1
|
Vlăduț C, Steiner C, Löhr M, Gökçe DT, Maisonneuve P, Hank T, Öhlund D, Sund M, Hoogenboom SA. High prevalence of pancreatic steatosis in pancreatic cancer patients: A meta-analysis and systematic review. Pancreatology 2025; 25:98-107. [PMID: 39706752 DOI: 10.1016/j.pan.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE In the last decade there has been increasing interest in defining pancreatic steatosis (PS) and establishing its association with pancreatic ductal adenocarcinoma (PDAC). However, no consensus guidelines have yet been published on the management of PS. In this systematic review and meta-analysis performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we investigated the association between PS and PDAC. DESIGN Medical literature between 2007 and 2023 was reviewed for eligible trials investigating the prevalence of PS in patients with PDAC. Eligible studies reporting on PS, assessed via imaging or histology, were included. The primary objective was to determine the association between PDAC and PS by comparing the prevalence of PS in individuals with- and without PDAC. Secondary, an evaluation was conducted to establish whether the method of assessment correlated with the association of PDAC and PS, and the prevalence of PDAC in individuals with PS. Measures of effect size were determined using odds ratios (ORs) and corresponding 95 % confidence intervals (95 % CI). RESULTS The systematic review identified a total of 23 studies, of which seventeen studies examined PS prevalence among PDAC patients and were included in the meta-analysis. Overall, the pooled prevalence of PS in patients with PDAC was 53.6 % (95 % CI 40.9-66.2). No significant difference in PS prevalence was observed across various diagnostic methods or geographical regions. Overall, the pooled OR for PS in patients with PDAC compared to controls was 3.23 (95 % CI 1.86-5.60). CONCLUSIONS PDAC patients have a high prevalence of PS, and they are significantly more likely to have PS compared to controls. These findings emphasize the need to prioritize a standardized approach to the diagnosis, follow-up, and treatment of PS, with future studies focusing on identifying patients who would benefit from PDAC surveillance programs.
Collapse
Affiliation(s)
- Cătălina Vlăduț
- Department of Gastroenterology, "Prof Dr Agrippa Ionescu" Clinical Emergency Hospital, 011356 Bucharest, Romania; Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | - Matthias Löhr
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Dilara Turan Gökçe
- Department of Gastroenterology, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Daniel Öhlund
- Department of Diagnostics and Intervention (oncology) and Wallenberg Centre of Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Malin Sund
- Department of Diagnostics and Intervention (surgery), Umeå University, Umeå, Sweden; Department of Surgery, University of Helsinki and Helsinki, University Hospital, Helsinki, Finland.
| | - Sanne A Hoogenboom
- Department of Gastroenterology, HagaZiekenhuis Hospital, The Hague, Netherlands.
| |
Collapse
|
2
|
Gheorghe G, Diaconu CC, Mambet C, Bleotu C, Ionescu VA, Diaconu CC. Comparative analysis of leptin and carcinoembryonic antigen-related cell adhesion molecule 1 plasma expression in pancreatic cancer and chronic pancreatitis patients. Heliyon 2024; 10:e37410. [PMID: 39296050 PMCID: PMC11408808 DOI: 10.1016/j.heliyon.2024.e37410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Compared to the general population, patients with chronic pancreatitis have an up to 12-fold higher risk of developing pancreatic cancer. The aim of our study was the identification of potential proteomic biomarkers to contribute to the detection of pancreatic cancer among patients with chronic pancreatitis. We initially performed a proteomic screening analysis of 105 analytes on plasma pools. To validate this finding, we quantitatively determined leptin concentrations in individual plasma samples using the ELISA technique. Additionally, we explored the plasma expression of CEACAM1, an important regulator of leptin expression in various cancer cells using the same method. The preliminary semi-quantitative proteomic analysis identified leptin as the only protein with substantially higher expression in patients with pancreatic cancer compared to those with chronic pancreatitis. Subsequently, by quantitative ELISA, we determined a higher median leptin concentration in the plasma of patients with pancreatic cancer compared to those with chronic pancreatitis. The statistical significance was maintained regardless of other variables like BMI or gender. Additionally, we explored the plasma expression of CEACAM1, an important regulator of leptin expression in various cancer cells, in order to provide insights into the complex mechanisms underlying pancreatic cancer and chronic pancreatits. CEACAM1 concentrations were higher in the plasma of the patients with pancreatic cancer than in those with chronic pancreatitis. However, we did not find a statistically significant correlation between leptin and CEACAM1 expression variation in the two study groups, with CEACAM1 concentration also dependent on other parameters such as BMI, gender, and serum triglyceride level. In conclusion, leptin seems to be a biomarker that can contribute to differentiate patients with pancreatic cancer from patients with chronic pancreatitis.
Collapse
Affiliation(s)
- Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Cristina Mambet
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402, Bucharest, Romania
| |
Collapse
|
3
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Lipp M, Tarján D, Lee J, Zolcsák Á, Szalai E, Teutsch B, Faluhelyi N, Erőss B, Hegyi P, Mikó A. Fatty Pancreas Is a Risk Factor for Pancreatic Cancer: A Systematic Review and Meta-Analysis of 2956 Patients. Cancers (Basel) 2023; 15:4876. [PMID: 37835570 PMCID: PMC10571813 DOI: 10.3390/cancers15194876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal cancers worldwide. Recently, fatty pancreas (FP) has been studied thoroughly, and although its relationship to PC is not fully understood, FP is suspected to contribute to the development of PC. We aimed to assess the association between PC and FP by conducting a systematic review and meta-analysis. We systematically searched three databases, MEDLINE, Embase, and CENTRAL, on 21 October 2022. Case-control and cross-sectional studies reporting on patients where the intra-pancreatic fat deposition was determined by modern radiology or histology were included. As main outcome parameters, FP in patients with and without PC and PC in patients with and without FP were measured. Proportion and odds ratio (OR) with a 95% confidence interval (CI) were used for effect size measure. PC among patients with FP was 32% (OR 1.32; 95% CI 0.42-4.16). However, the probability of having FP among patients with PC was more than six times higher (OR 6.13; 95% CI 2.61-14.42) than in patients without PC, whereas the proportion of FP among patients with PC was 0.62 (95% CI 0.42-0.79). Patients identified with FP are at risk of developing PC. Proper screening and follow-up of patients with FP may be recommended.
