1
|
Bhaskar N, Bejnood A, Jackson CD. Insulin Therapy for Acute Pancreatitis in a Patient With Lipase Maturation Factor 1 Mutation: A Case Report. J Community Hosp Intern Med Perspect 2025; 15:63-65. [PMID: 39867153 PMCID: PMC11759083 DOI: 10.55729/2000-9666.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025] Open
Abstract
Acute pancreatitis is a frequent cause of hospital admission, managed with intravenous (IV) fluids, analgesia, and oral feeding when tolerated. In patients with hypertriglyceridemia-induced pancreatitis, insulin and other therapies may be necessary for disease resolution. We present a case of a patient with severe acute pancreatitis and euglycemic diabetic ketoacidosis (DKA) with known lipase maturation factor 1 (LMF1) gene mutations, which can impact insulin efficacy on triglyceride metabolism through altered lipoprotein lipase activity, successfully treated with intravenous insulin. This case highlights the effectiveness of insulin therapy even in those with LMF1 gene mutations.
Collapse
Affiliation(s)
- Neha Bhaskar
- Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN,
USA
| | - Aram Bejnood
- Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN,
USA
| | - Christopher D. Jackson
- Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN,
USA
| |
Collapse
|
2
|
Perera SD, Wang J, McIntyre AD, Hegele RA. Lipoprotein Lipase: Structure, Function, and Genetic Variation. Genes (Basel) 2025; 16:55. [PMID: 39858602 PMCID: PMC11764694 DOI: 10.3390/genes16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Biallelic rare pathogenic loss-of-function (LOF) variants in lipoprotein lipase (LPL) cause familial chylomicronemia syndrome (FCS). Heterozygosity for these same variants is associated with a highly variable plasma triglyceride (TG) phenotype ranging from normal to severe hypertriglyceridemia (HTG), with longitudinal variation in phenotype severity seen often in a given carrier. Here, we provide an updated overview of genetic variation in LPL in the context of HTG, with a focus on disease-causing and/or disease-associated variants. We provide a curated list of 300 disease-causing variants discovered in LPL, as well as an exon-by-exon breakdown of the LPL gene and protein, highlighting the impact of variants and the various functional residues of domains of the LPL protein. We also provide a curated list of variants of unknown or uncertain significance, many of which may be upgraded to pathogenic/likely pathogenic classification should an additional case and/or segregation data be reported. Finally, we also review the association between benign/likely benign variants in LPL, many of which are common polymorphisms, and the TG phenotype.
Collapse
Affiliation(s)
- Shehan D. Perera
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, ON N6A 5B7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Ariza Corbo MJ, Muñiz-Grijalvo O, Blanco Echevarría A, Díaz-Díaz JL. Genetic basis of hypertriglyceridemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36 Suppl 2:S3-S12. [PMID: 39672669 DOI: 10.1016/j.arteri.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 12/15/2024]
Abstract
The development of massive sequencing techniques and guidelines for assessing the pathogenicity of variants are allowing us the identification of new cases of familial chylomicronemia syndrome (FCS) mostly in the LPL gene, less frequently in GPIHBP1 and APOA5, and with even fewer cases in LMF1 and APOC2. From the included studies, it can be deduced that, in cases with multifactorial chylomicronemia syndrome (MCS), both loss-of-function variants and common variants in canonical genes for FCH contribute to the manifestation of this other form of chylomicronemia. Other common and rare variants in other triglyceride metabolism genes have been identified in MCS patients, although their real impact on the development of severe hypertriglyceridemia is unknown. There may be up to 60 genes involved in triglyceride metabolism, so there is still a long way to go to know whether other genes not discussed in this monograph (MLXIPL, PLTP, TRIB1, PPAR alpha or USF1, for example) are genetic determinants of severe hypertriglyceridemia that need to be taken into account.
Collapse
Affiliation(s)
- María José Ariza Corbo
- Departamento de Medicina y Dermatología, Laboratorio de Lípidos y Aterosclerosis, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga plataforma Bionand (IBIMA), Universidad de Málaga, Málaga, España
| | - Ovidio Muñiz-Grijalvo
- UCERV-UCAMI, Departamento de Medicina Interna, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Agustín Blanco Echevarría
- Servicio de Medicina Interna, Instituto de Investigación Biomédica, Hospital Universitario 12 de Octubre, Madrid, España
| | - J L Díaz-Díaz
- Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Hospitalario Universitario de A Coruña, A Coruña, España.
| |
Collapse
|
4
|
Bedoya C, Thomas R, Bjarvin A, Ji W, Samara H, Tai J, Green L, Frost PH, Malloy MJ, Pullinger CR, Kane JP, Péterfy M. Identification and functional analysis of novel homozygous LMF1 variants in severe hypertriglyceridemia. J Clin Lipidol 2024:S1933-2874(24)00264-2. [PMID: 39537501 DOI: 10.1016/j.jacl.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The genetic basis of hypertriglyceridemia (HTG) is complex and includes variants in Lipase Maturation Factor 1 (LMF1), an endoplasmic reticulum (ER)-chaperone involved in the post-translational activation of lipoprotein lipase (LPL). OBJECTIVE The objective of this study was to identify and functionally characterize biallelic LMF1 variants in patients with HTG. METHODS Genomic DNA sequencing was used to identify biallelic LMF1 variants in HTG patients without deleterious variants in LPL, apolipoprotein C-II (APOC2), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) or apolipoprotein A-V (APOA5). LMF1 variants were functionally evaluated by in silico analyses and assessing their impact on LPL activity, LMF1 protein expression and specific activity in transiently transfected HEK293 cells. RESULTS We identified four homozygous LMF1 variants in patients with severe HTG: two novel rare variants (p.Asn147Lys and p.Pro246Arg) and two low-frequency variants (p.Arg354Trp and p.Arg364Gln) previously reported at heterozygosity. We demonstrate that all four variants reduce the secretion of enzymatically active LPL by impairing the specific activity of LMF1, whereas p.Asn147Lys also diminishes LMF1 protein expression. CONCLUSION This study extends the role of LMF1 as a genetic determinant in severe HTG and demonstrates that rare and low-frequency LMF1 variants can underlie this condition through distinct molecular mechanisms. The clinical phenotype of patients affected by partial loss of LMF1 function is consistent with Multifactorial Chylomicronemia Syndrome (MCS) and suggests that secondary factors and additional genetic determinants contribute to HTG in these subjects.
