1
|
Wang XK, Zheng QL, Sun JN. Efficacy of the posterior nasal nerve resection combined with hormone transnasal nebulization on difficult-to-treat rhinosinusitis: a retrospective analysis. Braz J Otorhinolaryngol 2024; 90:101413. [PMID: 38537503 PMCID: PMC10987833 DOI: 10.1016/j.bjorl.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/07/2024] Open
Abstract
OBJECTIVE A retrospective analysis was performed to explore the clinical effect of the Posterior Nasal Nerve (PNN) resection combined with hormone transnasal nebulization on Difficult-to-Treat Rhinosinusitis (DTRS). METHODS A total of 120 DTRS patients were selected and divided into a control group (n = 60) and a study group (n = 60) according to different treatments. The control group patients were treated via PNN resection, followed by normal saline transnasal nebulization; the study group patients were given PNN resection and then treated with budesonide suspension transnasal nebulization. Subsequently, the comparison was performed between the two groups in terms of (1) Clinical baseline characteristics; (2) Sino-nasal Outcome Test (SNOT)-22 scores before treatment and after 3-months, 6-months and 12-months of treatment; (3) Lund-MacKay scores before treatment and after 10, 30, 90, and 180 days of treatment; (4) Incidence of adverse reactions during treatment. RESULTS There was no significant difference in SNOT-22 or Lund-Kennedy scores between the two groups before treatment (p > 0.05). After treatment, the SNOT-22 and Lund-Kennedy scores of the control and the study groups were decreased, and compared with the control group, the SNOT-22 and Lund-Kennedy scores in the study group improved more significantly (p < 0.05). In addition, the study group and the control group presented with 1 and 4 cases of nasal adhesion, 2 and 3 cases of epistaxis, 1 and 4 cases of sinus orifice obstruction, 1 and 3 cases of lacrimal duct injuries, respectively. The incidence of adverse reactions in the study group was significantly lower than that in the control group (8.3% vs. 23.3%) (p < 0.05). CONCLUSION PNN resection combined with hormone transnasal nebulization treatment can improve the symptoms and quality of life of DTRS patients, with good clinical efficacy but few adverse reactions. Therefore, such combination treatment deserves a promotion and application clinically. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Xin-Ke Wang
- The Third Hospital of Ninghai County, Department of Otorhinolaryngology, Ningbo, China
| | - Qi-Ling Zheng
- Yuyao People's Hospital of Zhejiang Province, Department of Otolaryngology Head and Neck Surgery, Yuyao, China
| | - Jia-Ning Sun
- Yuyao People's Hospital of Zhejiang Province, Department of Otolaryngology Head and Neck Surgery, Yuyao, China.
| |
Collapse
|
2
|
Yoon SY, Hong SN, Lee Y, Kim DW. Clinical and immunologic implication of neo-osteogenesis in chronic rhinosinusitis. Expert Rev Clin Immunol 2023; 19:893-901. [PMID: 37310318 DOI: 10.1080/1744666x.2023.2224962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Chronic rhinosinusitis (CRS) is a multifactorial disease characterized by long-term inflammation of the nasal and sinus passages. Neo-osteogenesis which is a major finding of recalcitrant CRS is clinically related to the disease severity and surgical outcomes of CRS. AREAS COVERED The immunological and molecular mechanisms underlying neo-osteogenesis of CRS remain unclear, and many recent studies have suggested the importance of inflammatory mediators secreted by immune cells. This paper provides a broader understanding of neo-osteogenesis in CRS by reviewing recent updates and evidence of the association between CRS pathophysiology and neo-osteogenesis. EXPERT OPINION Crosstalk between the bone and mucosa eventually results in refractory CRS. In addition, both eosinophilic and non-eosinophilic CRS cytokines can play a role in neo-osteogenesis and trigger an enhanced CRS-associated immune response. The significance of predicting neo-osteogenesis in advance or during postoperative care could be essential for effectively managing refractory CRS and enhancing the prognosis of CRS patients.