Collapse
Affiliation(s)
- Mónika Lipp
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary; (M.L.); (D.T.); (B.E.); (P.H.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dorottya Tarján
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary; (M.L.); (D.T.); (B.E.); (P.H.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
| | - Jimin Lee
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Medical School, Semmelweis University, 1085 Budapest, Hungary
| | - Ádám Zolcsák
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Eszter Szalai
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Department of Restorative Dentistry and Endodontics, Semmelweis University, 1088 Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Nándor Faluhelyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Department of Medical Imaging, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Bálint Erőss
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary; (M.L.); (D.T.); (B.E.); (P.H.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Hegyi
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary; (M.L.); (D.T.); (B.E.); (P.H.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, 6725 Szeged, Hungary
| | - Alexandra Mikó
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.L.); (Á.Z.); (E.S.); (B.T.); (N.F.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Department of Medical Genetics, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
6
|
Mahyoub MA, Elhoumed M, Maqul AH, Almezgagi M, Abbas M, Jiao Y, Wang J, Alnaggar M, Zhao P, He S. Fatty infiltration of the pancreas: a systematic concept analysis. Front Med (Lausanne) 2023; 10:1227188. [PMID: 37809324 PMCID: PMC10556874 DOI: 10.3389/fmed.2023.1227188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Fatty infiltration of the pancreas (FIP) has been recognized for nearly a century, yet many aspects of this condition remain unclear. Regular literature reviews on the diagnosis, consequences, and management of FIP are crucial. This review article highlights the various disorders for which FIP has been established as a risk factor, including type 2 diabetes mellitus (T2DM), pancreatitis, pancreatic fistula (PF), metabolic syndrome (MS), polycystic ovary syndrome (PCOS), and pancreatic duct adenocarcinoma (PDAC), as well as the new investigation tools. Given the interdisciplinary nature of FIP research, a broad range of healthcare specialists are involved. This review article covers key aspects of FIP, including nomenclature and definition of pancreatic fat infiltration, history and epidemiology, etiology and pathophysiology, clinical presentation and diagnosis, clinical consequences, and treatment. This review is presented in a detailed narrative format for accessibility to clinicians and medical students.
Collapse
Affiliation(s)
- Mueataz A. Mahyoub
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases (Oncology) of Shaanxi Province, Xi'an, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Gastroenterology, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Mohamed Elhoumed
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- National Institute of Public Health Research (INRSP), Nouakchott, Mauritania
| | - Abdulfatah Hassan Maqul
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Imaging, Sahan Diagnostic Center, Mogadishu, Somalia
| | - Maged Almezgagi
- The Key Laboratory of High-altitude Medical Application of Qinghai Province, Xining, Qinghai, China
- Department of Immunology, Qinghai University, Xining, Qinghai, China
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Mustafa Abbas
- Department of Internal Medicine, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mohammed Alnaggar
- Department of Oncology, South Hubei Cancer Hospital, Xianning, Hubei, China
- Department of Internal Medicine, Clinic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ping Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases (Oncology) of Shaanxi Province, Xi'an, China
| |
Collapse
|
7
|
Sbeit W, Abu Elheja F, Msheiil B, Shahin A, Khoury S, Sbeit M, Khoury T. Fatty pancreas was associated with a higher acute pancreatitis Systemic Inflammatory Response Syndrome score at hospital admission. Eur J Gastroenterol Hepatol 2023; 35:980-984. [PMID: 37395190 DOI: 10.1097/meg.0000000000002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Pancreatic fat infiltration was shown to be linked with acute pancreatitis and probably its severity. These interesting findings merit more investigation to elucidate the effect of fatty pancreas on acute pancreatitis severity. METHODS We performed a retrospective study of patients hospitalized with documented acute pancreatitis. Pancreatic fat was determined according to pancreas attenuation on computed tomography. Patients were divided into two groups, with and without fatty pancreas. The Systemic Inflammatory Response Syndrome (SIRS) score was compared. RESULTS Overall, 409 patients were hospitalized with acute pancreatitis. Among them, 48 patients had fatty pancreas (group A), vs. 361 patients who did not (group B). The mean ± SD age in group A was 54.6 ± 21.3, vs. 57.6 ± 16.8 in group B ( P = 0.51). Patients in group A, had a significantly higher rate of fatty liver, as compared to group B (85.4% vs. 35.5%, P < 0.001). There was no significant difference in the medical history among the two groups. Fatty pancreas was associated with more severe acute pancreatitis as assessed by SIRS score at admission. The mean ± SD of SIRS score was significantly higher in group A (0.92 ± 0.87), as compared to 0.59 ± 0.74 in group B ( P = 0.009). Positive SIRS score was present in a significantly higher proportion of patients with fatty pancreas (25%), as compared to only 11.4% in group B ( P = 0.02). CONCLUSION The occurrence of acute pancreatitis with higher SIRS score was significantly associated with fatty pancreas. Fatty pancreas may represent a predictor of acute pancreatitis severity.
Collapse
Affiliation(s)
- Wisam Sbeit
- Gastroenterology Department, Galilee Medical Center, Nahariya
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Fares Abu Elheja
- Gastroenterology Department, Galilee Medical Center, Nahariya
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Botros Msheiil
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
- Radiology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Amir Shahin
- Gastroenterology Department, Galilee Medical Center, Nahariya
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Sharbel Khoury
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
- Radiology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Moeen Sbeit
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Tawfik Khoury
- Gastroenterology Department, Galilee Medical Center, Nahariya
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| |
Collapse
|
8
|
Petrov MS. Fatty change of the pancreas: the Pandora's box of pancreatology. Lancet Gastroenterol Hepatol 2023; 8:671-682. [PMID: 37094599 DOI: 10.1016/s2468-1253(23)00064-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 04/26/2023]
Abstract
Prevention of common diseases of the pancreas or interception of their progression is as attractive in theory as it is elusive in practice. The fundamental challenge has been an incomplete understanding of targets coupled with a multitude of intertwined factors that are associated with the development of pancreatic diseases. Evidence over the past decade has shown unique morphological features, distinctive biomarkers, and complex relationships of intrapancreatic fat deposition. Fatty change of the pancreas has also been shown to affect at least 16% of the global population. This knowledge has solidified the pivotal role of fatty change of the pancreas in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. The pancreatic diseases originating from intrapancreatic fat (PANDORA) hypothesis advanced in this Personal View cuts across traditional disciplinary boundaries with a view to tackling these diseases. New holistic understanding of pancreatic diseases is well positioned to propel pancreatology through lasting research breakthroughs and clinical advances.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
10
|
Wang F, Deng Y, Yu L, Zhou A, Wang J, Jia J, Li N, Ding F, Lian W, Liu Q, Yang Y, Lin X. A Macrophage Membrane-Polymer Hybrid Biomimetic Nanoplatform for Therapeutic Delivery of Somatostatin Peptide to Chronic Pancreatitis. Pharmaceutics 2022; 14:pharmaceutics14112341. [PMID: 36365160 PMCID: PMC9698601 DOI: 10.3390/pharmaceutics14112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical translation of therapeutic peptides is generally challenged by multiple issues involving absorption, distribution, metabolism and excretion. In this study, a macrophage membrane-coated poly(lactic-co-glycolic acid) (PLGA) nanodelivery system was developed to enhance the bioavailability of the somatostatin (SST) peptide, which faces the hurdles of short half-life and potential side effects in the treatment of chronic pancreatitis. Using a facile nanoprecipitation strategy, SST was loaded in the nanoparticles with an encapsulation efficiency (EE) and a loading efficiency (LE) of 73.68 ± 3.56% and 1.47 ± 0.07%, respectively. The final formulation of SST-loaded nanoparticles with the camouflage of macrophage membrane (MP-SST) showed a mean diameter of 151 ± 4 nm and an average zeta potential of −29.6 ± 0.3 mV, which were stable long term during storage. With an above 90% cell viability, a hemolysis level of about 2% (<5%) and a preference for being ingested by activated endothelial cells compared to macrophages, the membrane−polymer hybrid nanoparticle showed biocompatibility and targeting capability in vitro. After being intravenously administered to mice with chronic pancreatitis, the MP-SST increased the content of SST in the serum (123.6 ± 13.6 pg/mL) and pancreas (1144.9 ± 206.2 pg/g) compared to the treatment of (Dulbecco’s phosphate-buffered saline) DPBS (61.7 ± 6.0 pg/mL in serum and 740.2 ± 172.4 pg/g in the pancreas). The recovery of SST by MP-SST downregulated the expressions of chronic pancreatitis-related factors and alleviated the histologic severity of the pancreas to the greatest extent compared to other treatment groups. This augmentation of SST therapeutic effects demonstrated the superiority of integrating the synthetic polymer with biological membranes in the design of nanoplatforms for advanced and smart peptide delivery. Other peptides like SST can also be delivered via the membrane−polymer hybrid nanosystem for the treatment of diseases, broadening and promoting the potential clinical applications of peptides as therapeutics.