Collapse
Affiliation(s)
- Candy Bedoya
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Rishi Thomas
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Anna Bjarvin
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Wilbur Ji
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Hanien Samara
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jody Tai
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Laurie Green
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Philip H Frost
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - John P Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Miklós Péterfy
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
5
|
Scicchitano P, Amati F, Ciccone MM, D’Ascenzi F, Imbalzano E, Liga R, Paolillo S, Pastore MC, Rinaldi A, Mattioli AV, Cameli M. Hypertriglyceridemia: Molecular and Genetic Landscapes. Int J Mol Sci 2024; 25:6364. [PMID: 38928071 PMCID: PMC11203941 DOI: 10.3390/ijms25126364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid disorders represent one of the most worrisome cardiovascular risk factors. The focus on the impact of lipids on cardiac and vascular health usually concerns low-density lipoprotein cholesterol, while the role of triglycerides (TGs) is given poor attention. The literature provides data on the impact of higher plasma concentrations in TGs on the cardiovascular system and, therefore, on the outcomes and comorbidities of patients. The risk for coronary heart diseases varies from 57 to 76% in patients with hypertriglyceridemia. Specifically, the higher the plasma concentrations in TGs, the higher the incidence and prevalence of death, myocardial infarction, and stroke. Nevertheless, the metabolism of TGs and the exact physiopathologic mechanisms which try to explain the relationship between TGs and cardiovascular outcomes are not completely understood. The aims of this narrative review were as follows: to provide a comprehensive evaluation of the metabolism of triglycerides and a possible suggestion for understanding the targets for counteracting hypertriglyceridemia; to describe the inner physiopathological background for the relationship between vascular and cardiac damages derived from higher plasma concentrations in TGs; and to outline the need for promoting further insights in therapies for reducing TGs plasma levels.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital “F Perinei” ASL BA, 70022 Altamura, Italy
| | - Francesca Amati
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Riccardo Liga
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Andrea Rinaldi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant’Orsola-Malpighi Hospital, IRCCS, 40138 Bologna, Italy;
| | - Anna Vittoria Mattioli
- Department of Science of Quality of Life, University of Bologna “Alma Mater Studiorum”, 40126 Bologna, Italy;
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| |
Collapse
|
6
|
Suzuki T, Kurano M, Isono A, Uchino T, Sayama Y, Tomomitsu H, Mayumi D, Shibayama R, Sekiguchi T, Edo N, Uno-Eder K, Uno K, Morita K, Ishikawa T, Tsukamoto K. Genetic and biochemical analysis of severe hypertriglyceridemia complicated with acute pancreatitis or with low post-heparin lipoprotein lipase mass. Endocr J 2024; 71:447-460. [PMID: 38346769 DOI: 10.1507/endocrj.ej23-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Severe hypertriglyceridemia is a pathological condition caused by genetic factors alone or in combination with environmental factors, sometimes leading to acute pancreatitis (AP). In this study, exome sequencing and biochemical analyses were performed in 4 patients with hypertriglyceridemia complicated by obesity or diabetes with a history of AP or decreased post-heparin LPL mass. In a patient with a history of AP, SNP rs199953320 resulting in LMF1 nonsense mutation and APOE rs7412 causing apolipoprotein E2 were both found in heterozygous form. Three patients were homozygous for APOA5 rs2075291, and one was heterozygous. ELISA and Western blot analysis of the serum revealed the existence of apolipoprotein A-V in the lipoprotein-free fraction regardless of the presence or absence of rs2075291; furthermore, the molecular weight of apolipoprotein A-V was different depending on the class of lipoprotein or lipoprotein-free fraction. Lipidomics analysis showed increased serum levels of sphingomyelin and many classes of glycerophospholipid; however, when individual patients were compared, the degree of increase in each class of phospholipid among cases did not coincide with the increases seen in total cholesterol and triglycerides. Moreover, phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin levels tended to be higher in patients who experienced AP than those who did not, suggesting that these phospholipids may contribute to the onset of AP. In summary, this study revealed a new disease-causing gene mutation in LMF1, confirmed an association between overlapping of multiple gene mutations and severe hypertriglyceridemia, and suggested that some classes of phospholipid may be involved in the pathogenesis of AP.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Endowed Chairs Department of Clinical Research Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Akari Isono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Honami Tomomitsu
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Daiki Mayumi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Ruriko Shibayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Toru Sekiguchi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Naoki Edo
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Kiyoko Uno-Eder
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Teikyo Academic Research Center, Teikyo University, Tokyo 173-8605, Japan
| | - Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
7
|
Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency. Int J Mol Sci 2022; 24:ijms24010465. [PMID: 36613909 PMCID: PMC9820378 DOI: 10.3390/ijms24010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
Primary hypertriglyceridemia (PHTG) is characterized by a high concentration of triglycerides (TG); it is divided between familial hyperchylomicronemia syndrome and multifactorial chylomicronemia syndrome. In Mexico, hypertriglyceridemia constitutes a health problem in which the genetic bases have been scarcely explored; therefore, our objective was to describe biochemical-clinical characteristics and variants in the APOA5, GPIHBP1, LMF1, and LPL genes in patients with primary hypertriglyceridemia. Thirty DNA fragments were analyzed using PCR and Sanger sequencing in 58 unrelated patients. The patients' main clinical-biochemical features were hypoalphalipoproteinemia (77.6%), pancreatitis (18.1%), and a TG median value of 773.9 mg/dL. A total of 74 variants were found (10 in APOA5, 16 in GPIHBP1, 34 in LMF1, and 14 in LPL), of which 15 could be involved in the development of PHTG: 3 common variants with significative odds and 12 heterozygous rare pathogenic variants distributed in 12 patients. We report on the first Mexican patient with hyperchylomicronemia syndrome due to GPIHBP1 deficiency caused by three variants: p.R145*, p.A154_G155insK, and p.A154Rfs*152. Moreover, eleven patients were heterozygous for the rare variants described as causing PHTG and also presented common variants of risk, which could partially explain their phenotype. In terms of findings, two novel genetic variants, c.-40_-22del LMF1 and p.G242Dfs*10 LPL, were identified.
Collapse
|
8
|
Heidemann BE, Bemelmans RHH, Marais AD, Visseren FLJ, Koopal C. Clinical heterogeneity in monogenic chylomicronaemia. BMJ Case Rep 2022; 15:15/11/e251411. [PMID: 36423940 PMCID: PMC9693862 DOI: 10.1136/bcr-2022-251411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chylomicronaemia accompanies hypertriglyceridaemia, usually due to a polygenic predisposition in combination with secondary risk factors. Monogenic chylomicronaemia represents a small subgroup of patients with hypertriglyceridaemia. This article describes three patients and illustrates the heterogeneity in the presentation of monogenic chylomicronaemia. The first case is a man with mild hypertriglyceridaemia who is a compound heterozygote for two variants in the LMF1 gene, without relevant medical history. The second case is a woman who is a double heterozygote of variants in the LPL and APOA5 genes. She experienced pancreatitis. The third case is a man, with recurrent pancreatitis attributed to severe hypertriglyceridaemia and homozygous for a variant in the APOC2 gene. This article highlights that in patients with hypertriglyceridaemia, the absence of pancreatitis or the presence of mild hypertriglyceridaemia does not exclude monogenic chylomicronaemia. Genetic screening should be considered in patients with unexplained or severe hypertriglyceridaemia, to determine appropriate treatment and follow-up.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Remy H H Bemelmans
- Department of Internal Medicine, Ziekenhuis Gelderse Vallei, Ede, The Netherlands
| | - A David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Charlotte Koopal
- Department of Vascular Medicine, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Young SG, Song W, Yang Y, Birrane G, Jiang H, Beigneux AP, Ploug M, Fong LG. A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2022; 119:e2211136119. [PMID: 36037340 PMCID: PMC9457329 DOI: 10.1073/pnas.2211136119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.
Collapse
Affiliation(s)
- Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Anne P. Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen 2200N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
10
|
Oldham D, Wang H, Mullen J, Lietzke E, Sprenger K, Reigan P, Eckel RH, Bruce KD. Using Synthetic ApoC-II Peptides and nAngptl4 Fragments to Measure Lipoprotein Lipase Activity in Radiometric and Fluorescent Assays. Front Cardiovasc Med 2022; 9:926631. [PMID: 35911520 PMCID: PMC9329559 DOI: 10.3389/fcvm.2022.926631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein lipase (LPL) plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides (TGs) in packaged lipoproteins. Since hypertriglyceridemia (HTG) is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide, methods that accurately quantify the hydrolytic activity of LPL in clinical and pre-clinical samples are much needed. To date, the methods used to determine LPL activity vary considerably in their approach, in the LPL substrates used, and in the source of LPL activators and inhibitors used to quantify LPL-specific activity, rather than other lipases, e.g., hepatic lipase (HL) or endothelial lipase (EL) activity. Here, we describe methods recently optimized in our laboratory, using a synthetic ApoC-II peptide to activate LPL, and an n-terminal Angiopoietin-Like 4 fragment (nAngptl4) to inhibit LPL, presenting a cost-effective and reproducible method to measure LPL activity in human post-heparin plasma (PHP) and in LPL-enriched heparin released (HR) fractions from LPL secreting cells. We also describe a modified version of the triolein-based assay using human serum as a source of endogenous activators and inhibitors and to determine the relative abundance of circulating factors that regulate LPL activity. Finally, we describe how an ApoC-II peptide and nAngptl4 can be applied to high-throughput measurements of LPL activity using the EnzChek™ fluorescent TG analog substrate with PHP, bovine LPL, and HR LPL enriched fractions. In summary, this manuscript assesses the current methods of measuring LPL activity and makes new recommendations for measuring LPL-mediated hydrolysis in pre-clinical and clinical samples.
