1
|
Saki N, Haybar H, Maniati M, Davari N, Javan M, Moghimian-Boroujeni B. Modification macrophage to foam cells in atherosclerosis disease: some factors stimulate or inhibit this process. J Diabetes Metab Disord 2024; 23:1687-1697. [PMID: 39610485 PMCID: PMC11599683 DOI: 10.1007/s40200-024-01482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 11/30/2024]
Abstract
Background Atherosclerosis is an arterial blood vessel disease that begins and progresses by turning macrophages into foam cells. Uptake of oxidized low-density lipoprotein (ox-LDL), cholesterol esterification and cholesterol efflux are the most important factors in the formation of foam cells and play an important role in atherosclerosis. Methods The present study is based on the data obtained from the PubMed database (1961-2024) using the MeSH search terms "Atherosclerosis", "Macrophages" and "Foam cells". Reviews for writing the main text and non-English-language articles were excluded. Result The interaction between ox-LDL and macrophages plays an important role in plaque initiation and promotion processes. Macrophages abnormally digest ox-LDL, resulting in the accumulation of lipids and formation of foam cells. This is an important step in the development of atherosclerosis. Also, several other factors such as inflammatory factors, growth factors, hormones, etc. can play an important role in the development of atherosclerotic lesions or counteract it by affecting the formation of foam cells. Conclusion Several factors can affect the progression of atherosclerosis by affecting macrophage activity or its conversion to foam cells. Also, some of these factors play a protective role against the development and atherosclerosis progression. In this paper, we reviewed some of these factors and their effect on atherosclerosis.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Cardiology Department, Medical College, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ghiasvand T, Karimi J, Khodadadi I, Yazdi A, Khazaei S, Kichi ZA, Hosseini SK. Evaluating SORT1 and SESN1 genes expression in peripheral blood mononuclear cells and oxidative stress status in patients with coronary artery disease. BMC Genom Data 2024; 25:93. [PMID: 39488678 PMCID: PMC11531137 DOI: 10.1186/s12863-024-01275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) significantly contributes to global fatalities. Recent studies have demonstrated the crucial roles of sortilin1 (SORT1) and sestrin1 (SESN1) in lipid metabolism, as well as their involvement in the development of CAD. The aberrant expression or activity of SORT1 can consequently lead to metabolic and vascular diseases. Sestrins, including SESN1, play a crucial role in helping cells survive by maintaining metabolic balance while also reducing oxidative stress (OS). OS contributes to the progression of atherosclerosis-related diseases, such as CAD. The study aimed to compare the gene expression of SORT1 and SESN1 in peripheral blood mononuclear cells (PBMCs), alongside serum OS markers, in CAD patients and controls. MATERIALS The case-control study included 49 CAD patients and 40 controls. The expression of the SORT1 and SESN1 genes was quantified using qRT-PCR, and the expression of the SORT1 protein was evaluated by western blotting. OS markers, including total oxidation status (TOS), total antioxidant capacity (TAC), and malondialdehyde (MDA), were measured using spectrophotometric and fluorometric methods. RESULTS SORT1 gene and protein expressions were similar between groups. CAD patients had a non-significant decrease in SESN1 gene expression. MDA levels were significantly higher in CAD patients, whereas TOS and TAC levels did not differ significantly. CONCLUSION For atherosclerosis-related disorders like CAD, MDA shows potential as a non-invasive, easy-to-use, affordable, and stable biomarker. Further research is needed to elucidate the precise roles of SORT1 and SESN1 in CAD pathogenesis.
Collapse
Affiliation(s)
- Tayebe Ghiasvand
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirhossein Yazdi
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Farshchian Heart Center, Fahmideh Blvd., 6517839131, Hamadan, Iran.
