1
|
Devenyi RA, Hamedani AG. Visual dysfunction in dementia with Lewy bodies. Curr Neurol Neurosci Rep 2024; 24:273-284. [PMID: 38907811 PMCID: PMC11258179 DOI: 10.1007/s11910-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE OF REVIEW To review the literature on visual dysfunction in dementia with Lewy bodies (DLB), including its mechanisms and clinical implications. RECENT FINDINGS Recent studies have explored novel aspects of visual dysfunction in DLB, including visual texture agnosia, mental rotation of 3-dimensional drawn objects, and reading fragmented letters. Recent studies have shown parietal and occipital hypoperfusion correlating with impaired visuoconstruction performance. While visual dysfunction in clinically manifest DLB is well recognized, recent work has focused on prodromal or mild cognitive impairment (MCI) due to Lewy body pathology with mixed results. Advances in retinal imaging have recently led to the identification of abnormalities such as parafoveal thinning in DLB. Patients with DLB experience impairment in color perception, form and object identification, space and motion perception, visuoconstruction tasks, and illusions in association with visual cortex and network dysfunction. These symptoms are associated with visual hallucinations, driving impairment, falls, and other negative outcomes.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Matsusue E, Inoue C, Shimoda M, Nakamura T, Matsumoto S, Matsumoto K, Tanino T, Nakamura K, Fujii S. Utility of combining multiple parameters of 123I-IMP SPECT and voxel-based morphometry MRI using a multiparametric scoring system for differentiating dementia with Lewy bodies from Alzheimer's disease. Acta Radiol 2024; 65:825-834. [PMID: 38785068 DOI: 10.1177/02841851241253775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Brain magnetic resonance imaging voxel-based morphometry (VBM) and perfusion single-photon emission computed tomography (SPECT) are useful for differentiating dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). PURPOSE To determine whether combining multiple parameters of VBM and SPECT using a multiparametric scoring system (MSS) improves diagnostic accuracy in differentiating DLB from AD. MATERIAL AND METHODS In total, 23 patients with DLB and 57 patients with AD underwent imaging using a voxel-based specific regional analysis system for AD (VSRAD), an easy Z-score imaging system, and a Z-Graph using three-dimensional stereotactic surface projection. The cutoff values were determined using the receiver operating characteristic curve to differentiate DLB from AD for all parameters. Patients were scored 1 (DLB) or 0 (AD) for each statistically significant parameter, according to a threshold. The total score was determined for each case to obtain a cutoff value for the MSS. RESULTS The mean Z-scores in the medial temporal lobes using the VSRAD were significantly lower in patients with DLB than in those with AD. Each Z-score of the summed Z-scores in all four segmented regions of the occipital lobes using the Z-Graph was significantly higher in patients with DLB than in those with AD. Among the five parameters, the highest accuracy was 80% for the Z-score of the summed Z-scores in the left medial occipital lobe. For the MSS, a cutoff value of four improved the diagnostic accuracy to 82%. CONCLUSION MSS was more accurate than any single parameter of VBM or SPECT in differentiating DLB from AD.
Collapse
Affiliation(s)
- Eiji Matsusue
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Chie Inoue
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Manabu Shimoda
- Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Tomoya Nakamura
- Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Shota Matsumoto
- Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Kensuke Matsumoto
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Tomohiko Tanino
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Kazuhiko Nakamura
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Shinya Fujii
- Division of Radiology, Department of Multidisciplinary Internal Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Frigerio I, Bouwman MMA, Noordermeer RTGMM, Podobnik E, Popovic M, Timmermans E, Rozemuller AJM, van de Berg WDJ, Jonkman LE. Regional differences in synaptic degeneration are linked to alpha-synuclein burden and axonal damage in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:4. [PMID: 38173031 PMCID: PMC10765668 DOI: 10.1186/s40478-023-01711-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Regional differences in synaptic degeneration may underlie differences in clinical presentation and neuropathological disease progression in Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Here, we mapped and quantified synaptic degeneration in cortical brain regions in PD, PD with dementia (PDD) and DLB, and assessed whether regional differences in synaptic loss are linked to axonal degeneration and neuropathological burden. We included a total of 47 brain donors, 9 PD, 12 PDD, 6 DLB and 20 non-neurological controls. Synaptophysin+ and SV2A+ puncta were quantified in eight cortical regions using a high throughput microscopy approach. Neurofilament light chain (NfL) immunoreactivity, Lewy body (LB) density, phosphorylated-tau and amyloid-β load were also quantified. Group differences in synaptic density, and associations with neuropathological markers and Clinical Dementia Rating (CDR) scores, were investigated using linear mixed models. We found significantly decreased synaptophysin and SV2A densities in the cortex of PD, PDD and DLB cases compared to controls. Specifically, synaptic density was decreased in cortical regions affected at Braak α-synuclein stage 5 in PD (middle temporal gyrus, anterior cingulate and insula), and was additionally decreased in cortical regions affected at Braak α-synuclein stage 4 in PDD and DLB compared to controls (entorhinal cortex, parahippocampal gyrus and fusiform gyrus). Synaptic loss associated with higher NfL immunoreactivity and LB density. Global synaptophysin loss associated with longer disease duration and higher CDR scores. Synaptic neurodegeneration occurred in temporal, cingulate and insular cortices in PD, as well as in parahippocampal regions in PDD and DLB. In addition, synaptic loss was linked to axonal damage and severe α-synuclein burden. These results, together with the association between synaptic loss and disease progression and cognitive impairment, indicate that regional synaptic loss may underlie clinical differences between PD and PDD/DLB. Our results might provide useful information for the interpretation of synaptic biomarkers in vivo.