Collapse
Affiliation(s)
- Dean Oldham
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Juliet Mullen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma Lietzke
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Kayla Sprenger
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Kimberley D. Bruce,
| |
Collapse
|
11
|
Ha EE, Quartuccia GI, Ling R, Xue C, Karikari RA, Hernandez-Ono A, Hu KY, Matias CV, Imam R, Cui J, Pellegata NS, Herzig S, Georgiadi A, Soni RK, Bauer RC. Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Mol Metab 2021; 56:101412. [PMID: 34890852 PMCID: PMC8749272 DOI: 10.1016/j.molmet.2021.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.
Collapse
Affiliation(s)
- Elizabeth E Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Gabriella I Quartuccia
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ruifeng Ling
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rhoda A Karikari
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Krista Y Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rami Imam
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jian Cui
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | | | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
A novel GPIHBP1 mutation related to familial chylomicronemia syndrome: A series of cases. Atherosclerosis 2021; 322:31-38. [PMID: 33706081 DOI: 10.1016/j.atherosclerosis.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS GPIHBP1 is an accessory protein of lipoprotein lipase (LPL) essential for its functioning. Mutations in the GPIHBP1 gene cause a deficit in the action of LPL, leading to severe hypertriglyceridemia and increased risk for acute pancreatitis. METHODS We describe twelve patients (nine women) with a novel homozygous mutation in intron 2 of the GPIHBP1 gene. RESULTS All patients were from the Northeastern region of Brazil and presented the same homozygous variant located in a highly conserved 3' splicing acceptor site of the GPIHBP1 gene. This new variant was named c.182-1G > T, according to HGVS recommendations. We verified this new GPIHBP1 variant's effect by using the Human Splicing Finder (HSF) tool. This mutation changes the GPIHBP1 pre-mRNA processing and possibly causes the skipping of the exon 3 of the GPIHBP1 gene, affecting almost 50% of the cysteine-rich Lys6 GPIHBP1 domain. Patients presented with severe hypertriglyceridemia (2351 mg/dl [885-20600]) and low HDL (18 mg/dl [5-41). Four patients (33%) had a previous history of acute pancreatitis. CONCLUSIONS We describe a novel GPIHBP1 pathogenic intronic mutation of patients from the Northeast region of Brazil, suggesting the occurrence of a founder effect.
Collapse
|
13
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
14
|
D. Bruce K, Tang M, Reigan P, H. Eckel R. Genetic Variants of Lipoprotein Lipase and Regulatory Factors Associated with Alzheimer's Disease Risk. Int J Mol Sci 2020; 21:ijms21218338. [PMID: 33172164 PMCID: PMC7664401 DOI: 10.3390/ijms21218338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid and lipoprotein metabolism. The canonical role of LPL involves the hydrolysis of triglyceride-rich lipoproteins for the provision of FFAs to metabolic tissues. However, LPL may also contribute to lipoprotein uptake by acting as a molecular bridge between lipoproteins and cell surface receptors. Recent studies have shown that LPL is abundantly expressed in the brain and predominantly expressed in the macrophages and microglia of the human and murine brain. Moreover, recent findings suggest that LPL plays a direct role in microglial function, metabolism, and phagocytosis of extracellular factors such as amyloid- beta (Aβ). Although the precise function of LPL in the brain remains to be determined, several studies have implicated LPL variants in Alzheimer's disease (AD) risk. For example, while mutations shown to have a deleterious effect on LPL function and expression (e.g., N291S, HindIII, and PvuII) have been associated with increased AD risk, a mutation associated with increased bridging function (S447X) may be protective against AD. Recent studies have also shown that genetic variants in endogenous LPL activators (ApoC-II) and inhibitors (ApoC-III) can increase and decrease AD risk, respectively, consistent with the notion that LPL may play a protective role in AD pathogenesis. Here, we review recent advances in our understanding of LPL structure and function, which largely point to a protective role of functional LPL in AD neuropathogenesis.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (R.H.E.)
- Correspondence:
| | - Maoping Tang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (R.H.E.)
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (R.H.E.)
| |
Collapse
|
15
|
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 2020; 14:e0008516. [PMID: 33057354 PMCID: PMC7591069 DOI: 10.1371/journal.pntd.0008516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The blood-sucking hemipteran Rhodnius prolixus is a vector of Chagas disease, one of the most neglected tropical diseases affecting several million people, mostly in Latin America. The blood meal is an event with a high epidemiological impact since adult mated females feed several times, with each meal resulting in a bout of egg laying, and thereby the production of hundreds of offspring. By means of RNA-Sequencing (RNA-Seq) we have examined how a blood meal influences mRNA expression in the central nervous system (CNS), fat body and ovaries in order to promote egg production, focusing on tissue-specific responses under controlled nutritional conditions. We illustrate the cross talk between reproduction and a) lipids, proteins and trehalose metabolism, b) neuropeptide and neurohormonal signaling, and c) the immune system. Overall, our molecular evaluation confirms and supports previous studies and provides an invaluable molecular resource for future investigations on different tissues involved in successful reproductive events. These analyses serve as a starting point for new investigations, increasing the chances of developing novel strategies for vector population control by translational research, with less impact on the environment and more specificity for a particular organism.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
16
|
Li XY, Pu N, Chen WW, Shi XL, Zhang GF, Ke L, Ye B, Tong ZH, Wang YH, Liu G, Chen JM, Yang Q, Li WQ, Li JS. Identification of a novel LPL nonsense variant and further insights into the complex etiology and expression of hypertriglyceridemia-induced acute pancreatitis. Lipids Health Dis 2020; 19:63. [PMID: 32264896 PMCID: PMC7140582 DOI: 10.1186/s12944-020-01249-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hypertriglyceridemia (HTG) is a leading cause of acute pancreatitis. HTG can be caused by either primary (genetic) or secondary etiological factors, and there is increasing appreciation of the interplay between the two kinds of factors in causing severe HTG. Objectives The main aim of this study was to identify the genetic basis of hypertriglyceridemia-induced acute pancreatitis (HTG-AP) in a Chinese family with three affected members (the proband, his mother and older sister). Methods The entire coding and flanking sequences of LPL, APOC2, APOA5, GPIHBP1 and LMF1 genes were analyzed by Sanger sequencing. The newly identified LPL nonsense variant was subjected to functional analysis by means of transfection into HEK-293 T cells followed by Western blot and activity assays. Previously reported pathogenic LPL nonsense variants were collated and compared with respect to genotype and phenotype relationship. Results We identified a novel nonsense variant, p.Gln118* (c.351C > T), in the LPL gene, which co-segregated with HTG-AP in the Chinese family. We provided in vitro evidence that this variant resulted in a complete functional loss of the affected LPL allele. We highlighted a role of alcohol abuse in modifying the clinical expression of the disease in the proband. Additionally, our survey of 12 previously reported pathogenic LPL nonsense variants (in 20 carriers) revealed that neither serum triglyceride levels nor occurrence of HTG-AP was distinguishable among the three carrier groups, namely, simple homozygotes, compound heterozygotes and simple heterozygotes. Conclusions Our findings, taken together, generated new insights into the complex etiology and expression of HTG-AP.