Collapse
Affiliation(s)
- So Yeon Yoon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Shivaji S, Nagapriya B, Ranjith K. Differential Susceptibility of Mixed Polymicrobial Biofilms Involving Ocular Coccoid Bacteria ( Staphylococcus aureus and S. epidermidis) and a Filamentous Fungus ( Fusarium solani) on Ex Vivo Human Corneas. Microorganisms 2023; 11:microorganisms11020413. [PMID: 36838378 PMCID: PMC9964441 DOI: 10.3390/microorganisms11020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bacterial and fungal kingdoms are predominant in nature. Despite the predominance of polymicrobial biofilms, and more so mixed polymicrobial biofilms, they are rarely studied. The objective of the current study is to evaluate the potential of ocular bacteria and a filamentous fungus to form monomicrobial and mixed polymicrobial biofilms on synthetic and natural substrates and to monitor their response to antibiotics. In this sense, we demonstrated that the ocular pathogens Staphylococcus aureus, S. epidermidis, and Fusarium solani form monomicrobial and mixed polymicrobial biofilms both on tissue culture polystyrene plates and on ex vivo human corneas from cadavers using confocal microscopy and scanning electron microscopy. Additionally, the mixed polymicrobial biofilms involving the above ocular bacteria and a filamentous fungus were less susceptible to different antibacterials and antifungals in relation to the corresponding control planktonic cells. Further, the MICs to the screened antibacterials and antifungals in polymicrobial biofilms involving a bacterium or a fungus was either increased, decreased, or unchanged compared to the corresponding individual bacterial or fungal biofilm. The results would be useful to the ophthalmologist to plan effective treatment regimens for the eye since these are common pathogens of the eye causing keratitis, endophthalmitis, conjunctivitis, etc.
Collapse
|
4
|
Chung SY, Halderman AA. Tips and tricks for management of the dysfunctional maxillary sinus. Curr Opin Otolaryngol Head Neck Surg 2023; 31:24-32. [PMID: 36484283 DOI: 10.1097/moo.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To review the various factors associated with the most common cause of maxillary sinus dysfunction; recalcitrant chronic maxillary sinusitis (RCMS). In addition, available medical and surgical management options are discussed along with various tips and tricks for optimal management. RECENT FINDINGS Defects in mucociliary clearance, immunodeficiency, anatomic factors, and infectious etiologies have been implicated in dysfunction of the maxillary sinus leading to RCMS. Medical management including oral antibiotics or topical drugs have shown varying degrees of success. Endoscopic modified medial maxillectomy (EMMM) has been shown to significantly improve symptoms in patients with RCMS. SUMMARY A dysfunctional maxillary sinus presents a clinical challenge. A thorough evaluation of any potential contributing factors must be done in addition to an assessment of the adequacy of prior surgical treatment of the maxillary sinus. Beyond the middle meatal antrostomy, EMMM can be used to effectively address RCMS. In cases that fail EMMM, removal of the condemned mucosa to encourage auto-obliteration of the sinus can be considered.
Collapse
Affiliation(s)
- Sei Y Chung
- Department of Otolaryngology Head and Neck Surgery, University of Texas Southwestern, Dallas, Texas, USA
| | | |
Collapse
|
5
|
Immunopathologic Role of Fungi in Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24032366. [PMID: 36768687 PMCID: PMC9917138 DOI: 10.3390/ijms24032366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Airborne fungi are ubiquitous in the environment and are commonly associated with airway inflammatory diseases. The innate immune defense system eliminates most inhaled fungi. However, some influence the development of chronic rhinosinusitis. Fungal CRS is thought of as not a common disease, and its incidence increases over time. Fungi are present in CRS patients and in healthy sinonasal mucosa. Although the immunological mechanisms have not been entirely explained, CRS patients may exhibit different immune responses than healthy people against airborne fungi. Fungi can induce Th1 and Th2 immune responses. In CRS, Th2-related immune responses against fungi are associated with pattern recognition receptors in nasal epithelial cells, the production of inflammatory cytokines and chemokines from nasal epithelial cells, and interaction with innate type 2 cells, lymphocytes, and inflammatory cells. Fungi also interact with neutrophils and eosinophils and induce neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs). NETs and EETs are associated with antifungal properties and aggravation of chronic inflammation in CRS by releasing intracellular granule proteins. Fungal and bacterial biofilms are commonly found in CRS and may support chronic and recalcitrant CRS infection. The fungal-bacterial interaction in the sinonasal mucosa could affect the survival and virulence of fungi and bacteria and host immune responses. The interaction between the mycobiome and microbiome may also influence the host immune response, impacting local inflammation and chronicity. Although the exact immunopathologic role of fungi in the pathogenesis of CRS is not completely understood, they contribute to the development of sinonasal inflammatory responses in CRS.