| |
Collapse
|
3
|
Wu C, Chen J, Zhang J, Hong H, Jiang J, Ji C, Li C, Xia M, Xu G, Cui Z. Extracellular vesicles loaded with ApoB-100 protein affect the occurrence of coronary heart disease in patients after injury of spinal cord. Int J Biol Macromol 2024; 277:134330. [PMID: 39089550 DOI: 10.1016/j.ijbiomac.2024.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) patients have an increased susceptibility to coronary heart disease (CHD) due to dysregulated lipid deposition. We conducted a comprehensive investigation to gain insights into the specific roles of Apolipoprotein B-100 (APOB-100) in the development of CHD in patients suffering from SCI. First, we established an SCI rat model through semitransection. APOB-100 expression in plasma exosomes obtained from patients were determined. Subsequently, we found APOB-100 affected macrophage polarization when treating co-cultured neurons/macrophages lacking Sortilin with extracellular vesicles derived from SCI rats, where APOB-100 co-immunoprecipitated with Sortilin. Moreover, APOB-100 upregulation reduced neuronal cell viability and triggered apoptosis by upregulating Sortilin, leading to a decline in the Basso, Beattie, and Bresnahan (BBB) scale, exacerbation of neuron injury, increased macrophage infiltration, and elevated blood lipid-related indicators in SCI rats, which could be reversed by silencing Sortilin. In conclusion, APOB-100 from post-SCI patients' extracellular vesicles upregulates Sortilin, thereby endangering those patients to CHD.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Jiajia Chen
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Jinlong Zhang
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Hongxiang Hong
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Jiawei Jiang
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Chunyan Ji
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Chaochen Li
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Mingjie Xia
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Guanhua Xu
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China.
| | - Zhiming Cui
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China.
| |
Collapse
|
4
|
Zhang L, Wang X, Chen XW. The biogenesis and transport of triglyceride-rich lipoproteins. Trends Endocrinol Metab 2024:S1043-2760(24)00196-6. [PMID: 39164120 DOI: 10.1016/j.tem.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Triglyceride-rich lipoproteins (TRLs) play essential roles in human health and disease by transporting bulk lipids into the circulation. This review summarizes the fundamental mechanisms and diverse factors governing lipoprotein production, secretion, and regulation. Emphasizing the broader implications for human health, we outline the intricate landscape of lipoprotein research and highlight the potential coordination between the biogenesis and transport of TRLs in physiology, particularly the unexpected coupling of metabolic enzymes and transport machineries. Challenges and opportunities in lipoprotein biology with respect to inherited diseases and viral infections are also discussed. Further characterization of the biogenesis and transport of TRLs will advance both basic research in lipid biology and translational medicine for metabolic diseases.
Collapse
Affiliation(s)
- Linqi Zhang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China; Peking University (PKU)-Tsinghua University (THU) Joint Center for Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
5
|
Small AM, Yutzey KE, Binstadt BA, Voigts Key K, Bouatia-Naji N, Milan D, Aikawa E, Otto CM, St Hilaire C. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e109-e128. [PMID: 38881493 PMCID: PMC11542557 DOI: 10.1161/cir.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.
Collapse
|
6
|
Leggere JC, Hibbard JV, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and nonciliary phenotypes of IFT-A mutants. Mol Biol Cell 2024; 35:ar39. [PMID: 38170584 PMCID: PMC10916875 DOI: 10.1091/mbc.e23-03-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila. A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
Affiliation(s)
- Janelle C. Leggere
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Jaime V.K. Hibbard
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| |
Collapse
|
7
|
Li T, Yang F, Heng Y, Zhou S, Wang G, Wang J, Wang J, Chen X, Yao ZP, Wu Z, Guo Y. TMED10 mediates the trafficking of insulin-like growth factor 2 along the secretory pathway for myoblast differentiation. Proc Natl Acad Sci U S A 2023; 120:e2215285120. [PMID: 37931110 PMCID: PMC10655563 DOI: 10.1073/pnas.2215285120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.
Collapse
Affiliation(s)
- Tiantian Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Yang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Youshan Heng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shaopu Zhou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianying Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xianwei Chen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhenguo Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology, Guangzhou 511453, China
| |
Collapse
|
8