Collapse
Affiliation(s)
- Xiao-Yao Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Pu
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Wei Chen
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastroenterology, Subei People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xiao-Lei Shi
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guo-Fu Zhang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Ye
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Hui Wang
- Key laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing, China
| | - George Liu
- Key laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing, China
| | - Jian-Min Chen
- Inserm, EFS, University of Brest, UMR 1078, GGB, F-29200, Brest, France
| | - Qi Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Wei-Qin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jie-Shou Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Plengpanich W, Muanpetch S, Charoen S, Kiateprungvej A, Khovidhunkit W. Genetic and functional studies of the LMF1 gene in Thai patients with severe hypertriglyceridemia. Mol Genet Metab Rep 2020; 23:100576. [PMID: 32190547 PMCID: PMC7068683 DOI: 10.1016/j.ymgmr.2020.100576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Severe hypertriglyceridemia (HTG) due to chylomicronemia is associated with acute pancreatitis and is related to genetic disturbances in several proteins involved in triglyceride (TG) metabolism. Lipase maturation factor 1 (LMF1) is a protein essential for the maturation of lipoprotein lipase (LPL). In this study, we examined the genetic spectrum of the LMF1 gene among subjects with severe HTG and investigated the functional significance of 6 genetic variants in vitro. All 11 exons of the LMF1 gene were sequenced in 101 Thai subjects with severe HTG. For an in vitro study, we performed site-directed mutagenesis, transient expression in cld cells, and measured LPL protein and LPL activity. We identified 2 common variants [p.(Gly36Asp) and p.(Pro562Arg)] and 12 rare variants [p.(Thr143Met), p.(Asn249Ser), p.(Ala287Val), p.(Met346Val), p.(Thr395Ile), p.(Gly410Arg), p.(Asp433Asn), p.(Asp491Asn), p.(Asn501Tyr), p.(Ala504Val), p.(Arg523His), and p.(Leu563Arg)] in 29 patients. In vitro study of the p.(Gly36Asp), p.(Asn249Ser), p.(Ala287Val), p.(Asn501Tyr), p.(Pro562Arg) and p.(Leu563Arg) variants, however, revealed that both LPL mass and LPL activity in each of the transfected cells were not significantly different from those in the wild type LMF1 transfected cells, suggesting that these variants might not play a significant role in severe HTG phenotype in our subjects. Among 101 subjects with severe hypertriglyceridemia (HTG), 2 common and 12 rare variants in the LMF1 gene were identified None of the 6 missense variants studied were associated with a reduction in lipoprotein mass or activity These rare variants in the LMF1 gene may not play an important role in severe HTG phenotypes in the Thai population
Collapse
Affiliation(s)
- Wanee Plengpanich
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Suwanna Muanpetch
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Supannika Charoen
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Arunrat Kiateprungvej
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Weerapan Khovidhunkit
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Abstract
Hypertriglyceridemia, a commonly encountered phenotype in cardiovascular and metabolic clinics, is surprisingly complex. A range of genetic variants, from single-nucleotide variants to large-scale copy number variants, can lead to either the severe or mild-to-moderate forms of the disease. At the genetic level, severely elevated triglyceride levels resulting from familial chylomicronemia syndrome (FCS) are caused by homozygous or biallelic loss-of-function variants in LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes. In contrast, susceptibility to multifactorial chylomicronemia (MCM), which has an estimated prevalence of ~1 in 600 and is at least 50-100-times more common than FCS, results from two different types of genetic variants: (1) rare heterozygous variants (minor allele frequency <1%) with variable penetrance in the five causal genes for FCS; and (2) common variants (minor allele frequency >5%) whose individually small phenotypic effects are quantified using a polygenic score. There is indirect evidence of similar complex genetic predisposition in other clinical phenotypes that have a component of hypertriglyceridemia, such as combined hyperlipidemia and dysbetalipoproteinemia. Future considerations include: (1) evaluation of whether the specific type of genetic predisposition to hypertriglyceridemia affects medical decisions or long-term outcomes; and (2) searching for other genetic contributors, including the role of genome-wide polygenic scores, novel genes, non-linear gene-gene or gene-environment interactions, and non-genomic mechanisms including epigenetics and mitochondrial DNA.
Collapse
|
19
|
Santos-Baez LS, Ginsberg HN. Hypertriglyceridemia-Causes, Significance, and Approaches to Therapy. Front Endocrinol (Lausanne) 2020; 11:616. [PMID: 32982991 PMCID: PMC7492386 DOI: 10.3389/fendo.2020.00616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023] Open
Abstract
Hypertriglyceridemia (HTG) is a common metabolic disorder with both genetic and lifestyle factors playing significant roles in its pathophysiology. HTG poses a risk for the development of cardiovascular disease (CVD) in the population at large and for pancreatitis in about two percent of individuals with extremely high levels of triglycerides (TG). This manuscript summarizes the mechanisms underlying the development of HTG as well as its management, including emerging therapies targeted at specific molecular pathways.
Collapse
|
20
|
Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G, Ploug M. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab 2019; 30:51-65. [PMID: 31269429 PMCID: PMC6662658 DOI: 10.1016/j.cmet.2019.05.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
Collapse
Affiliation(s)
- Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Molecular Sciences, University of Western Australia, Crawley 6009, Australia
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Department of Medicine, Maebashi, Gunma 371-0805, Japan
| | - Muthuraman Meiyappan
- Discovery Therapeutics, Takeda Pharmaceutical Company Ltd., Cambridge, MA 02142, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen DK-2200, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
21
|
Abstract
Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.
Collapse
|
22
|
Abstract
Lipoprotein lipase (LPL), the enzyme that hydrolyzes triglycerides in plasma lipoproteins, is assumed to be active only as a homodimer. In support of this idea, several groups have reported that the size of LPL, as measured by density gradient ultracentrifugation, is ∼110 kDa, twice the size of LPL monomers (∼55 kDa). Of note, however, in those studies the LPL had been incubated with heparin, a polyanionic substance that binds and stabilizes LPL. Here we revisited the assumption that LPL is active only as a homodimer. When freshly secreted human LPL (or purified preparations of LPL) was subjected to density gradient ultracentrifugation (in the absence of heparin), LPL mass and activity peaks exhibited the size expected of monomers (near the 66-kDa albumin standard). GPIHBP1-bound LPL also exhibited the size expected for a monomer. In the presence of heparin, LPL size increased, overlapping with a 97.2-kDa standard. We also used density gradient ultracentrifugation to characterize the LPL within the high-salt and low-salt peaks from a heparin-Sepharose column. The catalytically active LPL within the high-salt peak exhibited the size of monomers, whereas most of the inactive LPL in the low-salt peak was at the bottom of the tube (in aggregates). Consistent with those findings, the LPL in the low-salt peak, but not that in the high-salt peak, was easily detectable with single mAb sandwich ELISAs, in which LPL is captured and detected with the same antibody. We conclude that catalytically active LPL can exist in a monomeric state.
Collapse
|
23
|
Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc Natl Acad Sci U S A 2018; 116:1723-1732. [PMID: 30559189 PMCID: PMC6358717 DOI: 10.1073/pnas.1817984116] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipoprotein lipase (LPL) is responsible for the intravascular processing of triglyceride-rich lipoproteins. The LPL within capillaries is bound to GPIHBP1, an endothelial cell protein with a three-fingered LU domain and an N-terminal intrinsically disordered acidic domain. Loss-of-function mutations in LPL or GPIHBP1 cause severe hypertriglyceridemia (chylomicronemia), but structures for LPL and GPIHBP1 have remained elusive. Inspired by our recent discovery that GPIHBP1's acidic domain preserves LPL structure and activity, we crystallized an LPL-GPIHBP1 complex and solved its structure. GPIHBP1's LU domain binds to LPL's C-terminal domain, largely by hydrophobic interactions. Analysis of electrostatic surfaces revealed that LPL contains a large basic patch spanning its N- and C-terminal domains. GPIHBP1's acidic domain was not defined in the electron density map but was positioned to interact with LPL's large basic patch, providing a likely explanation for how GPIHBP1 stabilizes LPL. The LPL-GPIHBP1 structure provides insights into mutations causing chylomicronemia.
