of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, and triglyceride was significantly higher in visceral leishmaniasis patients than in apparently healthy controls, but the mean value of serum urea and total cholesterol was significantly lower in visceral leishmaniasis patients than healthy controls. CONCLUSION The finding of this study concluded that visceral leishmaniasis causes significant alterations of clinical chemistry tests like liver and lipid profile tests compared to healthy controls.
Collapse
Affiliation(s)
- Brhane Tesfanchal
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Gebremedhin Gebremichail
- Unit of Hematology and Immuno-Hematology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Getachew Belay
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Gebreslassie Gebremariam
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gebreyohannes Teklehaimanot
- Unit of Hematology and Immuno-Hematology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hagos Haileslasie
- Unit of Hematology and Immuno-Hematology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Getachew Kahsu
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Aderajew Gebrewahd
- Unit of Medical Microbiology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Fitsum Mardu
- Unit of Medical Parasitology and Entomology, Department of Medical Laboratory Science, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Gebre Adhanom
- Unit of Medical Microbiology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Brhane Berhe
- Unit of Medical Parasitology and Entomology, Department of Medical Laboratory Science, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Hirut Teame
- Department of Public Health, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Aster Tsegaye
- Unit of Hematology and Immuno-Hematology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mistire Wolde
- Unit of Clinical Chemistry, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Bukrinsky MI, Mukhamedova N, Sviridov D. Lipid rafts and pathogens: the art of deception and exploitation. J Lipid Res 2020; 61:601-610. [PMID: 31615838 PMCID: PMC7193957 DOI: 10.1194/jlr.tr119000391] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.
Collapse
Affiliation(s)
- Michael I Bukrinsky
- Department of Microbiology, Immunology, and Tropical Medicine,George Washington University School of Medicine and Health Science, Washington, DC 20037
| | | | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia. mailto:
| |
Collapse
|
26
|
Sviridov D, Miller YI. Biology of Lipid Rafts: Introduction to the Thematic Review Series. J Lipid Res 2019; 61:598-600. [PMID: 31462515 DOI: 10.1194/jlr.in119000330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
27
|
Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathog 2019; 15:e1007907. [PMID: 31344124 PMCID: PMC6657916 DOI: 10.1371/journal.ppat.1007907] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
HIV infection has a profound effect on “bystander” cells causing metabolic co-morbidities. This may be mediated by exosomes secreted by HIV-infected cells and containing viral factors. Here we show that exosomes containing HIV-1 protein Nef (exNef) are rapidly taken up by macrophages releasing Nef into the cell interior. This caused down-regulation of ABCA1, reduction of cholesterol efflux and sharp elevation of the abundance of lipid rafts through reduced activation of small GTPase Cdc42 and decreased actin polymerization. Changes in rafts led to re-localization of TLR4 and TREM-1 to rafts, phosphorylation of ERK1/2, activation of NLRP3 inflammasome, and increased secretion of pro-inflammatory cytokines. The effects of exNef on lipid rafts and on inflammation were reversed by overexpression of a constitutively active mutant of Cdc42. Similar effects were observed in macrophages treated with exosomes produced by HIV-infected cells or isolated from plasma of HIV-infected subjects, but not with exosomes from cells and subjects infected with ΔNef-HIV or uninfected subjects. Mice injected with exNef exhibited monocytosis, reduced ABCA1 in macrophages, increased raft abundance in monocytes and augmented inflammation. Thus, Nef-containing exosomes potentiated pro-inflammatory response by inducing changes in cholesterol metabolism and reorganizing lipid rafts. These mechanisms may contribute to HIV-associated metabolic co-morbidities. HIV infects only a limited repertoire of cells expressing HIV receptors. Nevertheless, co-morbidities of HIV infection, such as atherosclerosis, dementia, renal impairment, myocardial pathology, abnormal haematopoiesis and others, involve dysfunction of cells that can not be infected by HIV. These co-morbidities persist even after successful application of antiretroviral therapy, when no virus is found in the blood. Many co-morbidities of HIV have a common element in their pathogenesis, impairment of cholesterol metabolism. In this study we show that HIV protein Nef released from infected cells in extracellular vesicles is taken up by un-infected (‘bystander’) cells impairing cholesterol metabolism in these cells. This impairment causes formation of excessive lipid rafts, re-localization of the inflammatory receptors into rafts, and triggers inflammation. These mechanisms may contribute to HIV-associated metabolic co-morbidities. Our work demonstrates how a single viral factor released from infected cells into circulation may cause a pleiotropy of pathogenic responses.