Collapse
|
6
|
Physical Approaches to Prevent and Treat Bacterial Biofilm. Antibiotics (Basel) 2022; 12:antibiotics12010054. [PMID: 36671255 PMCID: PMC9854850 DOI: 10.3390/antibiotics12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Prosthetic joint infection (PJI) presents several clinical challenges. This is in large part due to the formation of biofilm which can make infection eradication exceedingly difficult. Following an extensive literature search, this review surveys a variety of non-pharmacological methods of preventing and/or treating biofilm within the body and how they could be utilized in the treatment of PJI. Special attention has been paid to physical strategies such as heat, light, sound, and electromagnetic energy, and their uses in biofilm treatment. Though these methods are still under study, they offer a potential means to reduce the morbidity and financial burden related to multiple stage revisions and prolonged systemic antibiotic courses that make up the current gold standard in PJI treatment. Given that these options are still in the early stages of development and offer their own strengths and weaknesses, this review offers an assessment of each method, the progress made on each, and allows for comparison of methods with discussion of future challenges to their implementation in a clinical setting.
Collapse
|
7
|
Ranjith K, Nagapriya B, Shivaji S. Polymicrobial biofilms of ocular bacteria and fungi on ex vivo human corneas. Sci Rep 2022; 12:11606. [PMID: 35803992 PMCID: PMC9270462 DOI: 10.1038/s41598-022-15809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Microbes residing in biofilms confer several fold higher antimicrobial resistances than their planktonic counterparts. Compared to monomicrobial biofilms, polymicrobial biofilms involving multiple bacteria, multiple fungi or both are more dominant in nature. Paradoxically, polymicrobial biofilms are less studied. In this study, ocular isolates of Staphylococcus aureus, S. epidermidis and Candida albicans, the etiological agents of several ocular infections, were used to demonstrate their potential to form mono- and polymicrobial biofilms both in vitro and on human cadaveric corneas. Quantitative (crystal violet and XTT methods) and qualitative (confocal and scanning electron microscopy) methods demonstrated that they form polymicrobial biofilms. The extent of biofilm formation was dependent on whether bacteria and fungi were incubated simultaneously or added to a preformed biofilm. Additionally, the polymicrobial biofilms exhibited increased resistance to different antimicrobials compared to planktonic cells. When the MBECs of different antibacterial and antifungal agents were monitored it was observed that the MBECs in the polymicrobial biofilms was either identical or decreased compared to the monomicrobial biofilms. The results are relevant in planning treatment strategies for the eye. This study demonstrates that ocular bacteria and fungi form polymicrobial biofilms and exhibit increase in antimicrobial resistance compared to the planktonic cells.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, 500034, India
| | - Banka Nagapriya
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, 500034, India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, 500034, India.
| |
Collapse
|
8
|
Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022; 11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Indexed: 12/13/2022]
Abstract
The evolution of drug-resistant pathogenic bacteria remains one of the most urgent threats to public health worldwide. Even worse, the bacterial cells commonly form biofilms through aggregation and adhesion, preventing antibiotic penetration and resisting environmental stress. Moreover, biofilms tend to grow in some hard-to-reach regions, bringing difficulty for antibiotic delivery at the infected site. The drug-resistant pathogenic bacteria and intractable biofilm give rise to chronic and recurrent infections, exacerbating the challenge in combating bacterial infections. Micro/nanorobots (MNRs) are capable of active cargo delivery, targeted treatment with high precision, and motion-assisted mechanical force, which enable transport and enhance penetration of antibacterial agents into the targeted site, thus showing great promise in emerging as an attractive alternative to conventional antibacterial therapies. This review summarizes the recent advances in micro-/nanorobots for antibacterial applications, with emphasis on those novel strategies for drug-resistance bacterium and stubborn biofilm infections. Insights on the future development of MNRs with good functionality and biosafety offer promising approaches to address infections in the clinic setting.