Collapse
|
24
|
Péterfy M, Bedoya C, Giacobbe C, Pagano C, Gentile M, Rubba P, Fortunato G, Di Taranto MD. Characterization of two novel pathogenic variants at compound heterozygous status in lipase maturation factor 1 gene causing severe hypertriglyceridemia. J Clin Lipidol 2018; 12:1253-1259. [PMID: 30172716 DOI: 10.1016/j.jacl.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia is a rare disease characterized by triglyceride levels higher than 1000 mg/dL (11.3 mmol/L) and acute pancreatitis. The disease is caused by pathogenic variants in genes encoding lipoprotein lipase (LPL), apolipoprotein A5, apolipoprotein C2, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, and lipase maturation factor 1 (LMF1). OBJECTIVE We aim to identify the genetic cause of severe hypertriglyceridemia and characterize the new variants in a patient with severe hypertriglyceridemia. METHODS The proband was a male showing severe hypertriglyceridemia (triglycerides 1416 mg/dL, 16.0 mmol/L); proband's relatives were also screened. Genetic screening included direct sequencing of the above genes and identification of large rearrangements in the LPL gene. Functional characterization of mutant LMF1 variants was performed by complementing LPL maturation in transfected LMF1-deficient mouse fibroblasts. RESULTS The proband and his affected brother were compound heterozygotes for variants in the LMF1 gene never identified as causative of severe hypertriglyceridemia c.[157delC;1351C>T];[410C>T], p.[(Arg53Glyfs*5)];[(Ser137Leu)]. Functional analysis demonstrated that the p.(Arg53Glyfs*5) truncation completely abolished and the p.(Ser137Leu) missense variant dramatically diminished the lipase maturation activity of LMF1. CONCLUSIONS In addition to a novel truncating variant, we describe for the first time a missense variant functionally demonstrated affecting the lipase maturation function of LMF1. This is the first case in which compound heterozygous variants in LMF1 were functionally demonstrated as causative of severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Candy Bedoya
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Carmen Pagano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
25
|
Liu Y, Xu J, Tao W, Yu R, Zhang X. A Compound Heterozygous Mutation of Lipase Maturation Factor 1 is Responsible for Hypertriglyceridemia of a Patient. J Atheroscler Thromb 2018; 26:136-144. [PMID: 29910226 PMCID: PMC6365152 DOI: 10.5551/jat.44537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM Dyslipidemia is the most common lipid metabolism disorder in humans, and its etiology remains elusive. Hypertriglyceridemia (HTG) is a type of dyslipidemia that contributes to atherosclerosis and coronary heart disease. Previous studies have demonstrated that mutations in lipoprotein lipase (LPL), apolipoprotein CII (APOC2), apolipoprotein AV (APOA5), glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1(LMF1), and glycerol-3 phosphate dehydrogenase 1 (GPD1) are responsible for HTG by using genomic microarrays and next-generation sequencing. The aim of this study was to identify genetic lesions in patients with HTG. METHOD Our study included a family of seven members from Jiangsu province across three generations. The proband was diagnosed with severe HTG, with a plasma triglyceride level of 38.70 mmol/L. Polymerase chain reaction (PCR) and Sanger sequencing were performed to explore the possible causative gene mutations for this patient. Furthermore, we measured the post-heparin LPL and hepatic lipase (HL) activities using an antiserum inhibition method. RESULTS A compound heterozygous mutation in the LMF1 gene (c.257C>T/p.P86L and c.1184C>T/p.T395I) was identified and co-segregated with the affected patient in this family. Both mutations were predicted to be deleterious by three bioinformatics programs (Polymorphism Phenotyping-2, Sorting Intolerant From Tolerant, and MutationTaster). The levels of the plasma post-heparin LPL and HL activities in the proband (57 and 177 mU/mL) were reduced to 24% and 75%, respectively, compared with those assayed in the control subject with normal plasma triglycerides. CONCLUSION A compound heterozygous mutation of LMF1 was identified in the presenting patient with severe HTG. These findings expand on the spectrum of LMF1 mutations and contribute to the genetic diagnosis and counseling of families with HTG.
Collapse
Affiliation(s)
- Yihui Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University
| | - Jiang Xu
- Medical School of Yangzhou University
| | - Wanyun Tao
- Department of Biochemistry, School of Medicine, Case Western Reserve University
| | - Rong Yu
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University.,Medical School of Yangzhou University
| |
Collapse
|
26
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
|
27
|
Hayne CK, Yumerefendi H, Cao L, Gauer JW, Lafferty MJ, Kuhlman B, Erie DA, Neher SB. We FRET so You Don't Have To: New Models of the Lipoprotein Lipase Dimer. Biochemistry 2018; 57:241-254. [PMID: 29303250 PMCID: PMC5860654 DOI: 10.1021/acs.biochem.7b01009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lipoprotein lipase (LPL) is a dimeric enzyme that is responsible for clearing triglyceride-rich lipoproteins from the blood. Although LPL plays a key role in cardiovascular health, an experimentally derived three-dimensional structure has not been determined. Such a structure would aid in understanding mutations in LPL that cause familial LPL deficiency in patients and help in the development of therapeutic strategies to target LPL. A major obstacle to structural studies of LPL is that LPL is an unstable protein that is difficult to produce in the quantities needed for nuclear magnetic resonance or crystallography. We present updated LPL structural models generated by combining disulfide mapping, computational modeling, and data derived from single-molecule Förster resonance energy transfer (smFRET). We pioneer the technique of smFRET for use with LPL by developing conditions for imaging active LPL and identifying positions in LPL for the attachment of fluorophores. Using this approach, we measure LPL-LPL intermolecular interactions to generate experimental constraints that inform new computational models of the LPL dimer structure. These models suggest that LPL may dimerize using an interface that is different from the dimerization interface suggested by crystal packing contacts seen in structures of pancreatic lipase.
Collapse
Affiliation(s)
- Cassandra K. Hayne
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Lin Cao
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Jacob W. Gauer
- Department of Chemistry, University of North Carolina at Chapel Hill
| | - Michael J. Lafferty
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Dorothy A. Erie
- Department of Chemistry, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Saskia B. Neher
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| |
Collapse
|
28
|
Yu JE, Han SY, Wolfson B, Zhou Q. The role of endothelial lipase in lipid metabolism, inflammation, and cancer. Histol Histopathol 2017; 33:1-10. [PMID: 28540715 DOI: 10.14670/hh-11-905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial lipase (LIPG) plays a critical role in lipoprotein metabolism, cytokine expression, and the lipid composition of cells. Thus far, the extensive investigations of LIPG have focused on its mechanisms and involvement in metabolic syndromes such as atherosclerosis. However, recent developments have found that LIPG plays a role in cancer. This review summarizes the field of LIPG study. We focus on the role of LIPG in lipid metabolism and the inflammatory response, and highlight the recent insights in its involvement in tumor progression. Finally, we discuss potential therapeutic strategies for targeting LIPG in cancer, and the therapeutic potential of LIPG as a drug target.
Collapse
Affiliation(s)
- Justine E Yu
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - Shu-Yan Han
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
29
|
Schwarzova L, Hubacek JA, Vrablik M. Genetic predisposition of human plasma triglyceride concentrations. Physiol Res 2016; 64:S341-54. [PMID: 26680667 DOI: 10.33549/physiolres.933197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The issue of plasma triglyceride levels relative to the risk of development of cardiovascular disease, as well as overall mortality, has been actively discussed for many years. Like other cardiovascular disease risk factors, final plasma TG values have environmental influences (primarily dietary habits, physical activity, and smoking), and a genetic predisposition. Rare mutations (mainly in the lipoprotein lipase and apolipoprotein C2) along with common polymorphisms (within apolipoprotein A5, glucokinase regulatory protein, apolipoprotein B, apolipo-protein E, cAMP responsive element binding protein 3-like 3, glycosylphosphatidylinositol-anchored HDL-binding protein 1) play an important role in determining plasma TG levels.
