1
|
Gillenwater LA, Galbraith MD, Rachubinski AL, Eduthan NP, Sullivan KD, Espinosa JM, Costello JC. Integrated analysis of immunometabolic interactions in Down syndrome. SCIENCE ADVANCES 2024; 10:eadq3073. [PMID: 39671500 PMCID: PMC11641111 DOI: 10.1126/sciadv.adq3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Down syndrome (DS), caused by trisomy 21 (T21), results in immune and metabolic dysregulation. People with DS experience co-occurring conditions at higher rates than the euploid population. However, the interplay between immune and metabolic alterations and the clinical manifestations of DS are poorly understood. Here, we report an integrated analysis of immunometabolic pathways in DS. Using multi-omics data, we infered cytokine-metabolite relationships mediated by specific transcriptional programs. We observed increased mediation of immunometabolic interactions in those with DS compared to euploid controls by genes in interferon response, heme metabolism, and oxidative phosphorylation. Unsupervised clustering of immunometabolic relationships in people with DS revealed subgroups with different frequencies of co-occurring conditions. Across the subgroups, we observed distinct mediation by DNA repair, Hedgehog signaling, and angiogenesis. The molecular stratification associates with the clinical heterogeneity observed in DS, suggesting that integrating multiple omic profiles reveals axes of coordinated dysregulation specific to DS co-occurring conditions.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Liu X, Zhu L, Liu J, Nie Z, Qiu W. Effect of weight loss interventions on metabolomic signatures in obese children with insulin resistance. Amino Acids 2024; 56:54. [PMID: 39212734 PMCID: PMC11364699 DOI: 10.1007/s00726-024-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The obesity epidemic among children has become a major public health issue, and the presence of childhood insulin resistance (IR) has been demonstrated prior to the onset of type 2 diabetes mellitus. However, it is unclear whether the metabolomic signature is associated with weight loss interventions in obese children with IR. Thirty-six obese children with IR were selected from the weight loss camp (Shenzhen Sunshine Xing Yada health Technology Co., LTD). Clinical parameters were collected before and after weight loss intervention. Targeted metabolomics of plasma samples was performed by ultra-performance liquid chromatography coupled to the tandem mass spectrometry, and principal component analysis, variable importance in projection, and orthogonal partial least squares discriminant analysis were used to obtain the differentially expressed metabolites. Pathway analysis was conducted with the Homo sapiens (HSA) sets in the Kyoto Encyclopedia of Genes and Genomes. We used machine learning algorithms to obtain the potential biomarkers and Spearman correlation analysis to clarify the association between potential biomarkers and clinical parameters. We found that clinical parameters and metabolite clusters were significantly changed in obese children with IR before and after weight loss intervention. Mechanistically, weight loss intervention significantly changed 61 metabolites in obese children with IR. Furthermore, 12 pathways were significantly changed. Moreover, the machine learning algorithm found 6 important potential biomarkers. In addition, these potential biomarkers were strongly associated with major clinical parameters. These data indicate different metabolomic profiles in obese children with IR after weight loss intervention, providing insights into the clinical parameters and metabolite mechanisms involved in weight loss programs.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Lin Zhu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China.
| | - Jingxin Liu
- Physical education and sports school, Soochow University, Suzhou, China
| | - Zichen Nie
- Harbin Institute of Technology, Shenzhen, China
| | - Wenjun Qiu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
3
|
Rahemi MH, Zhang Y, Li Z, Guan D, Li D, Fu H, Yu J, Lu J, Wang C, Feng R. The inverse associations of glycine and histidine in diet with hyperlipidemia and hypertension. Nutr J 2024; 23:98. [PMID: 39175065 PMCID: PMC11340119 DOI: 10.1186/s12937-024-01005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Amino acids are crucial for nutrition and metabolism, regulating metabolic pathways and activities vital to organismal health and stability. Glycine and histidine act as potent antioxidants and anti-inflammatory agents; however, limited knowledge exists regarding the associations between these amino acids and hyperlipidemia and hypertension. The purpose of this study is to investigate the relationship between dietary glycine and histidine, and hyperlipidemia and hypertension. METHODS This population-based cross-sectional study evaluated the influence of dietary glycine and histidine, as well as their combined effect, on hyperlipidemia and hypertension in Chinese adults participating in the Nutrition Health Atlas Project (NHAP). General characteristics were acquired using a verified Internet-based Dietary Questionnaire for the Chinese. Binary logistic regression, along with gender, age groups, and median energy intake subgroup analyses, was employed to investigate the associations between dietary glycine and histidine and hyperlipidemia and hypertension. A sensitivity analysis was conducted to assess the impact of excluding individuals who smoke and consume alcohol on the results. RESULTS Based on the study's findings, 418 out of 1091 cases had hyperlipidemia, whereas 673 had hypertension. A significant inverse relationship was found between dietary glycine, histidine, and glycine + histidine and hyperlipidemia and hypertension. Compared with the 1st and 2nd tertiles, the multivariable-adjusted odd ratios (ORs) (95% confidence intervals) (CIs) of the 3rd tertile of dietary glycine for hyperlipidemia and hypertension were 0.64 (0.49-0.84) (p < 0.01) and 0.70 (0.56-0.88) (p < 0.001); histidine was 0.63 (0.49-0.82) (p < 0.01) and 0.80 (0.64-0.99) (p < 0.01); and glycine + histidine was 0.64 (0.49-0.83) (p < 0.01) and 0.74 (0.59-0.92) (p < 0.001), respectively. High glycine and high histidine (HGHH) intake were negatively associated with hyperlipidemia and hypertension OR (95% CIs) were: 0.71 (0.58-0.88) (p < 0.01) and 0.73 (0.61-0.87) (p < 0.01), respectively. CONCLUSIONS Dietary glycine and histidine, as well as their HGHH group, revealed an inverse relationship with hyperlipidemia and hypertension. Further investigations are needed to validate these findings.