Collapse
Affiliation(s)
- Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu Deng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Luying Yu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ao Zhou
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jieting Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingyan Jia
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fadian Ding
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Wei Lian
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Qicai Liu
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Juqian Road 185, Changzhou 213000, China
- Correspondence: (Y.Y.); (X.L.)
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (Y.Y.); (X.L.)
| |
Collapse
|
11
|
Niki A, Baden MY, Kato S, Mitsushio K, Horii T, Ozawa H, Ishibashi C, Fujita S, Kimura T, Fujita Y, Tokunaga A, Nammo T, Fukui K, Kozawa J, Shimomura I. Consumption of two meals per day is associated with increased intrapancreatic fat deposition in patients with type 2 diabetes: a retrospective study. BMJ Open Diabetes Res Care 2022; 10:10/5/e002926. [PMID: 36126992 PMCID: PMC9490586 DOI: 10.1136/bmjdrc-2022-002926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION This study aimed to identify the associations between lifestyle factors and intrapancreatic fat deposition in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS The participants were 185 patients with type 2 diabetes who were hospitalized at Osaka University Hospital between 2008 and 2020 and underwent abdominal CT during hospitalization. Information regarding lifestyle factors, including the number of meals consumed per day, snacking habits, exercise habits, exercise at work, smoking habits, alcohol intake, insomnia, sleep apnea syndrome, and night-shift working, was acquired from self-administered questionnaires or medical records. We measured the mean CT values for the pancreas (P), liver (L), and spleen (S), and the visceral fat area (VFA), and quantified intrapancreatic and liver ectopic fat accumulation as P-S and L-S, respectively. RESULTS After adjustment for age, sex, hemoglobin A1c, and body mass index (BMI), participants who consumed two meals per day had significantly lower P-S (higher intrapancreatic fat deposition, p=0.02) than those who consumed three meals per day. There were no significant associations between the number of meals consumed and liver ectopic fat accumulation and VFA (p=0.73 and p=0.67, respectively). CONCLUSIONS Patients with diabetes who consumed two meals per day showed greater intrapancreatic fat deposition than those who consumed three meals per day, even after adjustment for BMI. These findings support the current guideline for diabetes treatment that skipping meals should be avoided.
Collapse
Affiliation(s)
- Akiko Niki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Megu Y Baden
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Lifestyle Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sarasa Kato
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kento Mitsushio
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomomi Horii
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Lifestyle Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chisaki Ishibashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Fujita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takekazu Kimura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayumi Tokunaga
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Fukui
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
12
|
Liu Y, Deguchi Y, Wei D, Liu F, Moussalli MJ, Deguchi E, Li D, Wang H, Valentin LA, Colby JK, Wang J, Zheng X, Ying H, Gagea M, Ji B, Shi J, Yao JC, Zuo X, Shureiqi I. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ. Nat Commun 2022; 13:2665. [PMID: 35562376 PMCID: PMC9106716 DOI: 10.1038/s41467-022-30392-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is a precursor of pancreatic ductal adenocarcinoma (PDAC), which commonly occurs in the general populations with aging. Although most PanIN lesions (PanINs) harbor oncogenic KRAS mutations that initiate pancreatic tumorigenesis; PanINs rarely progress to PDAC. Critical factors that promote this progression, especially targetable ones, remain poorly defined. We show that peroxisome proliferator-activated receptor-delta (PPARδ), a lipid nuclear receptor, is upregulated in PanINs in humans and mice. Furthermore, PPARδ ligand activation by a high-fat diet or GW501516 (a highly selective, synthetic PPARδ ligand) in mutant KRASG12D (KRASmu) pancreatic epithelial cells strongly accelerates PanIN progression to PDAC. This PPARδ activation induces KRASmu pancreatic epithelial cells to secrete CCL2, which recruits immunosuppressive macrophages and myeloid-derived suppressor cells into pancreas via the CCL2/CCR2 axis to orchestrate an immunosuppressive tumor microenvironment and subsequently drive PanIN progression to PDAC. Our data identify PPARδ signaling as a potential molecular target to prevent PDAC development in subjects harboring PanINs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Micheline J Moussalli
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer K Colby
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Evrimler S, Yip-Schneider MT, Swensson J, Soufi M, Muraru R, Tirkes T, Schmidt CM, Akisik F. Magnetic resonance imaging-derived fat fraction predicts risk of malignancy in intraductal papillary mucinous neoplasm. Abdom Radiol (NY) 2021; 46:4779-4786. [PMID: 34086091 DOI: 10.1007/s00261-021-03146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Assess the relationship between MRI-derived pancreatic fat fraction and risk of malignancy in intraductal papillary mucinous neoplasm (IPMN). METHODS MRIs of patients with IPMN who underwent pancreaticoduodenectomy were analyzed. IPMN with low-grade dysplasia (n = 29) were categorized as low-risk while IPMN at high risk of malignancy consisted of those with high-grade dysplasia/invasive carcinoma (n = 33). Pancreatic fat-fraction (FFmean) was measured using the 2-point Dixon-method. Images were evaluated for the high-risk stigmata and worrisome features according to the revised 2017 Fukuoka consensus criteria. Data on serum CA19-9, Diabetes Mellitus (DM) status, body mass index (BMI), and histological chronic pancreatitis were obtained. RESULTS A significant difference in FFmean was found between the high-risk IPMN (11.45%) and low-risk IPMN (9.95%) groups (p = 0.027). Serum CA19-9 level (p = 0.021), presence of cyst wall enhancement (p = 0.029), and solid mass (p = 0.008) were significantly associated with high-risk IPMN. There was a significant correlation between FFmean and mural nodule size (r = 0.36, p ˂ 0.01), type 2 DM (r = 0.34, p ˂ 0.01), age (r = 0.31, p ˂ 0.05), serum CA 19-9 (r = 0.30, p ˂ 0.05), cyst diameter (r = 0.30, p ˂ 0.05), and main pancreatic duct diameter (r = 0.26, p ˂ 0.05). Regression analysis revealed FFmean (OR 1.103, p = 0.035) as an independent predictive variable of high-risk IPMN. CONCLUSION FFmean is significantly associated with high-risk IPMN and an independent predictor of IPMN malignant risk. FFmean may have clinical utility as a biomarker to complement the current IPMN treatment algorithm and improve clinical decision making regarding the need for surgical resection or surveillance.