Collapse
Affiliation(s)
- L Schwarzova
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
30
|
Hegele RA. Multidimensional regulation of lipoprotein lipase: impact on biochemical and cardiovascular phenotypes. J Lipid Res 2016; 57:1601-7. [PMID: 27412676 DOI: 10.1194/jlr.c070946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
32
|
De Castro-Orós I, Civeira F, Pueyo MJ, Mateo-Gallego R, Bolado-Carrancio A, Lamíquiz-Moneo I, Álvarez-Sala L, Fabiani F, Cofán M, Cenarro A, Rodríguez-Rey JC, Ros E, Pocoví M. Rare genetic variants with large effect on triglycerides in subjects with a clinical diagnosis of familial vs nonfamilial hypertriglyceridemia. J Clin Lipidol 2016; 10:790-797. [PMID: 27578109 DOI: 10.1016/j.jacl.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Most primary severe hypertriglyceridemias (HTGs) are diagnosed in adults, but their molecular foundations have not been completely elucidated. OBJECTIVE We aimed to identify rare dysfunctional mutations in genes encoding regulators of lipoprotein lipase (LPL) function in patients with familial and non-familial primary HTG. METHODS We sequenced promoters, exons, and exon-intron boundaries of LPL, APOA5, LMF1, and GPIHBP1 in 118 patients with severe primary HTG (triglycerides >500 mg/dL) and 53 normolipidemic controls. Variant functionality was analyzed using predictive software and functional assays for mutations in regulatory regions. RESULTS We identified 29 rare variants, 10 of which had not been previously described: c.(-16A>G), c.(1018+2G>A), and p.(His80Arg) in LPL; p.(Arg143Alafs*57) in APOA5; p.(Val140Ile), p.(Leu235Ile), p.(Lys520*), and p.(Leu552Arg) in LMF1; and c.(-83G>A) and c.(-192A>G) in GPIHBP1. The c.(1018+2G>A) variant led to deletion of exon 6 in LPL cDNA, whereas the c.(-16A>G) analysis showed differences in the affinity for nuclear proteins. Overall, 20 (17.0%) of the patients carried at least one allele with a rare pathogenic variant in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant was not associated with lipid values, family history of HTG, clinical diagnosis, or previous pancreatitis. CONCLUSIONS Less than one in five subjects with triglycerides >500 mg/dL and no major secondary cause for HTG may carry a rare pathogenic mutation in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant is not associated with a differential phenotype.
Collapse
Affiliation(s)
- Isabel De Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Dpto. Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Jesús Pueyo
- Dpto. Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Alfonso Bolado-Carrancio
- Dpto. Biología Molecular. Facultad de Medicina, Universidad de Cantabria and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Cantabria, Spain
| | - Itziar Lamíquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Álvarez-Sala
- Lipid Unit, Medicina Interna, Hospital Universitario Gregorio Marañón, RIC, Instituto de Salud Carlos III (ISCIII), Instituto de Investigación Sanitaria Gregorio Marañón and Dpto. Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fernando Fabiani
- Departamento de Bioquímica Clínica, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Cofán
- Servei d'Endocrinologia i Nutrició, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - José Carlos Rodríguez-Rey
- Dpto. Biología Molecular. Facultad de Medicina, Universidad de Cantabria and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Cantabria, Spain
| | - Emilio Ros
- Servei d'Endocrinologia i Nutrició, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Miguel Pocoví
- Dpto. Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Lamiquiz-Moneo I, Bea AM, Mateo-Gallego R, Baila-Rueda L, Cenarro A, Pocoví M, Civeira F, de Castro-Orós I. [Identification of variants in LMF1 gene associated with primary hypertriglyceridemia]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2015; 27:246-252. [PMID: 25817768 DOI: 10.1016/j.arteri.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The majority of severe primary hypertriglyceridemia (HTG) are diagnosed in adults, and their molecular bases have not yet been fully defined. The promoter, coding regions and intron-exon boundaries of LMF1 were sequenced in 112 patients with severe primary hipertrigliceridemia (defined as TG above 500mg/dl). Five patients (4.46%) were carriers of four rare variants in the LMF1 gene associated with HTG, which participate in lipoprotein lipase (LpL) function. Also, we have identified two common variants, c.194-28 T>G and c.729+18C>G that were associated with HTG, with a different allelic frequency to that observed in the general population. A bioinformatic analysis of all found variants was conducted, defining the following as potentially harmful: p.Arg364Gln, p.Arg451Trp, p.Pro562Arg and p.Leu85Leu. Our results suggest that LMF1 mutations are involved in a substantial proportion of cases with severe HTG, putting together the moderate-aggressive effect of rare mutations with polymorphisms classically associated with this disease.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España.
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Miguel Pocoví
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| |
Collapse
|
34
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
35
|
Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 2014; 237:597-608. [PMID: 25463094 DOI: 10.1016/j.atherosclerosis.2014.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Fracisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
36
|
Mao HZ, Ehrhardt N, Bedoya C, Gomez JA, DeZwaan-McCabe D, Mungrue IN, Kaufman RJ, Rutkowski DT, Péterfy M. Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6α (Atf6α) signaling. J Biol Chem 2014; 289:24417-27. [PMID: 25035425 PMCID: PMC4148868 DOI: 10.1074/jbc.m114.588764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/06/2022] Open
Abstract
Lipase maturation factor 1 (Lmf1) is a critical determinant of plasma lipid metabolism, as demonstrated by severe hypertriglyceridemia associated with its mutations in mice and human subjects. Lmf1 is a chaperone localized to the endoplasmic reticulum (ER) and required for the post-translational maturation and activation of several vascular lipases. Despite its importance in plasma lipid homeostasis, the regulation of Lmf1 remains unexplored. We report here that Lmf1 expression is induced by ER stress in various cell lines and in tunicamycin (TM)-injected mice. Using genetic deficiencies in mouse embryonic fibroblasts and mouse liver, we identified the Atf6α arm of the unfolded protein response as being responsible for the up-regulation of Lmf1 in ER stress. Experiments with luciferase reporter constructs indicated that ER stress activates the Lmf1 promoter through a GC-rich DNA sequence 264 bp upstream of the transcriptional start site. We demonstrated that Atf6α is sufficient to induce the Lmf1 promoter in the absence of ER stress, and this effect is mediated by the TM-responsive cis-regulatory element. Conversely, Atf6α deficiency induced by genetic ablation or a dominant-negative form of Atf6α abolished TM stimulation of the Lmf1 promoter. In conclusion, our results indicate that Lmf1 is an unfolded protein response target gene, and Atf6α signaling is sufficient and necessary for activation of the Lmf1 promoter. Importantly, the induction of Lmf1 by ER stress appears to be a general phenomenon not restricted to lipase-expressing cells, which suggests a lipase-independent cellular role for this protein in ER homeostasis.
Collapse
Affiliation(s)
- Hui Z Mao
- From the Medical Genetics Research Institute and
| | | | - Candy Bedoya
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Javier A Gomez
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Imran N Mungrue
- the Department of Pharmacology and Experimental Therapeutics, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Randal J Kaufman
- Degenerative Disease Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Miklós Péterfy
- From the Medical Genetics Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, the Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
37
|
Ehrhardt N, Bedoya C, Péterfy M. Embryonic viability, lipase deficiency, hypertriglyceridemia and neonatal lethality in a novel LMF1-deficient mouse model. Nutr Metab (Lond) 2014; 11:37. [PMID: 25302068 PMCID: PMC4190935 DOI: 10.1186/1743-7075-11-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Lipase Maturation Factor 1 (LMF1) is an ER-chaperone involved in the post-translational maturation and catalytic activation of vascular lipases including lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). Mutations in LMF1 are associated with lipase deficiency and severe hypertriglyceridemia indicating the critical role of LMF1 in plasma lipid homeostasis. The currently available mouse model of LMF1 deficiency is based on a naturally occurring truncating mutation, combined lipase deficiency (cld), which may represent a hypomorphic allele. Thus, development of LMF1-null mice is needed to explore the phenotypic consequences of complete LMF1 deficiency. Findings In situ hybridization and qPCR analysis in the normal mouse embryo revealed ubiquitous and high-level LMF1 expression. To investigate if LMF1 was required for embryonic viability, a novel mouse model based on a null-allele of LMF1 was generated and characterized. LMF1-/- progeny were born at Mendelian ratios and exhibited combined lipase deficiency, hypertriglyceridemia and neonatal lethality. Conclusion Our results raise the possibility of a previously unrecognized role for LMF1 in embryonic development, but indicate that LMF1 is dispensable for the viability of mouse embryo. The novel mouse model developed in this study will be useful to investigate the full phenotypic spectrum of LMF1 deficiency.
