1
|
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. It is also an important precursor for making other molecules needed by the body. Cholesterol homeostasis plays an essential role in human health. Having high cholesterol can increase the chances of getting heart disease. As a result of the risks associated with high cholesterol, it is imperative that studies are conducted to determine the best course of action to reduce whole body cholesterol levels. Mathematical models can provide direction on this. By examining existing models, the suitable reactions or processes for drug targeting to lower whole-body cholesterol can be determined. This paper examines existing models in the literature that, in total, cover most of the processes involving cholesterol metabolism and transport, including: the absorption of cholesterol in the intestine; the cholesterol biosynthesis in the liver; the storage and transport of cholesterol between the intestine, the liver, blood vessels, and peripheral cells. The findings presented in these models will be discussed for potential combination to form a comprehensive model of cholesterol within the entire body, which is then taken as an in-silico patient for identifying drug targets, screening drugs, and designing intervention strategies to regulate cholesterol levels in the human body.
Collapse
|
2
|
Bao X, Yuan X, Li X, Liu X. Flaxseed-derived peptide, IPPF, inhibits intestinal cholesterol absorption in Caco-2 cells and hepatic cholesterol synthesis in HepG2 cells. J Food Biochem 2021; 46:e14031. [PMID: 34893975 DOI: 10.1111/jfbc.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Flaxseed peptides reduced serum cholesterol levels in Sprague-Dawley rats fed with a high-cholesterol diet. However, the mechanism of this action remains unclear. Flaxseed-hydrolyzed proteins were separated through ultrafiltration. The fifth fraction (FP5 , ≤ 1 kDa) had the highest cholesterol micelle solubility inhibition rate (CMSR) of 72.39% among the other fractions. Eleven peptides were identified from FP5 . Ile-Pro-Pro-Phe (IPPF), which had the highest CMSR of 93.47%, was selected for further analyses. IPPF substantially reduced the cholesterol transported content in Caco-2 cells and the total cholesterol content in HepG2 cells. Moreover, IPPF modulated the protein levels of NCP1L1 and ABCG5/8 (cholesterol transporters) in Caco-2 cells and reduced the mRNA levels of Srebp-2 and Hmgcr (cholesterol synthesis enzymes) in HepG2 cells. IPPF inhibits cholesterol intestinal absorption by modulating the cholesterol transporters expression and reduces hepatic cholesterol synthesis by inhibiting the SREBP2-regulated mevalonate pathway. IPPF is a new food-derived cholesterol-lowering nutritional supplement. PRACTICAL APPLICATIONS: We isolated active peptides with cholesterol-lowering properties from flaxseed protein, a by-product of industrial oil production, which greatly improved the economic and medicinal value of flaxseed protein. According to our research, IPPF can be used as a new food-derived type of cholesterol intestinal absorption inhibitor to reduce dietary cholesterol absorption and cholesterol synthesis inhibitor (same pharmacological mechanism as statins). IPPF provide a nutritional therapy component for hypercholesterolemia and prevent atherosclerosis. Our research provides theoretical basis for development and utilization of new nutritional supplements and plant proteins.
Collapse
Affiliation(s)
- Xiaolan Bao
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Xingyu Yuan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Xuexin Li
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Xiaojing Liu
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P. R. China
| |
Collapse
|
3
|
The Effects of Anthocyanin-Rich Bilberry Extract on Transintestinal Cholesterol Excretion. Foods 2021; 10:foods10112852. [PMID: 34829135 PMCID: PMC8624570 DOI: 10.3390/foods10112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus L.) has been reported to have cardioprotective effects by ameliorating oxidative stress, inflammation, and dyslipidemia. However, the role of bilberry in intestinal cholesterol metabolism is not well understood. To examine the effects of bilberry in intestinal cholesterol metabolism, we measured the genes for cholesterol flux and de novo synthesis in anthocyanin-rich bilberry extract (BE)-treated Caco-2 cells. BE significantly decreased the genes for cholesterol absorption, i.e., Niemann-Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, BE significantly upregulated ABCG8, the apical transporter for cholesterol. There was a significant induction of low-density lipoprotein receptors, with a concomitant increase in cellular uptake of cholesterol in BE-treated cells. The expression of genes for lipogenesis and sirtuins was altered by BE treatment. In the present study, BE altered the genes for cholesterol flux from basolateral to the apical membrane of enterocytes, potentially stimulating TICE. These results support the potential of BE in the prevention of hypercholesterolemia.