Collapse
Affiliation(s)
- Irene Frigerio
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Maud M A Bouwman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Ruby T G M M Noordermeer
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Ema Podobnik
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Marko Popovic
- Department Molecular cell biology & Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kucikova L, Kalabizadeh H, Motsi KG, Rashid S, O'Brien JT, Taylor JP, Su L. A systematic literature review of fMRI and EEG resting-state functional connectivity in Dementia with Lewy Bodies: Underlying mechanisms, clinical manifestation, and methodological considerations. Ageing Res Rev 2024; 93:102159. [PMID: 38056505 DOI: 10.1016/j.arr.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Previous studies suggest that there may be important links between functional connectivity, disease mechanisms underpinning the Dementia with Lewy Body (DLB) and the key clinical symptoms, but the exact relationship remains unclear. We performed a systematic literature review to address this gap by summarising the research findings while critically considering the impact of methodological differences on findings. The main methodological choices of fMRI articles included data-driven, seed-based or regions of interest approaches, or their combinations. Most studies focused on examining large-scale resting-state networks, which revealed a consistent decrease in connectivity and some associations with non-cognitive symptoms. Although the inter-network connectivity showed mixed results, the main finding is consistent with theories positing disconnection between visual and attentional areas of the brain implicated in the aetiology of psychotic symptoms in the DLB. The primary methodological choice of EEG studies was implementing the phase lag index and using graph theory. The EEG studies revealed a consistent decrease in connectivity on alpha and beta frequency bands. While the overall trend of findings showed decreased connectivity, more subtle changes in the directionality of connectivity were observed when using a hypothesis-driven approach. Problems with cognition were also linked with greater functional connectivity disturbances. In summary, connectivity measures can capture brain disturbances in the DLB and remain crucial in uncovering the causal relationship between the networks' disorganisation and underlying mechanisms resulting in psychotic, motor, and cognitive symptoms of the DLB.
Collapse
Affiliation(s)
- Ludmila Kucikova
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Hoda Kalabizadeh
- Oxford Machine Learning in NeuroImaging Lab, OMNI, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | | | - Sidrah Rashid
- Academic Unit of Medical Education, University of Sheffield, Sheffield, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Li Su
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Gao V, Briano JA, Komer LE, Burré J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol 2023; 435:167714. [PMID: 35787839 PMCID: PMC10472340 DOI: 10.1016/j.jmb.2022.167714] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
α-Synuclein is an abundant protein at the neuronal synapse that has been implicated in Parkinson's disease for over 25 years and characterizes the hallmark pathology of a group of neurodegenerative diseases now known as the synucleinopathies. Physiologically, α-synuclein exists in an equilibrium between a synaptic vesicle membrane-bound α-helical multimer and a cytosolic largely unstructured monomer. Through its membrane-bound state, α-synuclein functions in neurotransmitter release by modulating several steps in the synaptic vesicle cycle, including synaptic vesicle clustering and docking, SNARE complex assembly, and homeostasis of synaptic vesicle pools. These functions have been ascribed to α-synuclein's interactions with the synaptic vesicle SNARE protein VAMP2/synaptobrevin-2, the synaptic vesicle-attached synapsins, and the synaptic vesicle membrane itself. How α-synuclein affects these processes, and whether disease is due to loss-of-function or gain-of-toxic-function of α-synuclein remains unclear. In this review, we provide an in-depth summary of the existing literature, discuss possible reasons for the discrepancies in the field, and propose a working model that reconciles the findings in the literature.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, New York Presbyterian/Weill Cornell Medicine, New York, NY, USA.