Collapse
Affiliation(s)
- Nicole Ehrhardt
- Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Candy Bedoya
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Miklós Péterfy
- Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Benedito-Palos L, Ballester-Lozano G, Pérez-Sánchez J. Wide-gene expression analysis of lipid-relevant genes in nutritionally challenged gilthead sea bream (Sparus aurata). Gene 2014; 547:34-42. [DOI: 10.1016/j.gene.2014.05.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
|
39
|
Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52:446-64. [DOI: 10.1016/j.plipres.2013.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
|
40
|
Overgaard M, Brasen CL, Svaneby D, Feddersen S, Nybo M. Familial lipoprotein lipase deficiency: a case of compound heterozygosity of a novel duplication (R44Kfs*4) and a common mutation (N291S) in the lipoprotein lipase gene. Ann Clin Biochem 2013; 50:374-9. [DOI: 10.1177/0004563213477393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Familial lipoprotein lipase (LPL) deficiency (FLLD) is a rare autosomal recessive genetic disorder caused by homozygous or compound heterozygous mutations in the LPL gene. FLLD individuals usually express an impaired or non-functional LPL enzyme with low or absent triglyceride (TG) hydrolysis activity causing severe hypertriglyceridaemia. Here we report a case of FLLD in a 29-year-old man, who initially presented with eruptive cutaneous xanthomata, elevated plasma TG concentration but no other co-morbidities. Subsequent genetic testing of the patient revealed compound heterozygosity of a novel duplication (p.R44Kfs*4) leading to a premature stop codon in exon 2 and a known mutation (N291S) in exon 5 of the LPL gene. Further biochemical analysis of the patient's postheparin plasma confirmed a reduction of total lipase activity compared with his heterozygous father carrying the common N291S mutation and to a healthy control. Also the patient showed increased (1.85-fold) activity of hepatic lipase (HL), indicating a functional link between HL and LPL. In summary, we report a case of FLLD caused by compound heterozygosity of a new duplication and a common mutation in the LPL gene, resulting in residual LPL activity. With such mutations, individuals may not receive a diagnosis before classical FLLD symptoms appear later in adulthood. Nevertheless, early diagnosis and lipid-lowering treatment may favour a reduced risk of premature cardiovascular disease or acute pancreatitis in such individuals.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Claus Lohman Brasen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dea Svaneby
- Department of Clinical Genetics, Vejle Sygehus, Vejle, Denmark
| | - Søren Feddersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mads Nybo
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Kroupa O, Vorrsjö E, Stienstra R, Mattijssen F, Nilsson SK, Sukonina V, Kersten S, Olivecrona G, Olivecrona T. Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC PHYSIOLOGY 2012; 12:13. [PMID: 23176178 PMCID: PMC3562520 DOI: 10.1186/1472-6793-12-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022]
Abstract
Background Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoproteins and makes fatty acids available for tissue metabolism. The activity of the enzyme is modulated in a tissue specific manner by interaction with other proteins. We have studied how feeding/fasting and some related perturbations affect the expression, in rat adipose tissue, of three such proteins, LMF1, an ER protein necessary for folding of LPL into its active dimeric form, the endogenous LPL inhibitor ANGPTL4, and GPIHBP1, that transfers LPL across the endothelium. Results The system underwent moderate circadian oscillations, for LPL in phase with food intake, for ANGPTL4 and GPIHBP1 in the opposite direction. Studies with cycloheximide showed that whereas LPL protein turns over rapidly, ANGPTL4 protein turns over more slowly. Studies with the transcription blocker Actinomycin D showed that transcripts for ANGPTL4 and GPIHBP1, but not LMF1 or LPL, turn over rapidly. When food was withdrawn the expression of ANGPTL4 and GPIHBP1 increased rapidly, and LPL activity decreased. On re-feeding and after injection of insulin the expression of ANGPTL4 and GPIHBP1 decreased rapidly, and LPL activity increased. In ANGPTL4−/− mice adipose tissue LPL activity did not show these responses. In old, obese rats that showed signs of insulin resistance, the responses of ANGPTL4 and GPIHBP1 mRNA and of LPL activity were severely blunted (at 26 weeks of age) or almost abolished (at 52 weeks of age). Conclusions This study demonstrates directly that ANGPTL4 is necessary for rapid modulation of LPL activity in adipose tissue. ANGPTL4 message levels responded very rapidly to changes in the nutritional state. LPL activity always changed in the opposite direction. This did not happen in Angptl4−/− mice. GPIHBP1 message levels also changed rapidly and in the same direction as ANGPTL4, i.e. increased on fasting when LPL activity decreased. This was unexpected because GPIHBP1 is known to stabilize LPL. The plasticity of the LPL system is severely blunted or completely lost in insulin resistant rats.
Collapse
Affiliation(s)
- Olessia Kroupa
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hosseini M, Ehrhardt N, Weissglas-Volkov D, Lai CM, Mao HZ, Liao JL, Nikkola E, Bensadoun A, Taskinen MR, Doolittle MH, Pajukanta P, Péterfy M. Transgenic expression and genetic variation of Lmf1 affect LPL activity in mice and humans. Arterioscler Thromb Vasc Biol 2012; 32:1204-10. [PMID: 22345169 DOI: 10.1161/atvbaha.112.245696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Lipoprotein lipase (LPL) is a principal enzyme in lipoprotein metabolism, tissue lipid utilization, and energy metabolism. LPL is synthesized by parenchymal cells in adipose, heart, and muscle tissues followed by secretion to extracellular sites, where lipolyic function is exerted. The catalytic activity of LPL is attained during posttranslational maturation, which involves glycosylation, folding, and subunit assembly within the endoplasmic reticulum. A lipase-chaperone, lipase maturation factor 1 (Lmf1), has recently emerged as a critical factor in this process. Previous studies demonstrated that loss-of-function mutations of Lmf1 result in diminished lipase activity and severe hypertriglyceridemia in mice and human subjects. The objective of this study is to investigate whether, beyond its role as a required factor in lipase maturation, variation in Lmf1 expression is sufficient to modulate LPL activity in vivo. METHODS AND RESULTS To assess the effects of Lmf1 overexpression in adipose and muscle tissues, we generated aP2-Lmf1 and Mck-Lmf1 transgenic mice. Characterization of relevant tissues revealed increased LPL activity in both mouse strains. In the omental and subcutaneous adipose depots, Lmf1 overexpression was associated with increased LPL specific activity without changes in LPL mass. In contrast, increased LPL activity was due to elevated LPL protein level in heart and gonadal adipose tissue. To extend these studies to humans, we detected association between LMF1 gene variants and postheparin LPL activity in a dyslipidemic cohort. CONCLUSIONS Our results suggest that variation in Lmf1 expression is a posttranslational determinant of LPL activity.