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Small AM, Peloso G, Linefsky J, Aragam J, Galloway A, Tanukonda V, Wang LC, Yu Z, Selvaraj MS, Farber-Eger EH, Baker MT, Setia-Verma S, Lee SSK, Preuss M, Ritchie M, Damrauer SM, Rader DJ, Wells QS, Loos RJF, Lubitz S, Thanassoulis G, Cho K, Wilson PWF, Natarajan P, O’Donnell CJ. Multiancestry Genome-Wide Association Study of Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran Program. Circulation 2023; 147:942-955. [PMID: 36802703 PMCID: PMC10806851 DOI: 10.1161/circulationaha.122.061451] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/15/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND Calcific aortic stenosis (CAS) is the most common valvular heart disease in older adults and has no effective preventive therapies. Genome-wide association studies (GWAS) can identify genes influencing disease and may help prioritize therapeutic targets for CAS. METHODS We performed a GWAS and gene association study of 14 451 patients with CAS and 398 544 controls in the Million Veteran Program. Replication was performed in the Million Veteran Program, Penn Medicine Biobank, Mass General Brigham Biobank, BioVU, and BioMe, totaling 12 889 cases and 348 094 controls. Causal genes were prioritized from genome-wide significant variants using polygenic priority score gene localization, expression quantitative trait locus colocalization, and nearest gene methods. CAS genetic architecture was compared with that of atherosclerotic cardiovascular disease. Causal inference for cardiometabolic biomarkers in CAS was performed using Mendelian randomization and genome-wide significant loci were characterized further through phenome-wide association study. RESULTS We identified 23 genome-wide significant lead variants in our GWAS representing 17 unique genomic regions. Of the 23 lead variants, 14 were significant in replication, representing 11 unique genomic regions. Five replicated genomic regions were previously known risk loci for CAS (PALMD, TEX41, IL6, LPA, FADS) and 6 were novel (CEP85L, FTO, SLMAP, CELSR2, MECOM, CDAN1). Two novel lead variants were associated in non-White individuals (P<0.05): rs12740374 (CELSR2) in Black and Hispanic individuals and rs1522387 (SLMAP) in Black individuals. Of the 14 replicated lead variants, only 2 (rs10455872 [LPA], rs12740374 [CELSR2]) were also significant in atherosclerotic cardiovascular disease GWAS. In Mendelian randomization, lipoprotein(a) and low-density lipoprotein cholesterol were both associated with CAS, but the association between low-density lipoprotein cholesterol and CAS was attenuated when adjusting for lipoprotein(a). Phenome-wide association study highlighted varying degrees of pleiotropy, including between CAS and obesity at the FTO locus. However, the FTO locus remained associated with CAS after adjusting for body mass index and maintained a significant independent effect on CAS in mediation analysis. CONCLUSIONS We performed a multiancestry GWAS in CAS and identified 6 novel genomic regions in the disease. Secondary analyses highlighted the roles of lipid metabolism, inflammation, cellular senescence, and adiposity in the pathobiology of CAS and clarified the shared and differential genetic architectures of CAS with atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Aeron M Small
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| | - Gina Peloso
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jason Linefsky
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jayashri Aragam
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
| | - Ashley Galloway
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
| | | | - Lu-Chen Wang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, United States, 37232
| | - Michael T Baker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Shefali Setia-Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon SK Lee
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA, 19104
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
| | - George Thanassoulis
- Department of Medicine, Division of Experimental Medicine, McGill University Health Center, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
| | - Peter WF Wilson
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
| | - Christopher J O’Donnell
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
10
|
Leggere JC, Hibbard JVK, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and non-ciliary phenotypes of IFT-A mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531778. [PMID: 36945534 PMCID: PMC10028850 DOI: 10.1101/2023.03.08.531778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila . A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
|
11
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
12
|
Ertaş S, Ünver G, Gonca Okumuş Z, Yılmaz S, Dağ İ, Turhan U. Maternal serum Sortilin-1 level as a potential biomarker for intrahepatic cholestasis of pregnancy. Gynecol Endocrinol 2022; 38:935-938. [PMID: 36068972 DOI: 10.1080/09513590.2022.2119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease related to pregnancy in women. Sortilin-1 is a sorting receptor belonging to the vacuolar protein sorting 10 (Vps10p) domain family, and recent studies have shown that Sortilin-1 has a distinct role in the pathogenesis of biliary fibrosis and cirrhosis. We aimed to evaluate maternal serum Sortilin-1 level as a potential biomarker in pregnant women with intrahepatic cholestasis.Materials and methods: A prospective observational cohort study was conducted. We enrolled 80 pregnant women, 49 with the diagnosis of intrahepatic cholestasis of pregnancy and 31 healthy controls. Then, we measured maternal serum Sortilin-1 levels using an enzyme-linked immunosorbent assay method and compared them between groups.Results: The mean Sortilin-1 level in the ICP group was higher than control group (3.3 ± 1.7 ng/mL vs. 2.0 ± 0.6 ng/mL, respectively, p < .001). The receiver operating characteristic curve (ROC) analysis based on maternal serum Sortilin-1 levels to predict the presence of ICP was 85.3% controls [area under the curve (AUC), 0.853; 95% CI, 0.738-0.938, p < .001]. The optimal cutoff value of Sortilin-1 was 2.24 ng/mL (71.4% sensitivity and 74.2% specificity) to detect intrahepatic cholestasis of pregnancy.Conclusion: Elevated maternal serum Sortilin-1 levels are associated with ICP and can be used as a disease biomarker. Sortilin-1 levels can be combined with total bile acids, transaminases, and blood coagulation profile in the follow-up of ICP.