Collapse
|
4
|
Liu H, Liu J, Liu Z, Wang Q, Liu J, Feng D, Zou J. Lycopene Reduces Cholesterol Absorption and Prevents Atherosclerosis in ApoE -/- Mice by Downregulating HNF-1α and NPC1L1 Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10114-10120. [PMID: 34428895 DOI: 10.1021/acs.jafc.1c03160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Our previous study showed that lycopene reduced the absorption of cholesterol in Caco-2 cells through inhibiting Niemann-Pick C1-Like 1 (NPC1L1) expression. Herein, we aimed to explore whether lycopene supplementation can decrease cholesterol absorption in the intestine and prevent atherosclerosis progression in high-fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice. Male ApoE-/- mice were fed a high-fat diet with or without lycopene for 19 weeks. Supplementation of lycopene markedly lowered serum total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels. Additionally, serum high-density lipoprotein cholesterol (HDL-C) levels were increased after lycopene administration. Lycopene also downregulated the expression of NPC1L1 and hepatocyte nuclear factor-1α (HNF-1α) in the small intestine. Furthermore, the Oil Red O staining of the aorta and aortic sinus showed that lycopene supplementation remarkably reduced atherosclerotic lesions. These results indicated that lycopene inhibited intestinal cholesterol absorption and protected against HFD-induced atherosclerosis through inhibiting HNF-1α and NPC1L1 expression. Lycopene exhibits a potential antiatherosclerotic effect through suppressing intestinal cholesterol absorption.
Collapse
Affiliation(s)
- Hao Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jun Liu
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhenhao Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Qi Wang
- Department of Cardiology, The Sixth Affiliated Hospital of South China University of Technology, Foshan 528200, China
| | - Junqiang Liu
- Department of Cardiology, The Sixth Affiliated Hospital of South China University of Technology, Foshan 528200, China
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Zou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of Cardiology, The Sixth Affiliated Hospital of South China University of Technology, Foshan 528200, China
| |
Collapse
|
5
|
Polyphenol-Rich Black Elderberry Extract Stimulates Transintestinal Cholesterol Excretion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia is the primary risk factor for cardiovascular disease (CVD). Recent studies reported that the stimulation of transintestinal cholesterol excretion (TICE), a nonbiliary cholesterol excretion, can be a strategy for preventing CVD. Black elderberry (Sambucus nigra) has been reported to reduce the risk of CVD via its antioxidant, anti-inflammatory, and hypocholesterolemic effects. However, little is known about the role of black elderberry in intestinal cholesterol metabolism despite its well-known effects on cholesterol homeostasis regulation. To investigate the effects of polyphenol-rich black elderberry extract (BEE) on intestinal cholesterol metabolism, we measured the expression of genes involved in cholesterol biosynthesis and flux in Caco-2 cells. BEE significantly decreased the messenger RNA (mRNA) and protein levels of genes for cholesterol absorption, such as Niemann–Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, there was marked induction of low-density lipoprotein receptor, ABCG5/G8, and ABCB1 in BEE-treated Caco-2 cells. Furthermore, BEE decreased the expression of genes for lipogenesis and altered the mRNA levels of sirtuins. All of the genes altered by BEE were in the direction of flux cholesterol from the basolateral to apical side of enterocytes, indicating stimulation of TICE. These results support the hypocholesterolemic effects of BEE for the prevention of CVD.
Collapse
|
6
|
Bourgin M, Labarthe S, Kriaa A, Lhomme M, Gérard P, Lesnik P, Laroche B, Maguin E, Rhimi M. Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Front Microbiol 2020; 11:1121. [PMID: 32587579 PMCID: PMC7298119 DOI: 10.3389/fmicb.2020.01121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/05/2020] [Indexed: 01/29/2023] Open
Abstract
High blood cholesterol levels are often associated with cardiovascular diseases. Therapeutic strategies, targeting different functions involved in cholesterol transport or synthesis, were developed to control cholesterolemia in human. However, the gut microbiota is also involved in cholesterol regulation by direct biotransformation of luminal cholesterol or conversion of bile salts, opening the way to the design of new strategies to manage cholesterol level. In this report, we developed for the first time a whole-body human model of cholesterol metabolism including the gut microbiota in order to investigate the relative impact of host and microbial pathways. We first used an animal model to investigate the ingested cholesterol distribution in vivo. Then, using in vitro bacterial growth experiments and metabolite measurements, we modeled the population dynamics of bacterial strains in the presence of cholesterol or bile salts, together with their bioconversion function. Next, after correct rescaling to mimic the activity of a complex microbiota, we developed a whole body model of cholesterol metabolism integrating host and microbiota mechanisms. This global model was validated with the animal experiments. Finally, the model was numerically explored to give a further insight into the different flux involved in cholesterol turn-over. According to this model, bacterial pathways appear as an important driver of cholesterol regulation, reinforcing the need for development of novel "bacteria-based" strategies for cholesterol management.