Collapse
Affiliation(s)
- Zifeng Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Lu Wang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Zigui Chen
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Margaret Ip
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Paul K. S. Chan
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Stanley Ho Centre for Emerging Infectious Diseases Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
- CUHK T Stone Robotics Institute The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Department of Surgery The Chinese University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
9
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, Shi J, Sun Y, Wang D, Wang C, Wang X, Wei Y, Wen W, Yang P, Yang Q, Zhang G, Zhang Y, Zhao C, Zhu D, Zhu L, Chen F, Dong Y, Fu Q, Li J, Li Y, Liu C, Liu F, Lu M, Meng Y, Sha J, She W, Shi L, Wang K, Xue J, Yang L, Yin M, Zhang L, Zheng M, Zhou B, Zhang L. Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:176-237. [PMID: 32009319 PMCID: PMC6997287 DOI: 10.4168/aair.2020.12.2.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines-with a focus on China-will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shixi Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dehui Wang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changqing Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Zhu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Fenghong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Dong
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yanqing Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengyao Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenyu She
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lili Shi
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuiji Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jinmei Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Yin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Lichuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Szaleniec J, Gibała A, Pobiega M, Parasion S, Składzień J, Stręk P, Gosiewski T, Szaleniec M. Exacerbations of Chronic Rhinosinusitis-Microbiology and Perspectives of Phage Therapy. Antibiotics (Basel) 2019; 8:antibiotics8040175. [PMID: 31590369 PMCID: PMC6963383 DOI: 10.3390/antibiotics8040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
The chronically inflamed mucosa in patients with chronic rhinosinusitis (CRS) can additionally be infected by bacteria, which results in an acute exacerbation of the disease (AECRS). Currently, AECRS is universally treated with antibiotics following the guidelines for acute bacterial rhinosinusitis (ABRS), as our understanding of its microbiology is insufficient to establish specific treatment recommendations. Unfortunately, antibiotics frequently fail to control the symptoms of AECRS due to biofilm formation, disruption of the natural microbiota, and arising antibiotic resistance. These issues can potentially be addressed by phage therapy. In this study, the endoscopically-guided cultures were postoperatively obtained from 50 patients in order to explore the microbiology of AECRS, evaluate options for antibiotic treatment, and, most importantly, assess a possibility of efficient phage therapy. Staphylococcus aureus and coagulase-negative staphylococci were the most frequently isolated bacteria, followed by Haemophilus influenzae, Pseudomonas aeruginosa, and Enterobacteriaceae. Alarmingly, mechanisms of antibiotic resistance were detected in the isolates from 46% of the patients. Bacteria not sensitive to amoxicillin were carried by 28% of the patients. The lowest rates of resistance were noted for fluoroquinolones and aminoglycosides. Fortunately, 60% of the patients carried bacterial strains that were sensitive to bacteriophages from the Biophage Pharma collection and 81% of the antibiotic-resistant strains turned out to be sensitive to bacteriophages. The results showed that microbiology of AECRS is distinct from ABRS and amoxicillin should not be the antibiotic of first choice. Currently available bacteriophages could be used instead of antibiotics or as an adjunct to antibiotics in the majority of patients with AECRS.
Collapse
Affiliation(s)
- Joanna Szaleniec
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Sniadeckich 2, 31-531 Krakow, Poland.
| | - Agnieszka Gibała
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Cracow Branch, Garncarska 11, 31-115 Krakow, Poland.
| | - Monika Pobiega
- Biophage Pharma S.A., Mogilska 40, 31-546 Krakow, Poland.
| | | | - Jacek Składzień
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Sniadeckich 2, 31-531 Krakow, Poland.
| | - Paweł Stręk
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Sniadeckich 2, 31-531 Krakow, Poland.
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology Unit, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland.
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| |
Collapse
|
12
|
Szaleniec J, Górski A, Szaleniec M, Międzybrodzki R, Weber-Dąbrowska B, Stręk P, Składzień J. Can phage therapy solve the problem of recalcitrant chronic rhinosinusitis? Future Microbiol 2017; 12:1427-1442. [PMID: 29027819 DOI: 10.2217/fmb-2017-0073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic rhinosinusitis (CRS) affects 5-15% of the global population. In some patients, the infectious exacerbations of the disease are recalcitrant to medical treatment and surgery. These cases are probably associated with the presence of bacterial biofilms. Bacteriophage (phage) therapy seems to be a promising antibiofilm strategy. The efficacy of phage therapy in sinonasal infections has been demonstrated both in vitro and in animal models. In the past, phage preparations were also administered to humans with CRS with favorable outcomes and no significant side effects. Very recently, the safety and efficacy of phage therapy in otolaryngological infections has been demonstrated in pioneer Phase I/II clinical trials. This review addresses the potential of phage therapy to treat CRS. We also discuss issues that require further research.