Collapse
Affiliation(s)
- Sinem Ertaş
- VKV American Hospital, Women's Health Center, İstanbul, Turkey
| | - Gökhan Ünver
- Samsun Training and Research Hospital, Samsun, Turkey
| | | | | | | | | |
Collapse
|
13
|
Clark JR, Gemin M, Youssef A, Marcovina SM, Prat A, Seidah NG, Hegele RA, Boffa MB, Koschinsky ML. Sortilin enhances secretion of apolipoprotein(a) through effects on apolipoprotein B secretion and promotes uptake of lipoprotein(a). J Lipid Res 2022; 63:100216. [PMID: 35469919 PMCID: PMC9131257 DOI: 10.1016/j.jlr.2022.100216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Elevated plasma lipoprotein(a) (Lp(a)) is an independent, causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Lp(a) is formed in or on hepatocytes from successive noncovalent and covalent interactions between apo(a) and apoB, although the subcellular location of these interactions and the nature of the apoB-containing particle involved remain unclear. Sortilin, encoded by the SORT1 gene, modulates apoB secretion and LDL clearance. We used a HepG2 cell model to study the secretion kinetics of apo(a) and apoB. Overexpression of sortilin increased apo(a) secretion, while siRNA-mediated knockdown of sortilin expression correspondingly decreased apo(a) secretion. Sortilin binds LDL but not apo(a) or Lp(a), indicating that its effect on apo(a) secretion is likely indirect. Indeed, the effect was dependent on the ability of apo(a) to interact noncovalently with apoB. Overexpression of sortilin enhanced internalization of Lp(a), but not apo(a), by HepG2 cells, although neither sortilin knockdown in these cells or Sort1 deficiency in mice impacted Lp(a) uptake. We found several missense mutations in SORT1 in patients with extremely high Lp(a) levels; sortilin containing some of these mutations was more effective at promoting apo(a) secretion than WT sortilin, though no differences were found with respect to Lp(a) internalization. Our observations suggest that sortilin could play a role in determining plasma Lp(a) levels and corroborate in vivo human kinetic studies which imply that secretion of apo(a) and apoB are coupled, likely within the hepatocyte.
Collapse
Affiliation(s)
- Justin R Clark
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Matthew Gemin
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Annik Prat
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Nabil G Seidah
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Michael B Boffa
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Marlys L Koschinsky
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
14
|
Conlon DM, Schneider CV, Ko YA, Rodrigues A, Guo K, Hand NJ, Rader DJ. Sortilin restricts secretion of apolipoprotein B-100 by hepatocytes under stressed but not basal conditions. J Clin Invest 2022; 132:144334. [PMID: 35113816 PMCID: PMC8920325 DOI: 10.1172/jci144334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Genetic variants at the SORT1 locus in humans, which cause increased SORT1 expression in the liver, are significantly associated with reduced plasma levels of LDL cholesterol and apolipoprotein B (apoB). However, the role of hepatic sortilin remains controversial, as genetic deletion of sortilin in mice has resulted in variable and conflicting effects on apoB secretion. Here, we found that Sort1-KO mice on a chow diet and several Sort1-deficient hepatocyte lines displayed no difference in apoB secretion. When these models were challenged with high-fat diet or ER stress, the loss of Sort1 expression resulted in a significant increase in apoB-100 secretion. Sort1-overexpression studies yielded reciprocal results. Importantly, carriers of SORT1 variant with diabetes had larger decreases in plasma apoB, TG, and VLDL and LDL particle number as compared with people without diabetes with the same variants. We conclude that, under basal nonstressed conditions, loss of sortilin has little effect on hepatocyte apoB secretion, whereas, in the setting of lipid loading or ER stress, sortilin deficiency leads to increased apoB secretion. These results are consistent with the directionality of effect in human genetics studies and suggest that, under stress conditions, hepatic sortilin directs apoB toward lysosomal degradation rather than secretion, potentially serving as a quality control step in the apoB secretion pathway in hepatocytes.