Collapse
Affiliation(s)
- Sehnaz Evrimler
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology, Suleyman Demirel University School of Medicine, 32260, Isparta, Turkey
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN, 46202, USA
| | - Jordan Swensson
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mazhar Soufi
- Department of Surgery, Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN, 46202, USA
| | - Rodica Muraru
- Center for Outcomes Research in Surgery, Indiana University School of Medicine, 545 Barnhill Drive, EH 106E, Indianapolis, IN, 46202, USA
| | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN, 46202, USA
| | - Fatih Akisik
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
14
|
Abstract
OBJECTIVES Fatty pancreas (FP), previously believed to be without clinical significance, recently has been shown to be associated with comorbid diseases. We aimed to explore whether FP predispose to acute pancreatitis. METHODS Patients who underwent endoscopic ultrasound for hepatobiliary indications were included. Patients with pathological pancreato-biliary findings other than FP were excluded. The cohort was divided into patients with a history of pancreatitis (within 6 months of endoscopic ultrasound, group A) and patients without (group B). RESULTS Overall, 189 patients were included. Sixty-one (32.3%) patients were in group A, and 128 (67.7%) patients were in group B. The average age in group A was 55.5 (standard deviation, 17.7) versus 58.5 (standard deviation, 13.5) in group B. The prevalence of FP in group A (37.7%) was higher compared with group B (4.7%) (P = 0.001). On univariate analysis, FP showed significant correlation with a history of acute pancreatitis [odds ratio (OR), 5.14, P = 0.006] and hyperlipidemia (OR, 4.19; P = 0.002). On multivariate analysis, FP remained significantly associated with a history of acute pancreatitis after stratification for obesity and hyperlipidemia (OR, 10.78; 95% confidence interval, 3.75-30.89; P < 0.0001). CONCLUSIONS Fatty pancreas was associated with acute pancreatitis. Clinicians should be aware of this association.
Collapse
|
15
|
Kachi K, Kato H, Naiki-Ito A, Komura M, Nagano-Matsuo A, Naitoh I, Hayashi K, Kataoka H, Inaguma S, Takahashi S. Anti-Allergic Drug Suppressed Pancreatic Carcinogenesis via Down-Regulation of Cellular Proliferation. Int J Mol Sci 2021; 22:ijms22147444. [PMID: 34299067 PMCID: PMC8304964 DOI: 10.3390/ijms22147444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a fatal disease, and thus its chemoprevention is an important issue. Based on the recent report that patients with allergic diseases have a low risk for pancreatic cancer, we examined the potential chemopreventive effect of anti-allergic agents using a hamster pancreatic carcinogenesis model. Among the three anti-allergic drugs administered, montelukast showed a tendency to suppress the incidence of pancreatic cancer. Further animal study revealed a significantly decreased incidence of pancreatic cancer in the high-dose montelukast group compared with controls. The development of the pancreatic intraepithelial neoplasia lesions was also significantly suppressed. The Ki-67 labeling index was significantly lower in pancreatic carcinomas in the high-dose montelukast group than in controls. In vitro experiments revealed that montelukast suppressed proliferation of pancreatic cancer cells in a dose-dependent manner with decreased expression of phospho-ERK1/2. Montelukast induced G1 phase arrest. Conversely, leukotriene D4 (LTD4), an agonist of CYSLTR1, increased cellular proliferation of pancreatic cancer cells with an accumulation of phospho-ERK1/2. In our cohort, pancreatic ductal adenocarcinoma patients with high CYSLTR1 expression showed a significantly unfavorable clinical outcome compared with those with low expression. Our results indicate that montelukast exerts a chemopreventive effect on pancreatic cancer via the LTD4–CYSLTR1 axis and has potential for treatment of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Kenta Kachi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Aya Nagano-Matsuo
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
- Correspondence: (S.I.); (S.T.)
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
- Correspondence: (S.I.); (S.T.)
| |
Collapse
|
16
|
Kato H, Naiki-Ito A, Suzuki S, Inaguma S, Komura M, Nakao K, Naiki T, Kachi K, Kato A, Matsuo Y, Takahashi S. DPYD, down-regulated by the potentially chemopreventive agent luteolin, interacts with STAT3 in pancreatic cancer. Carcinogenesis 2021; 42:940-950. [PMID: 33640964 PMCID: PMC8283735 DOI: 10.1093/carcin/bgab017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
The 5-year survival rate of pancreatic ductal carcinoma (PDAC) patients is <10% despite progress in clinical medicine. Strategies to prevent the development of PDAC are urgently required. The flavonoids Luteolin (Lut) and hesperetin (Hes) may be cancer-chemopreventive, but effects on pancreatic carcinogenesis in vivo have not been studied. Here, the chemopreventive effects of Lut and Hes on pancreatic carcinogenesis are assessed in the BOP-induced hamster PDAC model. Lut but not Hes suppressed proliferation of pancreatic intraepithelial neoplasia (PanIN) and reduced the incidence and multiplicity of PDAC in this model. Lut also inhibited the proliferation of hamster and human pancreatic cancer cells in vitro. Multi-blot and microarray assays revealed decreased phosphorylated STAT3 (pSTAT3) and dihydropyrimidine dehydrogenase (DPYD) on Lut exposure. To explore the relationship between DPYD and STAT3 activity, the former was silenced by RNAi or overexpressed using expression vectors, and the latter was inactivated by small molecule inhibitors or stimulated by IL6 in human PDAC cells. DPYD knock-down decreased, and overexpression increased, pSTAT3 and cell proliferation. DPYD expression was decreased by inactivation of STAT3 and increased by its activation. The frequency of pSTAT3-positive cells and DPYD expression was significantly correlated and was decreased in parallel by Lut in the hamster PDAC model. Finally, immunohistochemical analysis in 73 cases of human PDAC demonstrated that DPYD expression was positively correlated with the Ki-67 labeling index, and high expression was associated with poor prognosis. These results indicate that Lut is a promising chemopreventive agent for PDAC, targeting a novel STAT3-DPYD pathway.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenju Nakao
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenta Kachi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Akihisa Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Yoichi Matsuo
- Department of Gastroenterology Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| |
Collapse
|
17
|
Luo Y, Li X, Ma J, Abbruzzese JL, Lu W. Pancreatic Tumorigenesis: Oncogenic KRAS and the Vulnerability of the Pancreas to Obesity. Cancers (Basel) 2021; 13:cancers13040778. [PMID: 33668583 PMCID: PMC7918840 DOI: 10.3390/cancers13040778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a devastating disease with a poor survival rate, and oncogenic mutant KRAS is a major driver of its initiation and progression; however, effective strategies/drugs targeting major forms of mutant KRAS have not been forthcoming. Of note, obesity is known to worsen mutant KRAS-mediated pathologies, leading to PDAC with high penetrance; however, the mechanistic link between obesity and pancreatic cancer remains elusive. The recent discovery of FGF21 as an anti-obesity and anti-inflammation factor and as a downstream target of KRAS has shed new light on the problem. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) mutations have been considered a critical driver of PDAC initiation and progression. However, the effects of mutant KRAS alone do not recapitulate the full spectrum of pancreatic pathologies associated with PDAC development in adults. Historically, mutant KRAS was regarded as constitutively active; however, recent studies have shown that endogenous levels of mutant KRAS are not constitutively fully active and its activity is still subject to up-regulation by upstream stimuli. Obesity is a metabolic disease that induces a chronic, low-grade inflammation called meta-inflammation and has long been recognized clinically as a major modifiable risk factor for pancreatic cancer. It has been shown in different animal models that obesogenic high-fat diet (HFD) and pancreatic inflammation promote the rapid development of mutant KRAS-mediated PDAC with high penetrance. However, it is not clear why the pancreas with endogenous levels of mutant KRAS is vulnerable to chronic HFD and inflammatory challenges. Recently, the discovery of fibroblast growth factor 21 (FGF21) as a novel anti-obesity and anti-inflammatory factor and as a downstream target of mutant KRAS has shed new light on this problem. This review is intended to provide an update on our knowledge of the vulnerability of the pancreas to KRAS-mediated invasive PDAC in the context of challenges engendered by obesity and associated inflammation.