Collapse
Affiliation(s)
- Joanna Szaleniec
- Department of Otolaryngology, Jagiellonian University Medical College, Sniadeckich 2, 31-531 Krakow, Poland
| | - Andrzej Górski
- Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.,Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis & Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Ryszard Międzybrodzki
- Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.,Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Paweł Stręk
- Department of Otolaryngology, Jagiellonian University Medical College, Sniadeckich 2, 31-531 Krakow, Poland
| | - Jacek Składzień
- Department of Otolaryngology, Jagiellonian University Medical College, Sniadeckich 2, 31-531 Krakow, Poland
| |
Collapse
|
13
|
Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease. Clin Microbiol Rev 2017; 30:321-348. [PMID: 27903594 DOI: 10.1128/cmr.00060-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinosinusitis (CRS) encompasses a heterogeneous group of debilitating chronic inflammatory sinonasal diseases. Despite considerable research, the etiology of CRS remains poorly understood, and debate on potential roles of microbial communities is unresolved. Modern culture-independent (molecular) techniques have vastly improved our understanding of the microbiology of the human body. Recent studies that better capture the full complexity of the microbial communities associated with CRS reintroduce the possible importance of the microbiota either as a direct driver of disease or as being potentially involved in its exacerbation. This review presents a comprehensive discussion of the current understanding of bacterial, fungal, and viral associations with CRS, with a specific focus on the transition to the new perspective offered in recent years by modern technology in microbiological research. Clinical implications of this new perspective, including the role of antimicrobials, are discussed in depth. While principally framed within the context of CRS, this discussion also provides an analogue for reframing our understanding of many similarly complex and poorly understood chronic inflammatory diseases for which roles of microbes have been suggested but specific mechanisms of disease remain unclear. Finally, further technological advancements on the horizon, and current pressing questions for CRS microbiological research, are considered.
Collapse
|
14
|
Abstract
Our understanding of chronic rhinosinusitis (CRS) show biofilm and osteitis play a role in the disease's pathogenesis and refractory. Studies point to its role in pathogenesis and poor prognosis. Outside the research laboratory, biofilm detection remains difficult and specific treatment remains elusive. It is believed that osteitis is a nidus of inflammation and occurs more commonly in patients with refractory CRS. However, osteitis may be exacerbated by surgery and a marker of refractory disease, not a causative agent. Surgery remains the mainstay treatment for biofilm and osteitis with mechanical disruption and removal of disease load providing the most effective treatment.
Collapse
Affiliation(s)
- Yi Chen Zhao
- Department of Surgery - Otolaryngology Head & Neck Surgery, The University of Adelaide, Adelaide, Queen Elizabeth Hospital 28 Woodville Rd, Woodville South, South Australia 5011, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology Head & Neck Surgery, The University of Adelaide, Adelaide, Queen Elizabeth Hospital 28 Woodville Rd, Woodville South, South Australia 5011, Australia.
| |
Collapse
|
15
|
Azevedo AS, Almeida C, Melo LF, Azevedo NF. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit Rev Microbiol 2016; 43:423-439. [PMID: 28033847 DOI: 10.1080/1040841x.2016.1240656] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent reports have demonstrated that most biofilms involved in catheter-associated urinary tract infections are polymicrobial communities, with pathogenic microorganisms (e.g. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and uncommon microorganisms (e.g. Delftia tsuruhatensis, Achromobacter xylosoxidans) frequently co-inhabiting the same urinary catheter. However, little is known about the interactions that occur between different microorganisms and how they impact biofilm formation and infection outcome. This lack of knowledge affects CAUTIs management as uncommon bacteria action can, for instance, influence the rate at which pathogens adhere and grow, as well as affect the overall biofilm resistance to antibiotics. Another relevant aspect is the understanding of factors that drive a single pathogenic bacterium to become prevalent in a polymicrobial community and subsequently cause infection. In this review, a general overview about the IMDs-associated biofilm infections is provided, with an emphasis on the pathophysiology and the microbiome composition of CAUTIs. Based on the available literature, it is clear that more research about the microbiome interaction, mechanisms of biofilm formation and of antimicrobial tolerance of the polymicrobial consortium are required to better understand and treat these infections.
Collapse
Affiliation(s)
- Andreia S Azevedo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| | - Carina Almeida
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal.,b Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Universidade do Minho , Braga , Portugal
| | - Luís F Melo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| | - Nuno F Azevedo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| |
Collapse
|
16
|
Fastenberg JH, Hsueh WD, Mustafa A, Akbar NA, Abuzeid WM. Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World J Otorhinolaryngol Head Neck Surg 2016; 2:219-229. [PMID: 29204570 PMCID: PMC5698538 DOI: 10.1016/j.wjorl.2016.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is increasing evidence that biofilms are critical to the pathophysiology of chronic infections including chronic rhinosinusitis (CRS). Until relatively recently, our understanding of biofilms was limited. Recent advances in methods for biofilm identification and molecular biology have offered new insights into the role of biofilms in CRS. With these insights, investigators have begun to investigate novel therapeutic strategies that may disrupt or eradicate biofilms in CRS. OBJECTIVE This review seeks to explore the evidence implicating biofilms in CRS, discuss potential anti-biofilm therapeutic strategies, and suggest future directions for research. RESULTS The existing evidence strongly supports the role of biofilms in the pathogenesis of CRS. Several anti-biofilm therapies have been investigated for use in CRS and these are at variable stages of development. Generally, these strategies: 1) neutralize biofilm microbes; 2) disperse existing biofilms; or 3) disrupt quorum sensing. Several of the most promising anti-biofilm therapeutic strategies are reviewed. CONCLUSIONS A better understanding of biofilm function and their contribution to the CRS disease process will be pivotal to the development of novel treatments that may augment and, potentially, redefine the CRS treatment paradigm. There is tremendous potential for future research.