Collapse
Affiliation(s)
- Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Carolin V Schneider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Yi-An Ko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Amrith Rodrigues
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Kathy Guo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
15
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
16
|
Tan J, Che Y, Liu Y, Hu J, Wang W, Hu L, Zhou Q, Wang H, Li J. CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level. FASEB J 2021; 35:e21908. [PMID: 34478580 DOI: 10.1096/fj.202100786rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2), a mammalian orthologue of drosophila flamingo, belongs to the cadherin subfamily. CELSR2 mainly function in neural development and cilium polarity. Recent studies showed that the CELSR2 gene is related to many human diseases, including coronary artery disease, idiopathic scoliosis, and cancer. Genome-Wide Association Studies data showed that SNP in the CELSR2-PSRC1-SORT1 gene loci has a strong association with circulating lipid levels and coronary artery disease. However, the function and underlying mechanism of CELSR2 in hepatic lipid metabolism remain unknown. Here, we found that CELSR2 expression is decreased in the liver of NAFLD/NASH patients and db/db mice. Depletion of CELSR2 significantly decreased the lipid accumulation in hepatocytes by suppressing the expression of lipid synthesis enzymes. Moreover, CELSR2 deficiency impaired the physiological unfolded protein response (UPR), which damages the ER homeostasis, and elevates the reactive oxygen species (ROS) level by decreasing the antioxidant expression. Scavenging of ROS by N-acetylcysteine treatment could restore the decreased lipid accumulation of CELSR2 knockdown cells. Furthermore, CELSR2 loss impaired cell survival by suppressing cell proliferation and promoting apoptosis. Our results uncovered a new role of CELSR2 in regulating lipid homeostasis and UPR, suggesting CELSR2 may be a new therapeutic target for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Junyang Tan
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yaping Che
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yanyan Liu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Jiaqiao Hu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Wenjun Wang
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liubing Hu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qinghua Zhou
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianshuang Li
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Zhang S, Duan J, Du Y, Xie J, Zhang H, Li C, Zhang W. Long Non-coding RNA Signatures Associated With Liver Aging in Senescence-Accelerated Mouse Prone 8 Model. Front Cell Dev Biol 2021; 9:698442. [PMID: 34368149 PMCID: PMC8339557 DOI: 10.3389/fcell.2021.698442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
The liver is sensitive to aging because the risk of hepatopathy, including fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, increases dramatically with age. Long non-coding RNAs (lncRNAs) are >200 nucleotides long and affect many pathological and physiological processes. A potential link was recently discovered between lncRNAs and liver aging; however, comprehensive and systematic research on this topic is still limited. In this study, the mouse liver genome-wide lncRNA profiles of 8-month-old SAMP8 and SAMR1 models were explored through deep RNA sequencing. A total of 605,801,688 clean reads were generated. Among the 2,182 identified lncRNAs, 28 were differentially expressed between SAMP8 and SAMR1 mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) surveys showed that these substantially dysregulated lncRNAs participated in liver aging from different aspects, such as lipid catabolic (GO: 0016042) and metabolic pathways. Further assessment was conducted on lncRNAs that are most likely to be involved in liver aging and related diseases, such as LNC_000027, LNC_000204E, NSMUST00000144661.1, and ENSMUST00000181906.1 acted on Ces1g. This study provided the first comprehensive dissection of lncRNA landscape in SAMP8 mouse liver. These lncRNAs could be exploited as potential targets for the molecular-based diagnosis and therapy of age-related liver diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juanjuan Duan
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yu Du
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Haijing Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Changyu Li
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,National and Local United Engineering Research Center for Panax Notoginseng Resources Protection and Utilization Technology, Kunming, China
| |
Collapse
|
18
|
Noto D, Cefalù AB, Martinelli N, Giammanco A, Spina R, Barbagallo CM, Caruso M, Novo S, Sarullo F, Pernice V, Brucato F, Ingrassia V, Fayer F, Altieri GI, Scrimali C, Misiano G, Olivieri O, Girelli D, Averna MR. rs629301 CELSR2 polymorphism confers a ten-year equivalent risk of critical stenosis assessed by coronary angiography. Nutr Metab Cardiovasc Dis 2021; 31:1542-1547. [PMID: 33810964 DOI: 10.1016/j.numecd.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Novel genetic determinants associated with coronary artery disease (CAD) have been discovered by genome wide association studies. Variants encompassing the CELSR2- PSRC1-SORT1 gene cluster have been associated with CAD. This study is aimed to investigate the rs629301 polymorphism association with the extent of CAD evaluated by coronary angiography (CAG), and to evaluate its associations with an extensive panel of lipid and lipoprotein measurements in a large Italian cohort of 2429 patients. METHODS AND RESULTS The patients were collected by four Intensive Care Units located in Palermo and Verona (Italy). Clinical Records were filed, blood samples were collected, lipids and apolipoproteins (apo) were measured in separate laboratories. CAD was defined by the presence of stenotic arteries (>50% lumen diameter) by CAG. The presence of CAD was associated with the rs629301 genotype. Patients with CAD were 78% and 73% (p = 0.007) of the T/T vs. T/G + G/G genotype carriers respectively. T/T genotype was also correlated with the number of stenotic arteries, with a 1.29 (1.04-1.61) risk to have a three-arteries disease. T/T genotype correlated with higher levels of LDL-, non-HDL cholesterol, apoB, apoE and apoCIII, and lower HDL-cholesterol. Logistic Regression confirmed that rs629301was associated with CAD independently from the common risk factors, with a risk similar to that conferred by ten years of age [odds ratios were 1.43 (1.04-1.96) and 1.39 (1.22-1.58) respectively]. CONCLUSIONS rs629301 risk allele was independently associated with the extension and severity of CAD and positively with apoE and apoB containing lipoproteins.