Collapse
Affiliation(s)
- Mohammad Haroon Rahemi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Zican Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Dongwei Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Defang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hongxin Fu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Junrong Lu
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Cheng Wang
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China.
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Ben Dhaou C, Scott ML, Orr AW. Advances in Understanding Cardiovascular Disease Pathogenesis through Next-Generation Technologies. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:476-481. [PMID: 38519246 PMCID: PMC10988757 DOI: 10.1016/j.ajpath.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/24/2024]
Affiliation(s)
- Cyrine Ben Dhaou
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana; Department of Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana.
| |
Collapse
|
5
|
Anand SK, Governale TA, Zhang X, Razani B, Yurdagul A, Pattillo CB, Rom O. Amino Acid Metabolism and Atherosclerotic Cardiovascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:510-524. [PMID: 38171450 PMCID: PMC10988767 DOI: 10.1016/j.ajpath.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Despite significant advances in medical treatments and drug development, atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death worldwide. Dysregulated lipid metabolism is a well-established driver of ASCVD. Unfortunately, even with potent lipid-lowering therapies, ASCVD-related deaths have continued to increase over the past decade, highlighting an incomplete understanding of the underlying risk factors and mechanisms of ASCVD. Accumulating evidence over the past decades indicates a correlation between amino acids and disease state. This review explores the emerging role of amino acid metabolism in ASCVD, uncovering novel potential biomarkers, causative factors, and therapeutic targets. Specifically, the significance of arginine and its related metabolites, homoarginine and polyamines, branched-chain amino acids, glycine, and aromatic amino acids, in ASCVD are discussed. These amino acids and their metabolites have been implicated in various processes characteristic of ASCVD, including impaired lipid metabolism, endothelial dysfunction, increased inflammatory response, and necrotic core development. Understanding the complex interplay between dysregulated amino acid metabolism and ASCVD provides new insights that may lead to the development of novel diagnostic and therapeutic approaches. Although further research is needed to uncover the precise mechanisms involved, it is evident that amino acid metabolism plays a role in ASCVD.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Theresea-Anne Governale
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xiangyu Zhang
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| |
Collapse
|
6
|
Seeley EH, Liu Z, Yuan S, Stroope C, Cockerham E, Rashdan NA, Delgadillo L, Finney AC, Kumar D, Das S, Razani B, Liu W, Traylor J, Orr AW, Rom O, Pattillo CB, Yurdagul A. Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging. Arterioscler Thromb Vasc Biol 2023; 43:1626-1635. [PMID: 37381983 PMCID: PMC10527524 DOI: 10.1161/atvbaha.122.318684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core. METHODS Atherosclerotic tissue specimens from 9 unmatched individuals were scored based on the Stary classification scale and subdivided into stable and unstable atheromas. After performing mass spectrometry imaging on these samples, we identified over 850 metabolite-related peaks. Using MetaboScape, METASPACE, and Human Metabolome Database, we confidently annotated 170 of these metabolites and found over 60 of these were different between stable and unstable atheromas. We then integrated these results with an RNA-sequencing data set comparing stable and unstable human atherosclerosis. RESULTS Upon integrating our mass spectrometry imaging results with the RNA-sequencing data set, we discovered that pathways related to lipid metabolism and long-chain fatty acids were enriched in stable plaques, whereas reactive oxygen species, aromatic amino acid, and tryptophan metabolism were increased in unstable plaques. In addition, acylcarnitines and acylglycines were increased in stable plaques whereas tryptophan metabolites were enriched in unstable plaques. Evaluating spatial differences in stable plaques revealed lactic acid in the necrotic core, whereas pyruvic acid was elevated in the fibrous cap. In unstable plaques, 5-hydroxyindoleacetic acid was enriched in the fibrous cap. CONCLUSIONS Our work here represents the first step to defining an atlas of metabolic pathways involved in plaque destabilization in human atherosclerosis. We anticipate this will be a valuable resource and open new avenues of research in cardiovascular disease.