Collapse
Affiliation(s)
- Yongde Luo
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Xiaokun Li
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
| | - Jianjia Ma
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA;
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
18
|
Desai V, Patel K, Sheth R, Barlass U, Chan YM, Sclamberg J, Bishehsari F. Pancreatic Fat Infiltration Is Associated with a Higher Risk of Pancreatic Ductal Adenocarcinoma. Visc Med 2020; 36:220-226. [PMID: 32775353 DOI: 10.1159/000507457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a poor survival rate, partly due to delayed diagnosis. Identifying high-risk individuals could lead to early detection and improve survival. A number of risk factors such as alcohol consumption and metabolic syndrome are associated with fatty infiltration of the pancreas. Experimental models show that a fatty pancreas promotes tissue inflammation and fibrosis, which could promote PDAC. Methods We conducted a case-control study in a single-university tertiary hospital. Sixty-eight PDAC cases with recent non-contrast computed tomography (CT) and 235 controls were studied. The controls had no history of malignancy and underwent CT colonography for cancer screening in the same period. Pancreatic fat was estimated by calculating pancreatic (P) attenuation, corrected to splenic (S) attenuation, measured in three 1.0-cm2 regions of the pancreas. The P.S100 value calculated was used to estimate fatty infiltration of the pancreas (FIP), with a lower P.S100 representing a higher FIP. Results The PDAC patients had a lower BMI and a higher rate of type 2 diabetes mellitus. The P.S100 was lower in cases than in controls (86.452 vs. 92.414, p = 4.016e-06), suggesting that FIP is higher with PDAC. The risk of developing PDAC steadily increased significantly for the quartiles with a higher FIP compared to the low FIP quartile. No correlation between BMI and FIP (r = -0.1031179; 95% confidence interval [CI] -0.22267106 to 0.01949092) was found. Adjusting for confounders (age, sex, BMI, and DM), the risk of developing PDAC according to the FIP was estimated to be 3.75 (95% CI 1.9234408-7.993337; p = 0.000171). FIP was stable before and after the diagnosis of PDAC in 9 cases with prior CT scans when no pancreatic tumor was identifiable. Conclusion Fatty pancreas is associated with an increased risk of pancreatic cancer. Once confirmed in larger-scale studies, these findings could help to identify at-risk individuals, particularly in high-risk groups such as chronic alcohol consumers.
Collapse
Affiliation(s)
- Vishal Desai
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kevin Patel
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ravi Sheth
- Department of Radiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Usman Barlass
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Yuet-Ming Chan
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Joy Sclamberg
- Department of Radiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
19
|
Qiu S, Wang F, Hu J, Yang Y, Li D, Tian W, Yuan X, Lv Y, Yu M. Increased dietary fatty acids determine the fatty-acid profiles of human pancreatic cancer cells and their carrier's plasma, pancreas and liver. Endocr J 2020; 67:387-395. [PMID: 31827053 DOI: 10.1507/endocrj.ej19-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Primary contents of dietary fat are three or four types of fatty acids, namely saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), n6-polyunsaturated fatty acid (n6PUFA) and, to less extent, n3-polyunsaturated fatty acid (n3PUFA). Previous studies suggest that increased SFA, MUFA, and n6PUFA in high fat diets (HFDs) stimulate the origination, growth, and liver metastasis of pancreatic cancer cells, whereas increased n3PUFA has the opposite effects. It is unclear whether the fatty acid-induced effects are based on changed fatty-acid composition of involved cells. Here, we investigated whether increased SFA, MUFA, n6PUFA, and n3PUFA in different HFDs determine the FA profiles of pancreatic cancer cells and their carrier's plasma, pancreas, and liver. We transplanted MiaPaCa2 human pancreatic cancer cells in athymic mice and fed them normal diet or four HFDs enriched with SFA, MUFA, n6PUFA, and n3PUFA, respectively. After 7 weeks, fatty acids were profiled in tumor, plasma, pancreas, and liver, using gas chromatography. When tumor carriers were fed four HFDs, the fatty acids that were increased dietarily were also increased in the plasma. When tumor carriers were fed MUFA-, n6PUFA-, and n3PUFA-enriched HFDs, the dietarily increased fatty acids were also increased in tumor, pancreas, and liver. When tumor-carriers were fed the SFA-enriched HFD featuring lauric and myristic acids (C12:0 and C14:0), tumor, pancreas, and liver showed an increase not in the same SFAs but palmitic acid (C16:0) and/or stearic acid (C18:0). In conclusion, predominant fatty acids in HFDs determine the fatty-acid profiles of pancreatic cancer cells and their murine carriers.
Collapse
Affiliation(s)
- Shuai Qiu
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Feng Wang
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Jiacai Hu
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Yong Yang
- Centre of Disease Control, Jinnan, Tianjin 300350, China
| | - Dihua Li
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Wencong Tian
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Xiangfei Yuan
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Yuanshan Lv
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Ming Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
20
|
Birnbaum DJ, Bertucci F, Finetti P, Birnbaum D, Mamessier E. Head and Body/Tail Pancreatic Carcinomas Are Not the Same Tumors. Cancers (Basel) 2019; 11:cancers11040497. [PMID: 30965637 PMCID: PMC6520848 DOI: 10.3390/cancers11040497] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
The association between pancreatic ductal adenocarcinoma (PDAC) location (head vs. Body/Tail (B/T)) and clinical outcome remains controversial. We collected clinicopathological and gene expression data from 249 resected PDAC samples from public data sets, and we compared data between 208 head and 41 B/T samples. The 2-year overall survival (OS) was better for the head than for the B/T PDACs (44 vs. 27%, p = 0.043), especially when comparing tumors with similar TNM classification (T3/4N0M0: 67% vs. 17%, p = 0.002) or from the same molecular class (squamous subtype: 31% vs. 0%, p < 0.0001). Bailey's molecular subtypes were differentially distributed within the two groups, with the immunogenic subtype being underrepresented in the "B/T" group (p = 0.005). Uni- and multivariate analyses indicated that PDAC anatomic location was an independent prognostic factor. Finally, the supervised analysis identified 334 genes differentially expressed. Genes upregulated in the "head" group suggested lymphocyte activation and pancreas exocrine functions. Genes upregulated in the "B/T" group were related to keratinocyte differentiation, in line with the enrichment for squamous phenotype. We identified a robust gene expression signature (GES) associated with B/T PDAC location, suggesting that head and B/T PDAC are different. This GES could serve as an indicator for differential therapeutic management based on PDAC location.
Collapse
Affiliation(s)
- David Jérémie Birnbaum
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13385 Marseille, France.