Collapse
Affiliation(s)
- Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rossella Spina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Carlo M Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marco Caruso
- Intensive Care Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Salvatore Novo
- Intensive Care Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Filippo Sarullo
- Intensive Care Unit, "Buccheri La Ferla" Hospital, Palermo, Italy
| | - Vincenzo Pernice
- Intensive Care Unit, "Villa Maria Eleonora" Hospital, Palermo, Italy
| | - Federica Brucato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Valeria Ingrassia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Francesca Fayer
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Grazia I Altieri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Chiara Scrimali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gabriella Misiano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Maurizio R Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
The rs599839 A>G Variant Disentangles Cardiovascular Risk and Hepatocellular Carcinoma in NAFLD Patients. Cancers (Basel) 2021; 13:cancers13081783. [PMID: 33917919 PMCID: PMC8068289 DOI: 10.3390/cancers13081783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Dyslipidemia is a hallmark of nonalcoholic fatty liver disease (NAFLD) and the rs599839 variant in the CELSR2-PSRC1-SORT1 genetic cluster, has been associated with a protection against cardiovascular events. Here, we revealed a novel link between the rs599839 variant and hepatocellular carcinoma (HCC) whose onset in the context of NAFLD is rapidly increasing. We found that the rs599839 variant disentangled the risk of HCC from that of cardiovascular abnormalities by modulating SORT1 and PSRC1 expressions. The latter emerged as a potential modifier of liver carcinogenesis. Abstract Background and Aims: Dyslipidemia and cardiovascular diseases (CVD) are comorbidities of nonalcoholic fatty liver disease (NAFLD), which ranges from steatosis to hepatocellular carcinoma (HCC). The rs599839 A>G variant, in the CELSR2-PSRC1-SORT1 gene cluster, has been associated CVD, but its impact on metabolic traits and on the severity liver damage in NAFLD has not been investigated yet. Methods: We evaluated the effect of the rs599839 variant in 1426 NAFLD patients (Overall cohort) of whom 131 had HCC (NAFLD-HCC), in 500,000 individuals from the UK Biobank Cohort (UKBBC), and in 366 HCC samples from The Cancer Genome Atlas (TCGA). Hepatic PSRC1, SORT1 and CELSR2 expressions were evaluated by RNAseq (n = 125). Results: The rs599839 variant was associated with reduced circulating LDL, carotid intima-media thickness, carotid plaques and hypertension (p < 0.05) in NAFLD patients and with protection against dyslipidemia in UKBBC. The minor G allele was associated with higher risk of HCC, independently of fibrosis severity (odds ratio (OR): 5.62; 95% c.i. 1.77–17.84, p = 0.003), poor prognosis and advanced tumor stage (p < 0.05) in the overall cohort. Hepatic PSRC1, SORT1 and CELSR2 expressions were increased in NAFLD patients carrying the rs599839 variant (p < 0.0001). SORT1 mRNA levels negatively correlated with circulating lipids and with those of genes involved in lipoprotein turnover (p < 0.0001). Conversely, PSRC1 expression was positively related to that of genes implicated in cell proliferation (p < 0.0001). In TCGA, PSRC1 over-expression promoted more aggressive HCC development (p < 0.05). Conclusions: In sum, the rs599839 A>G variant is associated with protection against dyslipidemia and CVD in NAFLD patients, but as one it might promote HCC development by modulating SORT1 and PSRC1 expressions which impact on lipid metabolism and cell proliferation, respectively.