Collapse
Affiliation(s)
- Maryam Hosseini
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Johansen CT, Hegele RA. Allelic and phenotypic spectrum of plasma triglycerides. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:833-42. [PMID: 22033228 DOI: 10.1016/j.bbalip.2011.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/04/2011] [Indexed: 01/10/2023]
Abstract
The genetic underpinnings of both normal and pathological variation in plasma triglyceride (TG) concentration are relatively well understood compared to many other complex metabolic traits. For instance, genome-wide association studies (GWAS) have revealed 32 common variants that are associated with plasma TG concentrations in healthy epidemiologic populations. Furthermore, GWAS in clinically ascertained hypertriglyceridemia (HTG) patients have shown that almost all of the same TG-raising alleles from epidemiologic samples are also associated with HTG disease status, and that greater accumulation of these alleles reflects the severity of the HTG phenotype. Finally, comprehensive resequencing studies show a burden of rare variants in some of these same genes - namely in LPL, GCKR, APOB and APOA5 - in HTG patients compared to normolipidemic controls. A more complete understanding of the genes and genetic variants associated with plasma TG concentration will enrich our understanding of the molecular pathways that modulate plasma TG metabolism, which may translate into clinical benefit. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
|
44
|
Kim MS, Wang Y, Rodrigues B. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:800-8. [PMID: 22024251 DOI: 10.1016/j.bbalip.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/15/2011] [Accepted: 10/03/2011] [Indexed: 01/29/2023]
Abstract
Although cardiovascular disease is the leading cause of diabetes-related death, its etiology is still not understood. The immediate change that occurs in the diabetic heart is altered energy metabolism where in the presence of impaired glucose uptake, glycolysis, and pyruvate oxidation, the heart switches to exclusively using fatty acids (FA) for energy supply. It does this by rapidly amplifying its lipoprotein lipase (LPL-a key enzyme, which hydrolyzes circulating lipoprotein-triglyceride to release FA) activity at the coronary lumen. An abnormally high capillary LPL could provide excess fats to the heart, leading to a number of metabolic, morphological, and mechanical changes, and eventually to cardiac disease. Unlike the initial response, chronic severe diabetes "turns off" LPL, this is also detrimental to cardiac function. In this review, we describe a number of post-translational mechanisms that influence LPL vesicle formation, actin cytoskeleton rearrangement, and transfer of LPL from cardiomyocytes to the vascular lumen to hydrolyze lipoprotein-triglyceride following diabetes. Appreciating the mechanism of how the heart regulates its LPL following diabetes should allow the identification of novel targets for therapeutic intervention, to prevent heart failure. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Min Suk Kim
- Molecular and Cellular Pharmacology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia (HTG) is a common diagnosis. Although secondary factors are important for clinical expression, susceptibility to HTG has a strong genetic component, which we review here. RECENT FINDINGS Severe HTG in a few families follows Mendelian - typically autosomal recessive - inheritance of rare loss-of-function mutations in genes such as LPL, APOC2, APOA5, LMF1, and GPIHBP1. In contrast, common complex HTG results from the cumulative influence of small-effect variants (single nucleotide polymorphisms) in genes such as APOA5, GCKR, LPL, and APOB. Intensive resequencing of these four genes has also shown accumulated heterozygous rare variants in HTG patients. Together, more than 20% of the susceptibility to HTG is now accounted for by common and rare variants. Further, classical Fredrickson HTG phenotypes, which were once considered to be distinct based on biochemical features, have a shared genetic architecture. SUMMARY Compared to other complex traits, genetic variants account for a high proportion of HTG diagnoses. By tallying the number of HTG risk alleles, it is possible to discriminate between individuals with HTG and normolipidemia, particularly in those with extreme scores. Future directions include finding the missing genetic component and determining whether genetic profiling can help with diagnosis or personalized treatment advice.
Collapse
Affiliation(s)
- Christopher T Johansen
- Departments of Biochemistry and Medicine, Robarts Research Institute and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
46
|
Ben-Zeev O, Hosseini M, Lai CM, Ehrhardt N, Wong H, Cefalù AB, Noto D, Averna MR, Doolittle MH, Péterfy M. Lipase maturation factor 1 is required for endothelial lipase activity. J Lipid Res 2011; 52:1162-1169. [PMID: 21447484 DOI: 10.1194/jlr.m011155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lipase maturation factor 1 (Lmf1) is an endoplasmic reticulum (ER) membrane protein involved in the posttranslational folding and/or assembly of lipoprotein lipase (LPL) and hepatic lipase (HL) into active enzymes. Mutations in Lmf1 are associated with diminished LPL and HL activities ("combined lipase deficiency") and result in severe hypertriglyceridemia in mice as well as in human subjects. Here, we investigate whether endothelial lipase (EL) also requires Lmf1 to attain enzymatic activity. We demonstrate that cells harboring a (cld) loss-of-function mutation in the Lmf1 gene are unable to generate active EL, but they regain this capacity after reconstitution with the Lmf1 wild type. Furthermore, we show that cellular EL copurifies with Lmf1, indicating their physical interaction in the ER. Finally, we determined that post-heparin phospholipase activity in a patient with the LMF1(W464X) mutation is reduced by more than 95% compared with that in controls. Thus, our study indicates that EL is critically dependent on Lmf1 for its maturation in the ER and demonstrates that Lmf1 is a required factor for all three vascular lipases, LPL, HL, and EL.
Collapse
Affiliation(s)
- Osnat Ben-Zeev
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Maryam Hosseini
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA; Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ching-Mei Lai
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Nicole Ehrhardt
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Howard Wong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Angelo B Cefalù
- Department of Clinical Medicine and Emerging Diseases, University of Palermo, Palermo, Italy
| | - Davide Noto
- Department of Clinical Medicine and Emerging Diseases, University of Palermo, Palermo, Italy
| | - Maurizio R Averna
- Department of Clinical Medicine and Emerging Diseases, University of Palermo, Palermo, Italy
| | - Mark H Doolittle
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Miklós Péterfy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA; Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
47
|
Chatterjee C, Sparks DL. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1429-33. [PMID: 21406176 DOI: 10.1016/j.ajpath.2010.12.050] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022]
Abstract
Hepatic lipase (HL) is a lipolytic enzyme that contributes to the regulation of plasma triglyceride (TG) levels. Elevated TG levels may increase the risk of developing coronary heart disease, and studies suggest that mutations in the HL gene may be associated with elevated TG levels and increased risk of coronary heart disease. Hepatic lipase facilitates the clearance of TG from the very low density lipoprotein (VLDL) pool, and this function is governed by the composition and quality of high density lipoprotein (HDL) particles. In humans, HL is a liver resident enzyme regulated by factors that release it from the liver and activate it in the bloodstream. HDL regulates the release of HL from the liver and HDL structure controls HL transport and activation in the circulation. Alterations in HDL-apolipoprotein composition can perturb HL function by inhibiting the release and activation of the enzyme. HDL structure may therefore affect plasma TG levels and coronary heart disease risk.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW There are strong epidemiologic connections between plasma triglycerides and atherosclerosis. We will consider to what extent this goes back to derangements of the lipoprotein lipase (LPL) system. The roles of hepatic lipase and endothelial lipase will also be touched upon. RECENT FINDINGS Understanding of LPL action has taken major steps with the discovery of lipase maturation factor 1 as a specific endoplasmic reticulum chaperon needed for proper folding of the lipases, glycosylphosphatidylinositol-anchored HDL-binding protein 1 as an endothelial cell protein needed for transport and binding of LPL and some angiopoietin-like proteins that can modulate LPL activity. Studies of genetic variants continue to support the important roles of the lipases in lipoprotein metabolism and in atherosclerosis. CONCLUSION There are several ways by which derangement of the lipases may contribute to atherogenesis. Lipase actions are major determinants of plasma lipoprotein patterns. LPL activity must be modulated in relation to the physiological situation (feeding, fasting, exercise, etc.). Fatty acids and monoglycerides generated must be efficiently removed so that they do not endanger the integrity of the endothelium, cause lipotoxic reactions or both. In addition, the lipases may cause binding and endocytosis of lipoprotein particles in the artery wall.
Collapse
Affiliation(s)
- Gunilla Olivecrona
- Department of Medical Biosciences, Section on Physiological Chemistry, Umeå University, Umeå, Sweden.
| | | |
Collapse
|
49
|
Vrablik M, Hubacek JA. Genetic determination of triglyceridemia with special focus on apolipoprotein gene variants. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|