Collapse
Affiliation(s)
- Erin H. Seeley
- Department of Chemistry, University of Texas at Austin, TX, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, IN, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | - Chad Stroope
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Elizabeth Cockerham
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, MI, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| |
Collapse
|
7
|
Qu P, Rom O, Li K, Jia L, Gao X, Liu Z, Ding S, Zhao M, Wang H, Chen S, Xiong X, Zhao Y, Xue C, Zhao Y, Chu C, Wen B, Finney AC, Zheng Z, Cao W, Zhao J, Bai L, Zhao S, Sun D, Zeng R, Lin J, Liu W, Zheng L, Zhang J, Liu E, Chen YE. DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates. Cell Metab 2023; 35:742-757.e10. [PMID: 37040763 DOI: 10.1016/j.cmet.2023.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Linying Jia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaojing Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Shusi Ding
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Shuangshuang Chen
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chengshuang Chu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Zuowen Zheng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi 538000, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rong Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Lemin Zheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China; The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
10
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
11
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
12
|
Rom O, Liu Y, Finney AC, Ghrayeb A, Zhao Y, Shukha Y, Wang L, Rajanayake KK, Das S, Rashdan NA, Weissman N, Delgadillo L, Wen B, Garcia-Barrio MT, Aviram M, Kevil CG, Yurdagul A, Pattillo CB, Zhang J, Sun D, Hayek T, Gottlieb E, Mor I, Chen YE. Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol 2022; 52:102313. [PMID: 35447412 PMCID: PMC9044008 DOI: 10.1016/j.redox.2022.102313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Lower circulating levels of glycine are consistently reported in association with cardiovascular disease (CVD), but the causative role and therapeutic potential of glycine in atherosclerosis, the underlying cause of most CVDs, remain to be established. Here, following the identification of reduced circulating glycine in patients with significant coronary artery disease (sCAD), we investigated a causative role of glycine in atherosclerosis by modulating glycine availability in atheroprone mice. We further evaluated the atheroprotective potential of DT-109, a recently identified glycine-based compound with dual lipid/glucose-lowering properties. Glycine deficiency enhanced, while glycine supplementation attenuated, atherosclerosis development in apolipoprotein E-deficient (Apoe−/−) mice. DT-109 treatment showed the most significant atheroprotective effects and lowered atherosclerosis in the whole aortic tree and aortic sinus concomitant with reduced superoxide. In Apoe−/− mice with established atherosclerosis, DT-109 treatment significantly reduced atherosclerosis and aortic superoxide independent of lipid-lowering effects. Targeted metabolomics and kinetics studies revealed that DT-109 induces glutathione formation in mononuclear cells. In bone marrow-derived macrophages (BMDMs), glycine and DT-109 attenuated superoxide formation induced by glycine deficiency. This was abolished in BMDMs from glutamate-cysteine ligase modifier subunit-deficient (Gclm−/-) mice in which glutathione biosynthesis is impaired. Metabolic flux and carbon tracing experiments revealed that glycine deficiency inhibits glutathione formation in BMDMs while glycine-based treatment induces de novo glutathione biosynthesis. Through a combination of studies in patients with CAD, in vivo studies using atherosclerotic mice and in vitro studies using macrophages, we demonstrated a causative role of glycine in atherosclerosis and identified glycine-based treatment as an approach to mitigate atherosclerosis through antioxidant effects mediated by induction of glutathione biosynthesis.