- Département de Chirurgie Générale et Viscérale, AP-HM, 13015 Marseille, France.
| | - François Bertucci
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13385 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Pascal Finetti
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
| | - Emilie Mamessier
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
| |
Collapse
|
21
|
Takahashi M, Hori M, Ishigamori R, Mutoh M, Imai T, Nakagama H. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci 2018; 109:3013-3023. [PMID: 30099827 PMCID: PMC6172058 DOI: 10.1111/cas.13766] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and aging are associated with pancreatic cancer risk, but the mechanisms of pancreatic cancer development caused by these factors are not clearly understood. Syrian golden hamsters are susceptible to N‐nitrosobis(2‐oxopropyl)amine (BOP)‐induced pancreatic carcinogenesis. Aging, BOP treatment and/or a high‐fat diet cause severe and scattered fatty infiltration (FI) of the pancreas with abnormal adipokine production and promote pancreatic ductal adenocarcinoma (PDAC) development. The KK‐Ay mouse, a T2DM model, also develops severe and scattered FI of the pancreas. Treatment with BOP induced significantly higher cell proliferation in the pancreatic ducts of KK‐Ay mice, but not in those of ICR and C57BL/6J mice, both of which are characterized by an absence of scattered FI. Thus, we hypothesized that severely scattered FI may be involved in the susceptibility to PDAC development. Indeed, severe pancreatic FI, or fatty pancreas, is observed in humans and is associated with age, body mass index (BMI) and DM, which are risk factors for pancreatic cancer. We analyzed the degree of FI in the non‐cancerous parts of PDAC and non‐PDAC patients who had undergone pancreatoduodenectomy by histopathology and demonstrated that the degree of pancreatic FI in PDAC cases is significantly higher than that in non‐PDAC controls. Moreover, the association with PDAC is positive, even after adjusting for BMI and the prevalence of DM. Accumulating evidence suggests that pancreatic FI is involved in PDAC development in animals and humans, and further investigations to clarify the genetic and environmental factors that cause pancreatic FI are warranted.
Collapse
Affiliation(s)
- Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Rikako Ishigamori
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|
22
|
Fukuda Y, Yamada D, Eguchi H, Hata T, Iwagami Y, Noda T, Asaoka T, Kawamoto K, Gotoh K, Kobayashi S, Takeda Y, Tanemura M, Mori M, Doki Y. CT Density in the Pancreas is a Promising Imaging Predictor for Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2017. [DOI: 10.1245/s10434-017-5914-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Catanzaro R, Cuffari B, Italia A, Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World J Gastroenterol 2016; 22:7660-7675. [PMID: 27678349 PMCID: PMC5016366 DOI: 10.3748/wjg.v22.i34.7660] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
After the first description of fatty pancreas in 1933, the effects of pancreatic steatosis have been poorly investigated, compared with that of the liver. However, the interest of research is increasing. Fat accumulation, associated with obesity and the metabolic syndrome (MetS), has been defined as “fatty infiltration” or “nonalcoholic fatty pancreas disease” (NAFPD). The term “fatty replacement” describes a distinct phenomenon characterized by death of acinar cells and replacement by adipose tissue. Risk factors for developing NAFPD include obesity, increasing age, male sex, hypertension, dyslipidemia, alcohol and hyperferritinemia. Increasing evidence support the role of pancreatic fat in the development of type 2 diabetes mellitus, MetS, atherosclerosis, severe acute pancreatitis and even pancreatic cancer. Evidence exists that fatty pancreas could be used as the initial indicator of “ectopic fat deposition”, which is a key element of nonalcoholic fatty liver disease and/or MetS. Moreover, in patients with fatty pancreas, pancreaticoduodenectomy is associated with an increased risk of intraoperative blood loss and post-operative pancreatic fistula.
Collapse
|
24
|
Fan Y, Gan Y, Shen Y, Cai X, Song Y, Zhao F, Yao M, Gu J, Tu H. Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget 2016; 6:16120-34. [PMID: 25948792 PMCID: PMC4599260 DOI: 10.18632/oncotarget.3878] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has suggested that leptin, an adipokine related to energy homeostasis, plays a role in cancer growth and metastasis. However, its impact on pancreatic cancer is rarely studied. In this study, we found that leptin's functional receptor Ob-Rb was expressed in pancreatic cancer cell lines. Treatment with leptin enhanced the migration and invasion of pancreatic cancer cells but did not affect the proliferation of human pancreatic cancer cells. Leptin up-regulated the expression of matrix metalloproteinase-13 (MMP-13) via the JAK2/STAT3 signaling pathway. The overexpression of leptin was shown to significantly promote tumor growth and lymph node metastasis in a subcutaneous model and an orthotopic model of human pancreatic cancer, respectively. Furthermore, in human pancreatic cancer tissues, the expression of Ob-Rb was positively correlated with the MMP-13 level. The increased expression of either Ob-Rb or MMP-13 was significantly associated with lymph node metastasis and tended to be associated with the TNM stage in patients with pancreatic cancer. Our findings suggest that leptin enhances the invasion of pancreatic cancer through the increase in MMP-13 production, and targeting the leptin/MMP-13 axis could be an attractive therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yingchao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Head and Neck Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojin Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfang Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Kato A, Naiki-Ito A, Nakazawa T, Hayashi K, Naitoh I, Miyabe K, Shimizu S, Kondo H, Nishi Y, Yoshida M, Umemura S, Hori Y, Mori T, Tsutsumi M, Kuno T, Suzuki S, Kato H, Ohara H, Joh T, Takahashi S. Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2. Oncotarget 2015; 6:42963-75. [PMID: 26556864 PMCID: PMC4767484 DOI: 10.18632/oncotarget.5981] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
Abstract
Despite progress in clinical cancer medicine in multiple fields, the prognosis of pancreatic cancer has remained dismal. Recently, chemopreventive strategies using phytochemicals have gained considerable attention as an alternative in the management of cancer. The present study aimed to evaluate the chemopreventive effects of resveratrol (RV) and apocynin (AC) in N-Nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamster. RV- and AC-treated hamsters showed significant reduction in the incidence of pancreatic cancer with a decrease in Ki-67 labeling index in dysplastic lesions. RV and AC suppressed cell proliferation of human and hamster pancreatic cancer cells by inhibiting the G1 phase of the cell cycle with cyclin D1 downregulation and inactivation of AKT-GSK3β and ERK1/2 signaling. Further, decreased levels of GSK3β(Ser9) and ERK1/2 phosphorylation and cyclin D1 expression in the nuclear fraction were observed in cells treated with RV or AC. Nuclear expression of phosphorylated GSK3β(Ser9) was also decreased in dysplastic lesions and adenocarcinomas of hamsters treated with RV or AC in vivo. These results suggest that RV and AC reduce phosphorylated GSK3β(Ser9) and ERK1/2 in the nucleus, resulting in inhibition of the AKT-GSK3β and ERK1/2 signaling pathways and cell cycle arrest in vitro and in vivo. Taken together, the present study indicates that RV and AC have potential as chemopreventive agents for pancreatic cancer.