Collapse
Affiliation(s)
- Judd H. Fastenberg
- Department of Otorhinolaryngology – Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3400 Bainbridge Ave, Bronx, NY, 10467, USA
| | | | | | | | - Waleed M. Abuzeid
- Department of Otorhinolaryngology – Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3400 Bainbridge Ave, Bronx, NY, 10467, USA
| |
Collapse
|
17
|
Sub-Optimal Treatment of Bacterial Biofilms. Antibiotics (Basel) 2016; 5:antibiotics5020023. [PMID: 27338489 PMCID: PMC4929437 DOI: 10.3390/antibiotics5020023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/08/2016] [Accepted: 06/13/2016] [Indexed: 01/22/2023] Open
Abstract
Bacterial biofilm is an emerging clinical problem recognized in the treatment of infectious diseases within the last two decades. The appearance of microbial biofilm in clinical settings is steadily increasing due to several reasons including the increased use of quality of life-improving artificial devices. In contrast to infections caused by planktonic bacteria that respond relatively well to standard antibiotic therapy, biofilm-forming bacteria tend to cause chronic infections whereby infections persist despite seemingly adequate antibiotic therapy. This review briefly describes the responses of biofilm matrix components and biofilm-associated bacteria towards sub-lethal concentrations of antimicrobial agents, which may include the generation of genetic and phenotypic variabilities. Clinical implications of bacterial biofilms in relation to antibiotic treatments are also discussed.
Collapse
|
18
|
Snow DE, Everett J, Mayer G, Cox SB, Miller B, Rumbaugh K, Wolcott RA, Wolcott RD. The presence of biofilm structures in atherosclerotic plaques of arteries from legs amputated as a complication of diabetic foot ulcers. J Wound Care 2016; 25:S16-22. [PMID: 26878370 DOI: 10.12968/jowc.2016.25.sup2.s16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Atherosclerosis, rather than microcirculatory impairment caused by endothelial cell dysfunction, is the main driver of circulatory compromise in patients with diabetic limbs. The presence of atherosclerotic plaque at the trifurcation is a significant contributor to amputation of diabetic legs. The presence of bacteria and other microorganisms in atherosclerotic plaque has long been known, however, the cause of chronic inflammation and the role of bacteria/viruses in atherosclerosis have not been studied in detail. The objective of this study was to clarify the cause of the chronic inflammation within atherosclerotic plaques, and determine if any bacteria and/or viruses are involved in the inflammatory pathway. METHOD This study uses fluorescence microscopy and fluorescence in-situ hybridisation (FISH) to identify components of biofilm in atherosclerotic arteries. These tools are also used to identify individual bacteria, and determine the architectural spatial location within the atherosclerotic plaque where the bacteria can be found. RESULTS The results indicate that the presence of biofilms in grossly involved arteries may be an important factor in chronic inflammatory pathways of atherosclerotic progression, in the amputated limbs of patients with diabetic foot ulcers and vascular disease. CONCLUSION While the presence of bacterial biofilm structures in atherosclerotic plaque does not prove that biofilm is the proximate cause of atherosclerosis, it could contribute to the persistent inflammation associated with it. Second, the synergistic relationship between the atherosclerotic infection and the diabetic foot ulcer may ultimately contribute to higher amputation rates in diabetics. DECLARATION OF INTEREST RAW and RDW have equity interest in PathoGenius, a clinical laboratory using DNA to identify microbes.