Collapse
Affiliation(s)
- Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Alia Ghrayeb
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yousef Shukha
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, 3109601, Israel; The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Lu Wang
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Krishani K Rajanayake
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Natan Weissman
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Bo Wen
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Aviram
- The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Arif Yurdagul
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher B Pattillo
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, 3109601, Israel; The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Eyal Gottlieb
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Inbal Mor
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Liu Y, Zhao Y, Shukha Y, Lu H, Wang L, Liu Z, Liu C, Zhao Y, Wang H, Zhao G, Liang W, Fan Y, Chang L, Yurdagul A, Pattillo CB, Orr AW, Aviram M, Wen B, Garcia-Barrio MT, Zhang J, Liu W, Sun D, Hayek T, Chen YE, Rom O. Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep 2021; 36:109420. [PMID: 34320345 PMCID: PMC8363062 DOI: 10.1016/j.celrep.2021.109420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/16/2021] [Accepted: 06/28/2021] [Indexed: 02/01/2023] Open
Abstract
Dysregulated glycine metabolism is emerging as a common denominator in cardiometabolic diseases, but its contribution to atherosclerosis remains unclear. In this study, we demonstrate impaired glycine-oxalate metabolism through alanine-glyoxylate aminotransferase (AGXT) in atherosclerosis. As found in patients with atherosclerosis, the glycine/oxalate ratio is decreased in atherosclerotic mice concomitant with suppression of AGXT. Agxt deletion in apolipoprotein E-deficient (Apoe-/-) mice decreases the glycine/oxalate ratio and increases atherosclerosis with induction of hepatic pro-atherogenic pathways, predominantly cytokine/chemokine signaling and dysregulated redox homeostasis. Consistently, circulating and aortic C-C motif chemokine ligand 5 (CCL5) and superoxide in lesional macrophages are increased. Similar findings are observed following dietary oxalate overload in Apoe-/- mice. In macrophages, oxalate induces mitochondrial dysfunction and superoxide accumulation, leading to increased CCL5. Conversely, AGXT overexpression in Apoe-/- mice increases the glycine/oxalate ratio and decreases aortic superoxide, CCL5, and atherosclerosis. Our findings uncover dysregulated oxalate metabolism via suppressed AGXT as a driver and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yousef Shukha
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel; The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lu Wang
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Cai Liu
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanbo Fan
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Bo Wen
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Duxin Sun
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel; The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| |
Collapse
|
14
|
Ji Y, Fan X, Zhang Y, Li J, Dai Z, Wu Z. Glycine regulates mucosal immunity and the intestinal microbial composition in weaned piglets. Amino Acids 2021; 54:385-398. [PMID: 33839961 DOI: 10.1007/s00726-021-02976-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Glycine is an amino acid with a diverse array of health benefits regarding metabolism, immunity, and development. The aim of this study was to test the hypothesis that glycine supplementation alters the intestinal microbial composition and improves the intestinal mucosal immunity of weaned piglets. One hundred and twenty-eight weaned piglets divided into 4 groups were fed with a corn- and soybean meal-based diet supplemented with 0 (control), 0.5, 1, or 2% glycine for 7 days. The intestinal microbiota and tissue samples from the control and the 2% glycine-supplemented piglets were collected for determination of the composition of microbial community and the intestinal mucosal barrier function. Piglets fed with diet containing 2% glycine, instead of 0.5% or 1% glycine, presented elevated average daily gain and feed conversion ratio, as compared with the control. 2% glycine enhanced the abundance of mucins in the jejunum and ileum and mRNA level of porcine β-defensin (pBD) 2 and pBD-3, as well as the protein level of secretory immunoglobulin A (sIgA) in the jejunum. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and the protein level of phosphorylated p38 mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), nuclear factor (NF)-κB p65, and claudin-2 in the jejunum were lower in the 2% glycine group than that in the control. In addition, an elevated ratio of CD4+/CD8+ T lymphocytes was observed in the jejunum of piglets receiving diet supplemented with 2% glycine. The colon content of piglets fed with 2% glycine exhibited a reduction in abundance of pathogenic bacteria (Escherichia-Shigella, Clostridium, and Burkholderiales) and an increase in short-chain fatty acid-producing bacteria (Blautia, Lachnospiraceae, Anaerostipes, and Prevotella) in comparison with the control. We conclude that dietary supplementation with 2% glycine improves the intestinal immunological barrier function and the microbial composition, therefore, contributing to the growth performance of weaned piglets.