Collapse
|
28
|
Otopathogenic Staphylococcus aureus Invades Human Middle Ear Epithelial Cells Primarily through Cholesterol Dependent Pathway. Sci Rep 2019; 9:10777. [PMID: 31346200 PMCID: PMC6658548 DOI: 10.1038/s41598-019-47079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic suppurative otitis media (CSOM) is one of the most common infectious diseases of the middle ear especially affecting children, leading to delay in language development and communication. Although Staphylococcus aureus is the most common pathogen associated with CSOM, its interaction with middle ear epithelial cells is not well known. In the present study, we observed that otopathogenic S. aureus has the ability to invade human middle ear epithelial cells (HMEECs) in a dose and time dependent manner. Scanning electron microscopy demonstrated time dependent increase in the number of S. aureus on the surface of HMEECs. We observed that otopathogenic S. aureus primarily employs a cholesterol dependent pathway to colonize HMEECs. In agreement with these findings, confocal microscopy showed that S. aureus colocalized with lipid rafts in HMEECs. The results of the present study provide new insights into the pathogenesis of S. aureus induced CSOM. The availability of in vitro cell culture model will pave the way to develop novel effective treatment modalities for CSOM beyond antibiotic therapy.
Collapse
|
29
|
Koo SJ, Garg NJ. Metabolic programming of macrophage functions and pathogens control. Redox Biol 2019; 24:101198. [PMID: 31048245 PMCID: PMC6488820 DOI: 10.1016/j.redox.2019.101198] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Macrophages (Mφ) are central players in mediating proinflammatory and immunomodulatory functions. Unchecked Mφ activities contribute to pathology across many diseases, including those caused by infectious pathogens and metabolic disorders. A fine balance of Mφ responses is crucial, which may be achieved by enforcing appropriate bioenergetics pathways. Metabolism serves as the provider of energy, substrates, and byproducts that support differential Mφ characteristics. The metabolic properties that control the polarization and response of Mφ remain to be fully uncovered for use in managing infectious diseases. Here, we review the various metabolic states in Mφ and how they influence the cell function.
Collapse
Affiliation(s)
- Sue-Jie Koo
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology & Immunology, UTMB, Galveston, TX, USA; Institute for Human Infections and Immunity, UTMB, Galveston, TX, USA.
| |
Collapse
|
30
|
Sviridov D, Mukhamedova N. Cdc42 - A tryst between host cholesterol metabolism and infection. Small GTPases 2018; 9:237-241. [PMID: 27580266 DOI: 10.1080/21541248.2016.1223533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Emerging evidence points to an important connection between pathogenesis of intracellular infections and host cholesterol metabolism. In our study we demonstrated that human cytomegalovirus exploits host small GTPase Cdc42 to hijack cellular cholesterol efflux pathway. It appears that the virus uses host machinery to stimulate cholesterol efflux by modifying lipid rafts and altering properties of plasma membrane, but the altered pathway is controlled by the viral protein US28 instead of the host ATP binding cassette transporter A1. We speculate that virus-controlled remodeling of plasma membrane facilitates immune evasion, exocytosis of viral proteins and cell-to-cell transmission of human cytomegalovirus. These mechanisms may be not unique for the cytomegalovirus and subverting reverse cholesterol transport pathway may be a generic mechanism used by pathogens to alter properties of host plasma membrane adapting it for their purposes-to hide and disseminate.