Collapse
Affiliation(s)
- Akihisa Kato
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Aya Naiki-Ito
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Nakazawa
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuki Hayashi
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Itaru Naitoh
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuyuki Miyabe
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuya Shimizu
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromu Kondo
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Nishi
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michihiro Yoshida
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuichiro Umemura
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuki Hori
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshio Mori
- 4 Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Masahiro Tsutsumi
- 5 Department of Pathology, Saiseikai Chuwa Hospital, Sakurai, Nara, Japan
| | - Toshiya Kuno
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotaka Ohara
- 3 Department of Community-based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
26
|
Diet and Pancreatic Cancer Prevention. Cancers (Basel) 2015; 7:2309-17. [PMID: 26610570 PMCID: PMC4695892 DOI: 10.3390/cancers7040892] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is without any doubt the malignancy with the poorest prognosis and the lowest survival rate. This highly aggressive disease is rarely diagnosed at an early stage and difficult to treat due to its resistance to radiotherapy and chemotherapy. Therefore, there is an urgent need to clarify the causes responsible for pancreatic cancer and to identify preventive strategies to reduce its incidence in the population. Some circumstances, such as smoking habits, being overweight and diabetes, have been identified as potentially predisposing factors to pancreatic cancer, suggesting that diet might play a role. A diet low in fat and sugars, together with a healthy lifestyle, regular exercise, weight reduction and not smoking, may contribute to prevent pancreatic cancer and many other cancer types. In addition, increasing evidence suggests that some food may have chemo preventive properties. Indeed, a high dietary intake of fresh fruit and vegetables has been shown to reduce the risk of developing pancreatic cancer, and recent epidemiological studies have associated nut consumption with a protective effect against it. Therefore, diet could have an impact on the development of pancreatic cancer and further investigations are needed to assess the potential chemo preventive role of specific foods against this disease. This review summarizes the key evidence for the role of dietary habits and their effect on pancreatic cancer and focuses on possible mechanisms for the association between diet and risk of pancreatic cancer.
Collapse
|
27
|
Stolzenberg-Solomon RZ, Newton CC, Silverman DT, Pollak M, Nogueira LM, Weinstein SJ, Albanes D, Männistö S, Jacobs EJ. Circulating Leptin and Risk of Pancreatic Cancer: A Pooled Analysis From 3 Cohorts. Am J Epidemiol 2015; 182:187-97. [PMID: 26085045 PMCID: PMC4517697 DOI: 10.1093/aje/kwv041] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022] Open
Abstract
Adiposity is associated with pancreatic cancer; however, the underlying mechanism(s) is uncertain. Leptin is an adipokine involved in metabolic regulation, and obese individuals have higher concentrations. We conducted a pooled, nested case-control study of cohort participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, and the Cancer Prevention Study II Nutrition Cohort to investigate whether prediagnostic serum leptin was associated with pancreatic cancer. A total of 731 pancreatic adenocarcinoma cases that occurred between 1986 and 2010 were included (maximum follow-up, 23 years). Incidence density-selected controls (n = 909) were matched to cases by cohort, age, sex, race, and blood draw date. Conditional logistic regression was used to calculate odds ratios and 95% confidence intervals. Sex-specific quintiles were based on the distribution of the controls. Overall, serum leptin was not associated with pancreatic cancer (quintile 5 vs. quintile 1: odds ratio = 1.13, 95% confidence interval: 0.75, 1.71; Ptrend = 0.38). There was a significant interaction by follow-up time (P = 0.003), such that elevated risk was apparent only during follow-up of more than 10 years after blood draw (quintile 5 vs. quintile 1: odds ratio = 2.55, 95% confidence interval: 1.23, 5.27; Ptrend = 0.004). Our results support an association between increasing leptin concentration and pancreatic cancer; however, long follow-up is necessary to observe the relationship. Subclinical disease may explain the lack of association during early follow-up.
Collapse
Affiliation(s)
- Rachael Z. Stolzenberg-Solomon
- Correspondence to Dr. Rachael Z. Stolzenberg-Solomon, 9609 Medical Center Drive, Room 6E420, Rockville, MD 20850 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang H, Maitra A, Wang H. Obesity, Intrapancreatic Fatty Infiltration, and Pancreatic Cancer. Clin Cancer Res 2015; 21:3369-71. [PMID: 25995340 DOI: 10.1158/1078-0432.ccr-15-0718] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Obesity and intrapancreatic fatty infiltration are associated with increased risk of pancreatic cancer and its precursor lesions. The interplay among obesity, inflammation, and oncogenic Kras signaling promotes pancreatic tumorigenesis. Targeting the interaction between obesity-associated inflammation and Kras signaling may provide new strategies for prevention and therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
Biphasic Alterations in Expression and Subcellular Localization of MUC1 in Pancreatic Ductal Carcinogenesis in Syrian Hamsters. Pancreas 2015; 44:76-86. [PMID: 25036908 DOI: 10.1097/mpa.0000000000000178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of the present study was to characterize molecular targets for the prevention/diagnosis of pancreatic cancer using a chemically induced hamster pancreatic carcinogenesis model, in which background injuries to the parenchyma, for example, chronic pancreatitis or acinar atrophy, are limited. METHODS Gene expression profiles in atypical hyperplasias were first investigated using a microarray technique. Immunohistochemical analyses of early lesions and invasive ductal carcinoma (IDC) were then conducted for MUC1, of which mRNA levels were prominent among the up-regulated genes, in contrast with the coexpression of epithelial-mesenchymal transition (EMT)-related proteins. RESULTS Immunohistochemistry for MUC1 cytoplasmic domain (MUC1-CD), which was not detected in normal-like pancreatic ducts, was positive in the apical surfaces of the epithelia of hyperplasias with and without atypia and IDC areas with distinct tubular patterns. In contrast, cytoplasmic/nuclear positivity for MUC1-CD was observed in the invasive front of IDCs. The coexpression of EMT-related proteins, such as slug and vimentin, with cytoplasmic/nuclear MUC1-CD was also detected. CONCLUSIONS Alterations in the expression and subcellular localization of MUC1 represent a biphasic phenomenon, and the latter may be associated with EMT in pancreatic carcinogenesis in hamsters, which indicates that changes in MUC1 are important targets for pancreatic cancer prevention and chemotherapy.
Collapse
|
30
|
Uygun A, Kadayifci A, Demirci H, Saglam M, Sakin YS, Ozturk K, Polat Z, Karslioglu Y, Bolu E. The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur J Intern Med 2015; 26:37-41. [PMID: 25491010 DOI: 10.1016/j.ejim.2014.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/07/2014] [Accepted: 11/23/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Fatty pancreas (FP) is related to obesity, and may have some clinical implications on glucose metabolism. The frequency and importance of FP in patients with nonalcoholic steatohepatitis (NASH) are not clear. This study aimed to investigate: the frequency of FP in patients with NASH, and its effects on serum glucose parameters. METHODS FP was detected and graded by transabdominal ultrasonography (USG) in patients with biopsy-proven NASH and healthy controls. Body Mass Index and waist circumference were recorded, and serum lipids, fasting serum glucose, HbA1c, OGTT 2-h, insulin level, insulin resistance, type 2 diabetes mellitus (DM) and prediabetes rates were detected. RESULTS Eighty-four subjects with NASH and 35 healthy controls were enrolled in the study. There was no FP in 41 (48.8%) of the NASH patients according to the study criteria. Forty-three of the NASH patients and 5 of the controls had different grades of fat in their pancreas (51.2% vs. 14%, p=0.001). The HbA1c and OGTT 2-h results were significantly higher in NASH patients with FP compared to those without FP (p=0.003 and p=0.018). The rates of both prediabetes and DM were also found to be significantly increased in NASH patients with FP (p=0.004). The mean waist circumference was higher in patients with FP (p=0.027). Grade of FP by USG showed no effect on study parameters in subgroup analysis. CONCLUSION FP is common in patients with NASH and increases the rate of prediabetes and DM. The coexistence of both NASH and FP has a further impact on glucose metabolism and DM frequency.