Collapse
Affiliation(s)
- Mélanie Bourgin
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Simon Labarthe
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Aicha Kriaa
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Marie Lhomme
- INSERM, UMRS 1166, Sorbonne Universités, Hôpital Pitié-Salpétrière, Paris, France.,ICANalytics, Institute of Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Philippe Gérard
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Philippe Lesnik
- INSERM, UMRS 1166, Sorbonne Universités, Hôpital Pitié-Salpétrière, Paris, France
| | | | - Emmanuelle Maguin
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Moez Rhimi
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
7
|
Li S, Xu S, Zhao Y, Wang H, Feng J. Dietary Betaine Addition Promotes Hepatic Cholesterol Synthesis, Bile Acid Conversion, and Export in Rats. Nutrients 2020; 12:nu12051399. [PMID: 32414094 PMCID: PMC7284822 DOI: 10.3390/nu12051399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is widely reported how betaine addition regulates lipid metabolism but how betaine affects cholesterol metabolism is still unknown. This study aimed to investigate the role of betaine in hepatic cholesterol metabolism of Sprague-Dawley rats. Rats were randomly allocated to four groups and fed with a basal diet or a high-fat diet with or without 1% betaine. The experiment lasted 28 days. The results showed that dietary betaine supplementation reduced the feed intake of rats with final weight unchanged. Serum low-density-lipoprotein cholesterol was increased with the high-fat diet. The high-fat diet promoted cholesterol synthesis and excretion by enhancing the HMG-CoA reductase and ABCG5/G8, respectively, which lead to a balance of hepatic cholesterol. Rats in betaine groups showed a higher level of hepatic total cholesterol. Dietary betaine addition enhanced cholesterol synthesis as well as conversion of bile acid from cholesterol by increasing the levels of HMGCR and CYP7A1. The high-fat diet decreased the level of bile salt export pump, while dietary betaine addition inhibited this decrease and promoted bile acid efflux and increased total bile acid levels in the intestine. In summary, dietary betaine addition promoted hepatic cholesterol metabolism, including cholesterol synthesis, conversion of bile acids, and bile acid export.
Collapse
Affiliation(s)
- Sisi Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
| | - Shuyi Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
| | - Yang Zhao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
| | - Haichao Wang
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 430068, China;
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
- Correspondence: ; Tel.: +86-571-88982121
| |
Collapse
|
8
|
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:676-686. [PMID: 33715815 PMCID: PMC7193959 DOI: 10.1194/jlr.tr119000383] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael J Thomas
- Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mary G Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226. mailto:
| |
Collapse
|
9
|
Schaftenaar FH, Amersfoort J, Douna H, Kröner MJ, Foks AC, Bot I, Slütter BA, van Puijvelde GHM, Drijfhout JW, Kuiper J. Induction of HLA-A2 restricted CD8 T cell responses against ApoB100 peptides does not affect atherosclerosis in a humanized mouse model. Sci Rep 2019; 9:17391. [PMID: 31757993 PMCID: PMC6874568 DOI: 10.1038/s41598-019-53642-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases form the most common cause of death worldwide, with atherosclerosis as main etiology. Atherosclerosis is marked by cholesterol rich lipoprotein deposition in the artery wall, evoking a pathogenic immune response. Characteristic for the disease is the pathogenic accumulation of macrophages in the atherosclerotic lesion, which become foam cells after ingestion of large quantities of lipoproteins. We hypothesized that, by inducing a CD8 T cell response towards lipoprotein derived apolipoprotein-B100 (ApoB100), lesional macrophages, that are likely to cross-present lipoprotein constituents, can specifically be eliminated. Based on in silico models for protein processing and MHC-I binding, 6 putative CD8 T cell epitopes derived from ApoB100 were synthesized. HLA-A2 binding was confirmed for all peptides by T2 cell binding assays and recall responses after vaccination with the peptides proved that 5 of 6 peptides could induce CD8 T cell responses. Induction of ApoB100 specific CD8 T cells did not impact plaque size and cellular composition in HLA-A2 and human ApoB100 transgenic LDLr−/− mice. No recall response could be detected in cultures of cells isolated from the aortic arch, which were observed in cell cultures of splenocytes and mesenteric lymph nodes, suggesting that the atherosclerotic environment impairs CD8 T cell activation.
Collapse
Affiliation(s)
- Frank H Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bram A Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Gijs H M van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| |
Collapse
|