Collapse
|
20
|
Ghaemimanesh F, Mehravar M, Milani S, Poursani EM, Saliminejad K. The multifaceted role of sortilin/neurotensin receptor 3 in human cancer development. J Cell Physiol 2021; 236:6271-6281. [PMID: 33634506 DOI: 10.1002/jcp.30344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Saeideh Milani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
21
|
Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD). Mol Metab 2021; 50:101146. [PMID: 33348067 PMCID: PMC8324686 DOI: 10.1016/j.molmet.2020.101146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease, has become the leading cause of chronic liver disease worldwide. In addition to hepatic accumulation of triglycerides, dysregulated cholesterol metabolism is an important contributor to the pathogenesis of MAFLD. Maintenance of cholesterol homeostasis is highly dependent on cellular cholesterol uptake and, subsequently, cholesterol transport to other membrane compartments, such as the endoplasmic reticulum (ER). Scope of review The endolysosomal network is key for regulating cellular homeostasis and adaptation, and emerging evidence has shown that the endolysosomal network is crucial to maintain metabolic homeostasis. In this review, we will summarize our current understanding of the role of the endolysosomal network in cholesterol homeostasis and its implications in MAFLD pathogenesis. Major conclusions Although multiple endolysosomal proteins have been identified in the regulation of cholesterol uptake, intracellular transport, and degradation, their physiological role is incompletely understood. Further research should elucidate their role in controlling metabolic homeostasis and development of fatty liver disease. The intracellular cholesterol transport is tightly regulated by the endocytic and lysosomal network. Dysfunction of the endolysosomal network affects hepatic lipid homeostasis. The endosomal sorting of lipoprotein receptors is precisely regulated and is not a bulk process.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
22
|
Biscetti F, Nardella E, Rando MM, Cecchini AL, Bonadia N, Bruno P, Angelini F, Di Stasi C, Contegiacomo A, Santoliquido A, Pitocco D, Landolfi R, Flex A. Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revascularization: a prospective study. Cardiovasc Diabetol 2020; 19:147. [PMID: 32977814 PMCID: PMC7519536 DOI: 10.1186/s12933-020-01123-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Peripheral artery disease (PAD) represents one of the most relevant vascular complications of type 2 diabetes mellitus (T2DM). Moreover, T2DM patients suffering from PAD have an increased risk of major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Sortilin, a protein involved in apolipoproteins trafficking, is associated with lower limb PAD in T2DM patients. Objective To evaluate the relationship between baseline serum levels of sortilin, MACE and MALE occurrence after revascularization of T2DM patients with PAD and chronic limb-threatening ischemia (CLTI). Research design and methods We performed a prospective non-randomized study including 230 statin-free T2DM patients with PAD and CLTI. Sortilin levels were measured before the endovascular intervention and incident outcomes were assessed during a 12 month follow-up. Results Sortilin levels were significantly increased in individuals with more aggressive PAD (2.25 ± 0.51 ng/mL vs 1.44 ± 0.47 ng/mL, p < 0.001). During follow-up, 83 MACE and 116 MALE occurred. In patients, who then developed MACE and MALE, sortilin was higher. In particular, 2.46 ± 0.53 ng/mL vs 1.55 ± 0.42 ng/mL, p < 0.001 for MACE and 2.10 ± 0.54 ng/mL vs 1.65 ± 0.65 ng/mL, p < 0.001 for MALE. After adjusting for traditional atherosclerosis risk factors, the association between sortilin and vascular outcomes remained significant in a multivariate analysis. In our receiver operating characteristics (ROC) curve analysis using sortilin levels the prediction of MACE incidence improved (area under the curve [AUC] = 0.94) and MALE (AUC = 0.72). Conclusions This study demonstrates that sortilin correlates with incidence of MACE and MALE after endovascular revascularization in a diabetic population with PAD and CLTI.
Collapse
Affiliation(s)
- Federico Biscetti
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia. .,Internal Medicine and Vascular Diseases Unit, Roma, Italia. .,Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia.