Collapse
Affiliation(s)
- Dmitri Sviridov
- a Baker IDI Heart and Diabetes Institute , Melbourne , Australia
| | | |
Collapse
|
31
|
Arama C, Diarra I, Kouriba B, Sirois F, Fedoryak O, Thera MA, Coulibaly D, Lyke KE, Plowe CV, Chrétien M, Doumbo OK, Mbikay M. Malaria severity: Possible influence of the E670G PCSK9 polymorphism: A preliminary case-control study in Malian children. PLoS One 2018; 13:e0192850. [PMID: 29447211 PMCID: PMC5813955 DOI: 10.1371/journal.pone.0192850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022] Open
Abstract
Aim Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a hepatic secretory protein which promotes the degradation of low-density lipoprotein receptors leading to reduced hepatic uptake of plasma cholesterol. Non-synonymous single-nucleotide polymorphisms in its gene have been linked to hypo- or hyper- cholesterolemia, depending on whether they decrease or increase PCSK9 activity, respectively. Since the proliferation and the infectivity of Plasmodium spp. partially depend on cholesterol from the host, we hypothesize that these PCSK9 genetic polymorphisms could influence the course of malaria infection in individuals who carry them. Here we examined the frequency distribution of one dominant (C679X) and two recessive (A443T, I474V) hypocholesterolemic polymorphisms as well as that of one recessive hypercholesterolemic polymorphism (E670G) among healthy and malaria-infected Malian children. Methods Dried blood spots were collected in Bandiagara, Mali, from 752 age, residence and ethnicity-matched children: 253 healthy controls, 246 uncomplicated malaria patients and 253 severe malaria patients. Their genomic DNA was extracted and genotyped for the above PCSK9 polymorphisms using Taqman assays. Associations of genotype distributions and allele frequencies with malaria were evaluated. Results The minor allele frequency of the A443T, I474V, E670G, and C679X polymorphisms in the study population sample was 0.12, 0.20, 0.26, and 0.02, respectively. For each polymorphism, the genotype distribution among the three health conditions was statistically insignificant, but for the hypercholesterolemic E670G polymorphism, a trend towards association of the minor allele with malaria severity was observed (P = 0.035). The association proved to be stronger when allele frequencies between healthy controls and severe malaria cases were compared (Odd Ratio: 1.34; 95% Confidence Intervals: 1.04–1.83); P = 0.031). Conclusions Carriers of the minor allele of the E670G PCSK9 polymorphism might be more susceptible to severe malaria. Further investigation of the cholesterol regulating function of PCSK9 in the pathophysiology of malaria is needed.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Bourèma Kouriba
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Francine Sirois
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Olesya Fedoryak
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Mahamadou A. Thera
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Kirsten E. Lyke
- Center for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher V. Plowe
- Center for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michel Chrétien
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Chronic Disease Program, Ottawa Hospital Research Hospital, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- * E-mail: (MM); (OKD)
| | - Majambu Mbikay
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Chronic Disease Program, Ottawa Hospital Research Hospital, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (MM); (OKD)
| |
Collapse
|
32
|
Association of a 3' untranslated region polymorphism in proprotein convertase subtilisin/kexin type 9 with HIV viral load and CD4+ levels in HIV/hepatitis C virus coinfected women. AIDS 2017; 31:2483-2492. [PMID: 29120899 DOI: 10.1097/qad.0000000000001648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To assess variation in genes that regulate cholesterol metabolism in relation to the natural history of HIV infection. DESIGN Cross-sectional and longitudinal analysis of the Women's Interagency HIV Study. METHODS We examined 2050 single nucleotide polymorphisms (SNPs) in 19 genes known to regulate cholesterol metabolism in relation to HIV viral load and CD4 T-cell levels in a multiracial cohort of 1066 antiretroviral therapy-naive women. RESULTS Six SNPs were associated with both HIV viral load and CD4 T-cell levels at a false discovery rate of 0.01. Bioinformatics tools did not predict functional activity for five SNPs, located in introns of nuclear receptor corepressor 2, retinoid X receptor alpha (RXRA), and tetratricopeptide repeat domain 39B. Rs17111557 located in the 3' untranslated region of proprotein convertase subtilisin/kexin type 9 (PCSK9) putatively affects binding of hsa-miR-548t-5p and hsa-miR-4796-3p, which could regulate PCSK9 expression levels. Interrogation of rs17111557 revealed stronger associations in the subset of women with HIV/hepatitis C virus (HCV) coinfection (n = 408, 38% of women). Rs17111557 was also associated with low-density lipoprotein cholesterol levels in HIV/HCV coinfected (β: -10.4; 95% confidence interval: -17.9, -2.9; P = 0.007), but not in HIV monoinfected (β:1.2; 95% confidence interval: -6.3, 8.6; P = 0.76) women in adjusted analysis. CONCLUSION PCSK9 polymorphism may affect HIV pathogenesis, particularly in HIV/HCV coinfected women. A likely mechanism for this effect is PCSK9-mediated regulation of cholesterol metabolism. Replication in independent cohorts is needed to clarify the generalizability of the observed associations.