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Xiaoxiao Fan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Xinzheng, 451100, Henan, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Rom O, Liu Y, Liu Z, Zhao Y, Wu J, Ghrayeb A, Villacorta L, Fan Y, Chang L, Wang L, Liu C, Yang D, Song J, Rech JC, Guo Y, Wang H, Zhao G, Liang W, Koike Y, Lu H, Koike T, Hayek T, Pennathur S, Xi C, Wen B, Sun D, Garcia-Barrio MT, Aviram M, Gottlieb E, Mor I, Liu W, Zhang J, Chen YE. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci Transl Med 2020; 12:eaaz2841. [PMID: 33268508 PMCID: PMC7982985 DOI: 10.1126/scitranslmed.aaz2841] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/11/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) has reached epidemic proportions with no pharmacological therapy approved. Lower circulating glycine is consistently reported in patients with NAFLD, but the causes for reduced glycine, its role as a causative factor, and its therapeutic potential remain unclear. We performed transcriptomics in livers from humans and mice with NAFLD and found suppression of glycine biosynthetic genes, primarily alanine-glyoxylate aminotransferase 1 (AGXT1). Genetic (Agxt1 -/- mice) and dietary approaches to limit glycine availability resulted in exacerbated diet-induced hyperlipidemia and steatohepatitis, with suppressed mitochondrial/peroxisomal fatty acid β-oxidation (FAO) and enhanced inflammation as the underlying pathways. We explored glycine-based compounds with dual lipid/glucose-lowering properties as potential therapies for NAFLD and identified a tripeptide (Gly-Gly-L-Leu, DT-109) that improved body composition and lowered circulating glucose, lipids, transaminases, proinflammatory cytokines, and steatohepatitis in mice with established NASH induced by a high-fat, cholesterol, and fructose diet. We applied metagenomics, transcriptomics, and metabolomics to explore the underlying mechanisms. The bacterial genus Clostridium sensu stricto was markedly increased in mice with NASH and decreased after DT-109 treatment. DT-109 induced hepatic FAO pathways, lowered lipotoxicity, and stimulated de novo glutathione synthesis. In turn, inflammatory infiltration and hepatic fibrosis were attenuated via suppression of NF-κB target genes and TGFβ/SMAD signaling. Unlike its effects on the gut microbiome, DT-109 stimulated FAO and glutathione synthesis independent of NASH. In conclusion, impaired glycine metabolism may play a causative role in NAFLD. Glycine-based treatment attenuates experimental NAFLD by stimulating hepatic FAO and glutathione synthesis, thus warranting clinical evaluation.
Collapse
Affiliation(s)
- Oren Rom
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuhao Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ying Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Alia Ghrayeb
- The Cancer Metabolism Laboratory, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Luis Villacorta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yanbo Fan
- Department of Cancer Biology and Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lin Chang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cai Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jason C Rech
- Michigan Center for Therapeutic Innovation, University of Michigan, Ann Arbor 48109, MI, USA
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yui Koike
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomonari Koike
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tony Hayek
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 31096, Israel
| | | | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Eyal Gottlieb
- The Cancer Metabolism Laboratory, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Inbal Mor
- The Cancer Metabolism Laboratory, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Soybean Oil Modulates the Gut Microbiota Associated with Atherogenic Biomarkers. Microorganisms 2020; 8:microorganisms8040486. [PMID: 32235412 PMCID: PMC7232217 DOI: 10.3390/microorganisms8040486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
During the last few decades there has been a staggering rise in human consumption of soybean-oil (SO). The microbiome and specific taxa composing it are dramatically affected by diet; specifically, by high-fat diets. Increasing evidence indicates the association between dysbiosis and health or disease state, including cardiovascular diseases (CVD) and atherosclerosis pathogenesis in human and animal models. To investigate the effects of high SO intake, C57BL/6 mice were orally supplemented with SO-based emulsion (SOE) for one month, followed by analyses of atherosclerosis-related biomarkers and microbiota profiling by 16S rRNA gene sequencing of fecal DNA. SOE-supplementation caused compositional changes to 64 taxa, including enrichment in Bacteroidetes, Mucispirillum, Prevotella and Ruminococcus, and decreased Firmicutes. These changes were previously associated with atherosclerosis in numerous studies. Among the shifted taxa, 40 significantly correlated with at least one atherosclerosis-related biomarker (FDR < 0.05), while 13 taxa positively correlated with the average of all biomarkers. These microbial alterations also caused a microbial-derived metabolic-pathways shift, including enrichment in different amino-acid metabolic-pathways known to be implicated in CVD. In conclusion, our results demonstrate dysbiosis following SOE supplementation associated with atherosclerosis-related biomarkers. These findings point to the microbiome as a possible mediator to CVD, and it may be implemented into non-invasive diagnostic tools or as potential therapeutic strategies.
Collapse
|