| | | | | | | | - Nicola Bonadia
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Emergency Medicine, Roma, Italia
| | - Piergiorgio Bruno
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Cardiac Surgery Unit, Roma, Italia
| | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia
| | | | | | - Angelo Santoliquido
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia.,Angiology Unit, Roma, Italia
| | - Dario Pitocco
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia.,Diabetology Unit, Roma, Italia
| | - Raffaele Landolfi
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Internal Medicine and Vascular Diseases Unit, Roma, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia
| | - Andrea Flex
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Internal Medicine and Vascular Diseases Unit, Roma, Italia.,Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
23
|
Proprotein Convertase Subtilisin/Kexin Type 9, Angiopoietin-Like Protein 8, Sortilin, and Cholesteryl Ester Transfer Protein-Friends of Foes for Psoriatic Patients at the Risk of Developing Cardiometabolic Syndrome? Int J Mol Sci 2020; 21:ijms21103682. [PMID: 32456228 PMCID: PMC7279158 DOI: 10.3390/ijms21103682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, immune-metabolic disease with strong genetic predispositions and autoimmune pathogenic traits. During psoriasis progression, a wide spectrum of comorbidities comes into play with the leading role of the cardio-metabolic syndrome (CMS) that occurs with the frequency of 30–50% amongst the psoriatic patients. Both conditions—psoriasis and CMS—have numerous common pathways, mainly related to proinflammatory pathways and cytokine profiles. Surprisingly, despite the years of research, the exact pathways linking the occurrence of CMS in the psoriasis population are still not fully understood. Recently published papers, both clinical and based on the basic science, shed new light into this relationship providing an insight into novel key-players proteins with plausible effects on above-mentioned interplay. Taking into account recent advances in this important medical matter, this review aims to discuss comprehensively the role of four proteins: proprotein convertase subtilisin/kexin type-9 (PSCK9), angiopoietin-like protein 8 (ANGPLT8), sortilin (SORT1), and cholesteryl ester transfer proteins (CEPT) as plausible links between psoriasis and CMS.
Collapse
|
24
|
Barnes JW, Aarnio-Peterson M, Norris J, Haskins M, Flanagan-Steet H, Steet R. Upregulation of Sortilin, a Lysosomal Sorting Receptor, Corresponds with Reduced Bioavailability of Latent TGFβ in Mucolipidosis II Cells. Biomolecules 2020; 10:biom10050670. [PMID: 32357547 PMCID: PMC7277838 DOI: 10.3390/biom10050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFβ1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFβ1 signaling that was accompanied by impaired TGFβ1-dependent wound closure. We found increased intracellular latent TGFβ1 complexes, caused by reduced secretion and stable localization in detergent-resistant lysosomes. Sortilin, a sorting receptor for hydrolases and TGFβ-related cytokines, was upregulated in ML-II fibroblasts as well as GNPTAB-null HeLa cells, suggesting a mechanism for inappropriate lysosomal targeting of TGFβ. Co-expression of sortilin and TGFβ in HeLa cells resulted in reduced TGFβ1 secretion. Elevated sortilin levels correlated with normal levels of cathepsin D in ML-II cells, consistent with a compensatory role for this receptor in lysosomal hydrolase targeting. Collectively, these data support a model whereby sortilin upregulation in cells with lysosomal storage maintains hydrolase sorting but suppresses TGFβ1 secretion through increased lysosomal delivery. These findings highlight an unexpected link between impaired lysosomal sorting and altered growth factor bioavailability.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Joy Norris
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Mark Haskins
- Emeritus Professor, Pathology and Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | |
Collapse
|
25
|
Su X, Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. Biol Rev Camb Philos Soc 2020; 95:232-243. [PMID: 31625271 DOI: 10.1111/brv.12561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Uemura T, Waguri S. Emerging roles of Golgi/endosome-localizing monomeric clathrin adaptors GGAs. Anat Sci Int 2019; 95:12-21. [DOI: 10.1007/s12565-019-00505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023]
|
27
|
Sun S, Yang J, Xie W, Peng T, Lv Y. Complicated trafficking behaviors involved in paradoxical regulation of sortilin in lipid metabolism. J Cell Physiol 2019; 235:3258-3269. [PMID: 31608989 DOI: 10.1002/jcp.29292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
This review aims to summarize and discuss the most recent advances in our understanding of the underlying mechanisms of the paradoxical effects of sortilin on lipid metabolism. The vacuolar protein sorting 10 protein (Vps10p) domain in the sortilin protein is responsible for substrate binding. Its cytoplasmic tail interacts with adaptor molecules, and modifications can determine whether sortilin trafficking occurs via the anterograde or retrograde pathway. The complicated trafficking behaviors likely contribute to the paradoxical roles of sortilin in lipid metabolism. The anterograde pathway of sortilin trafficking in hepatocytes, enterocytes, and peripheral cells likely causes an increase in plasma lipid levels, while the retrograde pathway leads to the opposite effect. Hepatocyte sortilin functions via the anterograde or retrograde pathway in a complicated and paradoxical manner to regulate apoB-containing lipoprotein metabolism. Clarifying the regulatory mechanisms underlying the trafficking behaviors of sortilin is necessary and may lead to artificial sortilin intervention as a potential therapeutic strategy for lipid disorder diseases. Conclusively, the paradoxical regulation of sortilin in lipid metabolism is likely due to its complicated trafficking behaviors.
Collapse
Affiliation(s)
- Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang City, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| |
Collapse
|