Collapse
|
33
|
Li L, Yu L, Hou X. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection. Res Vet Sci 2017; 114:341-347. [PMID: 28654867 DOI: 10.1016/j.rvsc.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Lipid rafts are specialized lipid domains enriched in cholesterol and sphingolipid, which can be utilized in the lifecycle of numerous enveloped viruses. Bovine parainfluenza virustype3 (BPIV3) entry to cell is mediated by receptor binding and membrane fusion, but how lipid rafts in host cell membrane and BPIV3 envelope affect virus infection remains unclear. In this study, we investigated the role of lipid rafts in the different stages of BPIV3 infection. The MDBK cells were treated by methyl-β-cyclodextrin (MβCD) to disrupt cellular lipid raft, and the virus infection was determined. The results showed that MβCD significantly inhibited BPIV3 infection in a dose-dependent manner, but didn't block the binding of virus to the cell membrane. Whereas, the MDBK cells treated by MβCD after virus-entry had no effects on the virus infection, to suggest that BPIV3 infection was associated with lipid rafts in cell membrane during viral entry stage. To further confirm lipid rafts in viral envelope also affected BPIV3 infection, we treated BPIV3 with MβCD to determine the virus titer. We found that disruption of the viral lipid raft caused a significant reduction of viral yield. Cholesterol reconstitution experiment showed that BPIV3 infection was successfully restored by cholesterol supplementation both in cellular membrane and viral envelope, which demonstrated that cholesterol-rich lipid rafts played a critical role in BPIV3 infection. These findings provide insights on our understanding of the mechanism of BPIV3 infection and imply that lipid raft might be a good potential therapeutic target to prevent virus infection.
Collapse
Affiliation(s)
- Liyang Li
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liyun Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
34
|
Low H, Mukhamedova N, Cui HL, McSharry BP, Avdic S, Hoang A, Ditiatkovski M, Liu Y, Fu Y, Meikle PJ, Blomberg M, Polyzos KA, Miller WE, Religa P, Bukrinsky M, Soderberg-Naucler C, Slobedman B, Sviridov D. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells. Cell Rep 2016; 16:186-200. [PMID: 27320924 DOI: 10.1016/j.celrep.2016.05.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 01/30/2023] Open
Abstract
Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.
Collapse
Affiliation(s)
- Hann Low
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Huanhuan L Cui
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Karolinska Institute, Stockholm 171 76, Sweden
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
| | - Selmir Avdic
- Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
| | - Anh Hoang
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Yingying Liu
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Ying Fu
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Martin Blomberg
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, Stockholm 171 76, Sweden
| | - Michael Bukrinsky
- GW School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| |
Collapse
|
35
|
González Plaza JJ, Hulak N, Zhumadilov Z, Akilzhanova A. Fever as an important resource for infectious diseases research. Intractable Rare Dis Res 2016; 5:97-102. [PMID: 27195192 PMCID: PMC4869589 DOI: 10.5582/irdr.2016.01009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
Fever or pyrexia is a process where normal body temperature is raised over homeostasis conditions. Although many effects of fever over the immune system have been known for a long time, it has not been until recent studies when these effects have been evaluated in several infection processes. Results have been promising, as they have reported new ways of regulation, especially in RNA molecules. In light of these new studies, it seems important to start to evaluate the effects of pyrexia in current research efforts in host-pathogen interactions. Viruses and bacteria are responsible for different types of infectious diseases, and while it is of paramount importance to understand the mechanisms of infection, potential effects of fever on this process may have been overlooked. This is especially relevant because during the course of many infectious diseases the organism develops fever. Due to the lack of specific treatments for many of those afflictions, experimental evaluation in fever-like conditions can potentially bring new insights into the infection process and can ultimately help to develop treatments. The aim of this review is to present evidence that the temperature increase during fever affects the way the infection takes place, for both the pathogen and the host.
Collapse
Affiliation(s)
- Juan José González Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Zagreb, Croatia
| | - Nataša Hulak
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Zhaxybay Zhumadilov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI “National Laboratory Astana”, AOE “Nazarbayev University”, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI “National Laboratory Astana”, AOE “Nazarbayev University”, Astana, Kazakhstan
| |
Collapse
|
36
|
Helms JB, Kaloyanova DV, Strating JRP, van Hellemond JJ, van der Schaar HM, Tielens AGM, van Kuppeveld FJM, Brouwers JF. Targeting of the hydrophobic metabolome by pathogens. Traffic 2016; 16:439-60. [PMID: 25754025 PMCID: PMC7169838 DOI: 10.1111/tra.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
The hydrophobic molecules of the metabolome – also named the lipidome – constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host–pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs.
Collapse
Affiliation(s)
- J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|