Collapse
Affiliation(s)
- D E Snow
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock Texas
| | - J Everett
- Department of Surgery, Texas Tech University Health Sciences Center School of Medicine, Lubbock Texas
| | - G Mayer
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock Texas
| | - S B Cox
- Research and Testing Laboratory, Lubbock Texas
| | - B Miller
- Eli Lilly and Company, Indianapolis
| | - K Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center School of Medicine, Lubbock Texas
| | - R A Wolcott
- Research and Testing Laboratory, Lubbock Texas
| | - R D Wolcott
- Research and Testing Laboratory, Lubbock Texas.,Southwest Regional Wound Care Center, Lubbock Texas
| |
Collapse
|
19
|
Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, Batra PS, Bernal-Sprekelsen M, Bhattacharyya N, Chandra RK, Chiu A, Citardi MJ, Cohen NA, DelGaudio J, Desrosiers M, Dhong HJ, Douglas R, Ferguson B, Fokkens WJ, Georgalas C, Goldberg A, Gosepath J, Hamilos DL, Han JK, Harvey R, Hellings P, Hopkins C, Jankowski R, Javer AR, Kern R, Kountakis S, Kowalski ML, Lane A, Lanza DC, Lebowitz R, Lee HM, Lin SY, Lund V, Luong A, Mann W, Marple BF, McMains KC, Metson R, Naclerio R, Nayak JV, Otori N, Palmer JN, Parikh SR, Passali D, Peters A, Piccirillo J, Poetker DM, Psaltis AJ, Ramadan HH, Ramakrishnan VR, Riechelmann H, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Senior BA, Sindwani R, Stankiewicz JA, Stewart M, Tan BK, Toskala E, Voegels R, Wang DY, Weitzel EK, Wise S, Woodworth BA, Wormald PJ, Wright ED, Zhou B, Kennedy DW. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol 2016; 6 Suppl 1:S22-209. [DOI: 10.1002/alr.21695] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital; London UK
| | - Amber Luong
- University of Texas Medical School at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weber RK, Hosemann W. Comprehensive review on endonasal endoscopic sinus surgery. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2015; 14:Doc08. [PMID: 26770282 PMCID: PMC4702057 DOI: 10.3205/cto000123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endonasal endoscopic sinus surgery is the standard procedure for surgery of most paranasal sinus diseases. Appropriate frame conditions provided, the respective procedures are safe and successful. These prerequisites encompass appropriate technical equipment, anatomical oriented surgical technique, proper patient selection, and individually adapted extent of surgery. The range of endonasal sinus operations has dramatically increased during the last 20 years and reaches from partial uncinectomy to pansinus surgery with extended surgery of the frontal (Draf type III), maxillary (grade 3-4, medial maxillectomy, prelacrimal approach) and sphenoid sinus. In addition there are operations outside and beyond the paranasal sinuses. The development of surgical technique is still constantly evolving. This article gives a comprehensive review on the most recent state of the art in endoscopic sinus surgery according to the literature with the following aspects: principles and fundamentals, surgical techniques, indications, outcome, postoperative care, nasal packing and stents, technical equipment.
Collapse
Affiliation(s)
- Rainer K. Weber
- Division of Paranasal Sinus and Skull Base Surgery, Traumatology, Department of Otorhinolaryngology, Municipal Hospital of Karlsruhe, Germany
- I-Sinus International Sinus Institute, Karlsruhe, Germany
| | - Werner Hosemann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Greifswald, Germany
| |
Collapse
|
21
|
Arild Danielsen K, Eskeland Ø, Fridrich-Aas K, Cecilie Orszagh V, Bachmann-Harildstad G, Burum-Auensen E. Bacterial biofilms in chronic rhinosinusitis; distribution and prevalence. Acta Otolaryngol 2015; 136:109-12. [PMID: 26406922 DOI: 10.3109/00016489.2015.1092169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONCLUSION Biofilms were more prevalent in patients with CRSwNP compared to both CRSsNP and controls, and also on the ethmoid bulla compared to the middle turbinate, supporting a biofilm-related pathogenesis of CRSwNP. OBJECTIVE To investigate the prevalence of biofilms in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) compared to patients with chronic rhinosinusitis without nasal polyps (CRSsNP) and controls. To examine the prevalence of biofilms in different anatomical localizations. STUDY DESIGN Cross-sectional. METHODS This study comprised 27 patients with CRSsNP, 34 patients with CRSwNP, and 25 controls. Biopsies from the middle turbinate, the uncinate process, and the ethmoid bulla were harvested pre-operatively, snap frozen in isopentane, cooled, and stored at -80°C. Prepared with Invitrogens' Baclight LiveDead kit and investigated with confocal scanning laser microscopy. RESULTS Biofilms were studied in 33/34 (97%) CRSwNP, 22/27 (82%) CRSsNP, and 14/25 (56%) controls. The difference in point prevalence between patients with CRSwNP vs CRSsNP (p = 0.042, χ(2) = 4.12), CRSwNP vs Controls (p < 0.001, χ(2) = 15.0), and CRSsNP vs controls (p = 0.047, χ(2) = 3.96) were all significant. Biofilms were found in 43/54 (80%) ethmoid bulla, 39/55 (71%) uncinate process, and 31/50 (62%) middle turbinate. The difference between the ethmoid bulla and the middle turbinate locations (p = 0.047, χ(2) = 3.93) was significant.