Collapse
Affiliation(s)
- Ahmet Uygun
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Abdurrahman Kadayifci
- Division of Gastroenterology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | - Hakan Demirci
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Mutlu Saglam
- Department of Radiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Yusuf S Sakin
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Kadir Ozturk
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Zulfikar Polat
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | | | - Erol Bolu
- Division of Endocrinology, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
31
|
Hori M, Takahashi M, Hiraoka N, Yamaji T, Mutoh M, Ishigamori R, Furuta K, Okusaka T, Shimada K, Kosuge T, Kanai Y, Nakagama H. Association of pancreatic Fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol 2014; 5:e53. [PMID: 24622469 PMCID: PMC3972693 DOI: 10.1038/ctg.2014.5] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES: Fatty infiltration (FI) in the pancreas is positively correlated with high body mass index (BMI) or obesity, and the prevalence of diabetes mellitus (DM), which are well-known risk factors of pancreatic cancer. However, the association of FI in the pancreas with pancreatic cancer is unclear. Recently, we have shown that Syrian golden hamsters feature FI of the pancreas, the severity of which increases along with the progression of carcinogenesis induced by a chemical carcinogen. To translate the results to a clinical setting, we investigated whether FI in the pancreas is associated with pancreatic cancer in a series of patients who had undergone pancreatoduodenectomy. METHODS: In the series, we identified 102 cases with pancreatic ductal adenocarcinoma (PDAC) and 85 controls with cancers except for PDAC. The degree of FI was evaluated histopathologically from the area occupied by adipocytes in pancreas sections, and was compared between the cases and controls. RESULTS: The degree of FI in the pancreas was significantly higher in cases than in controls (median 26 vs. 15%, P<0.001) and positively associated with PDAC, even after adjustment for BMI, prevalence of DM and other confounding factors (odds ratio (OR), 6.1; P<0.001). BMI was identified as the most significantly associated factor with FI in the pancreas. CONCLUSIONS: There is a positive correlation between FI in the pancreas and pancreatic cancer.
Collapse
Affiliation(s)
- Mika Hori
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Michihiro Mutoh
- Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Rikako Ishigamori
- Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Koh Furuta
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuaki Shimada
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoo Kosuge
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- 1] Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan [2] Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
32
|
The diversity between pancreatic head and body/tail cancers: clinical parameters and in vitro models. Hepatobiliary Pancreat Dis Int 2013; 12:480-7. [PMID: 24103277 DOI: 10.1016/s1499-3872(13)60076-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) can be divided into head, body and tail cancers according to the anatomy. Distinctions in tissue composition, vascularization and innervations have been clearly identified between the head and body/tail of the pancreas both in embryological development and in histopathology. To understand the postulated genotype difference, we present comprehensive information on two PDAC cell lines as typical representatives originating from pancreatic head and body/tail cancers, respectively. DATA SOURCE In the present review, we compare the difference between pancreatic head and body/tail cancers regarding clinical parameters and introducing an in vitro model. RESULTS Increasing evidence has shown that tumors at different locations (head vs body/tail) display different clinical presentation (e.g. incidence, symptom), treatment efficiency (e.g. surgery, chemotherapy) and thus patient prognosis. However, the genetic or molecular diversity (e.g. mutations, microRNA) between the two subtypes of PDAC has not been elucidated so far. They present different chemo- and/or radio-resistance, extracellular matrix adhesion and invasiveness, as well as genetic profiles. CONCLUSION Genetic and tumor biological diversity exists in PDAC according to the tumor localization.
Collapse
|
33
|
Lashinger LM, Harrison LM, Rasmussen AJ, Logsdon CD, Fischer SM, McArthur MJ, Hursting SD. Dietary energy balance modulation of Kras- and Ink4a/Arf+/--driven pancreatic cancer: the role of insulin-like growth factor-I. Cancer Prev Res (Phila) 2013; 6:1046-55. [PMID: 23980075 DOI: 10.1158/1940-6207.capr-13-0185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New molecular targets and intervention strategies for breaking the obesity-pancreatic cancer link are urgently needed. Using relevant spontaneous and orthotopically transplanted murine models of pancreatic cancer, we tested the hypothesis that dietary energy balance modulation impacts pancreatic cancer development and progression through an insulin-like growth factor (IGF)-I-dependent mechanism. In LSL-Kras(G12D)/Pdx-1-Cre/Ink4a/Arf(lox/+) mice, calorie restriction versus overweight- or obesity-inducing diet regimens decreased serum IGF-I, tumoral Akt/mTOR signaling, pancreatic desmoplasia, and progression to pancreatic ductal adenocarcinoma (PDAC), and increased pancreatic tumor-free survival. Serum IGF-I, Akt/mTOR signaling, and orthotopically transplanted PDAC growth were decreased in liver-specific IGF-I-deficient mice (vs. wild-type mice), and rescued with IGF-I infusion. Thus, dietary energy balance modulation impacts spontaneous pancreatic tumorigenesis induced by mutant Kras and Ink4a deficiency, the most common genetic alterations in human pancreatic cancer. Furthermore, IGF-I and components of its downstream signaling pathway are promising mechanistic targets for breaking the obesity-pancreatic cancer link.
Collapse
Affiliation(s)
- Laura M Lashinger
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, 1400 Barbara Jordan Blvd. Mail Code R1800, Austin, TX 78723.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dawson DW, Hertzer K, Moro A, Donald G, Chang HH, Go VL, Pandol SJ, Lugea A, Gukovskaya AS, Li G, Hines OJ, Rozengurt E, Eibl G. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila) 2013; 6:1064-73. [PMID: 23943783 DOI: 10.1158/1940-6207.capr-13-0065] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, for example, weight gain and metabolic disturbances. Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a high-fat, high-calorie diet (HFCD; ∼4,535 kcal/kg; 40% of calories from fats) or control diet (∼3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared with control animals, mice fed with the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor I (IGF-I). The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions. Our results show that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemopreventive strategies targeting obesity-associated pancreatic cancer development.
Collapse
Affiliation(s)
- David W Dawson
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, 10833 LeConte Avenue, 72-236 CHS, Los Angeles, CA 90095.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE This study aimed to investigate whether the reported relationship between diabetes and pancreatic cancer (PC) could result from detection bias and whether dyslipidemia and/or new-onset diabetes (diagnosed within 1 year) could predict PC. METHODS A random sample of 1 million subjects covered by National Health Insurance was recruited. From 2003 to 2005, 495,493 men and 503,901 women without PC were followed up. Cox regression was used to evaluate the adjusted relative risk considering potential PC detection examinations and covariates. RESULTS Diabetic patients had a significantly higher probability of receiving examinations that might lead to PC diagnosis. In Cox proportional hazards regression models, diabetes was not a significant predictor, but dyslipidemia was significantly associated with an approximately 40% higher risk of PC. Age, living in more urbanized regions, and potential PC detection examinations were significant covariates. Patients with new-onset diabetes and previous dyslipidemia had a remarkably higher risk compared with those without either condition (relative risk [95% confidence interval], 2.512 [1.169-5.398]). CONCLUSIONS Dyslipidemia, but not diabetes, is a significant risk factor for PC. The link between diabetes and PC is likely due to confounders and detection bias. Patients with new-onset diabetes and a history of dyslipidemia are at an especially high risk of PC.
Collapse
|
36
|
|
37
|
Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents. Semin Immunopathol 2012; 35:203-27. [PMID: 22955327 DOI: 10.1007/s00281-012-0340-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.
Collapse
|