Collapse
Affiliation(s)
- Kjell Arild Danielsen
- a Department of Otorhinolaryngology , Akershus University Hospital , Norway
- b Department of Otorhinolaryngology , Østfold Regional Hospital , Østfold , Norway
- c University of Oslo , Norway
| | - Øystein Eskeland
- a Department of Otorhinolaryngology , Akershus University Hospital , Norway
- c University of Oslo , Norway
- d Drøbak ENT , Drøbak , Akershus , Norway
| | | | | | - Gregor Bachmann-Harildstad
- a Department of Otorhinolaryngology , Akershus University Hospital , Norway
- c University of Oslo , Norway
| | - Espen Burum-Auensen
- a Department of Otorhinolaryngology , Akershus University Hospital , Norway
- c University of Oslo , Norway
- f Medivir , Oslo , Norway
| |
Collapse
|
22
|
van Tilburg Bernardes E, Lewenza S, Reckseidler-Zenteno S. Current Research Approaches to Target Biofilm Infections. ACTA ACUST UNITED AC 2015; 3:36-49. [PMID: 28748199 DOI: 10.14304/surya.jpr.v3n6.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on strategies to develop new treatments that target the biofilm mode of growth and that can be used to treat biofilm infections. These approaches aim to reduce or inhibit biofilm formation, or to increase biofilm dispersion. Many antibiofilm compounds are not bactericidal but render the cells in a planktonic growth state, which are more susceptible to antibiotics and more easily cleared by the immune system. Novel compounds are being developed with antibiofilm activity that includes antimicrobial peptides, natural products, small molecules and polymers. Bacteriophages are being considered for use in treating biofilms, as well as the use of enzymes that degrade the extracellular matrix polymers to dissolve biofilms. There is great potential in these new approaches for use in treating chronic biofilm infections.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Microbiology, Immunology, and Infectious Diseases Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Shawn Lewenza
- Department of Microbiology, Immunology, and Infectious Diseases Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.,Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
| | - Shauna Reckseidler-Zenteno
- Department of Microbiology, Immunology, and Infectious Diseases Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.,Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
| |
Collapse
|
23
|
Wu H, Moser C, Wang HZ, Høiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci 2015; 7:1-7. [PMID: 25504208 PMCID: PMC4817533 DOI: 10.1038/ijos.2014.65] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/30/2022] Open
Abstract
Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.
Collapse
Affiliation(s)
- Hong Wu
- 1] Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark [2] Department of International Health, Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Heng-Zhuang Wang
- Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- 1] Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark [2] Department of International Health, Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Zhi-Jun Song
- 1] Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark [2] Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| |
Collapse
|
24
|
Aanaes K, Eickhardt S, Johansen HK, von Buchwald C, Skov M, Høiby N, Bjarnsholt T. Sinus biofilms in patients with cystic fibrosis: is adjusted eradication therapy needed? Eur Arch Otorhinolaryngol 2014; 272:2291-7. [PMID: 25297534 DOI: 10.1007/s00405-014-3322-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/30/2014] [Indexed: 01/12/2023]
Abstract
The paranasal sinuses can be a focus for colonisation of the cystic fibrosis (CF) lungs with pathogens. In the sinuses, bacteria can adapt to the lung environment and enhance their antibiotic resistance, with biofilm formation thought to be the most important adaptive mechanism, causing recalcitrant disease. The presence of biofilms in CF sinuses is sparsely described. In this descriptive cross-sectional study, the sinus mucosa from 16 CF patients were analysed by fluorescence in situ hybridization using specific peptide nucleic acid (PNA-FISH) probes for Pseudomonas aeruginosa and Staphylococcus aureus to demonstrate the presence of biofilms. Small clusters of biofilm were visualised lining the sinus mucosa of CF patients. Biofilms were found in 10 out of 18 cases; 7 with intermittent lung colonisation, 2 chronically infected, and one lung transplanted patient. Finding P. aeruginosa biofilms in intermittently lung-colonised patients encourage us to intensify the attempt to eradicate pathogenic bacteria from the CF sinuses in an early stage using combined antibiotic therapy in the prolonged exposure of the sinus-mucosal surface.
Collapse
Affiliation(s)
- Kasper Aanaes
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark,
| | | | | | | | | | | | | |
Collapse
|