| | - Juan A Briano
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lauren E Komer
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. https://www.twitter.com/lauren_komer
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Sinclair L, Brenton J, Liu AKL, MacLachlan R, Gentleman SM, Love S. Possible Contribution of Altered Cholinergic Activity in the Visual Cortex in Visual Hallucinations in Parkinson's Disease. J Neuropsychiatry Clin Neurosci 2022; 34:168-176. [PMID: 34961331 DOI: 10.1176/appi.neuropsych.21040103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Up to one-third of patients with Parkinson's disease (PD) experience visual hallucinations (VHs). Lewy bodies are sparse in the visual cortices and seem unlikely to explain the hallucinations. Some neuroimaging studies have found that perfusion is reduced in the occipital lobe in individuals with VHs. Recent work has suggested that decreased cholinergic input may directly lead to the decreased perfusion. The investigators hypothesized that individuals with PD and VHs would have biochemical evidence of reduced microvascular perfusion and reduced cholinergic activity in areas of the brain that process visual images. METHODS Tissue from Brodmann's area (BA) 18 and BA 19 was obtained from a well-characterized cohort matched for age, gender, and postmortem interval in 69 individuals (PD without VHs, N=11; PD without dementia plus VHs N=10, N=10; PD with dementia plus VHs, N=16; and control subjects, N=32). Von Willebrand factor, vascular endothelial growth factor A, and myelin-associated glycoprotein:proteolipid protein-1 (MAG:PLP1) ratio-a measure of tissue oxygenation relative to metabolic demand, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), choline acetyltransferase, and α-synuclein-were quantified by enzyme-linked immunosorbent assay. The primary outcome was the MAG:PLP1 ratio. RESULTS There was no biochemical evidence of chronic hypoperfusion in PD, although microvessel density was decreased in ventral BA 18 and BA 19. There was no between-group difference in BChE in either dorsal BA 18 or BA 19. AChE concentration was reduced in individuals with PD compared with control subjects in dorsal and ventral BA 18 and dorsal BA 19, and it was increased in ventral BA 19. These changes were most marked in the PD plus VHs group. CONCLUSIONS These results suggest that changes in cholinergic activity rather than chronic hypoperfusion may underlie VHs in PD.
Collapse
Affiliation(s)
- Lindsey Sinclair
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Jake Brenton
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Alan King Lun Liu
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Rob MacLachlan
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Steve M Gentleman
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Seth Love
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| |
Collapse
|
7
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
8
|
Matar E, Brooks D, Lewis SJ, Halliday GM. Limbic thalamus atrophy is associated with visual hallucinations in Lewy body disorders. Neurobiol Aging 2022; 112:122-128. [DOI: 10.1016/j.neurobiolaging.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 01/22/2023]
|
9
|
Burstein ES. Relevance of 5-HT 2A Receptor Modulation of Pyramidal Cell Excitability for Dementia-Related Psychosis: Implications for Pharmacotherapy. CNS Drugs 2021; 35:727-741. [PMID: 34224112 PMCID: PMC8310514 DOI: 10.1007/s40263-021-00836-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Psychosis occurs across a wide variety of dementias with differing etiologies, including Alzheimer's dementia, Parkinson's dementia, Lewy body dementia, frontotemporal dementia, and vascular dementia. Pimavanserin, a selective serotonin 5-HT2A receptor (5-HT2AR) inverse agonist, has shown promising results in clinical trials by reducing the frequency and/or severity of hallucinations and delusions and the risk of relapse of these symptoms in patients with dementia-related psychosis. A literature review was conducted to identify mechanisms that explain the role of 5-HT2ARs in both the etiology and treatment of dementia-related psychosis. This review revealed that most pathological changes commonly associated with neurodegenerative diseases cause one or more of the following events to occur: reduced synaptic contact of gamma aminobutyric acid (GABA)-ergic interneurons with glutamatergic pyramidal cells, reduced cortical innervation from subcortical structures, and altered 5-HT2AR expression levels. Each of these events promotes increased pyramidal cell hyperexcitability and disruption of excitatory/inhibitory balance, facilitating emergence of psychotic behaviors. The brain regions affected by these pathological changes largely coincide with areas expressing high levels of 5-HT2ARs. At the cellular level, 5-HT2ARs are most highly expressed on cortical glutamatergic pyramidal cells, where they regulate pyramidal cell excitability. The common effects of different neurodegenerative diseases on pyramidal cell excitability together with the close anatomical and functional connection of 5-HT2ARs to pyramidal cell excitability may explain why suppressing 5-HT2AR activity could be an effective strategy to treat dementia-related psychosis.
Collapse
Affiliation(s)
- Ethan S. Burstein
- Acadia Pharmaceuticals Inc, 12830 El Camino Real, Suite 400, San Diego, CA 92130 USA
| |
Collapse
|
10
|
Pathologically Decreased CSF Levels of Synaptic Marker NPTX2 in DLB Are Correlated with Levels of Alpha-Synuclein and VGF. Cells 2020; 10:cells10010038. [PMID: 33383752 PMCID: PMC7824459 DOI: 10.3390/cells10010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Dementia with Lewy bodies (DLB) is a neurodegenerative disease where synaptic loss and reduced synaptic integrity are important neuropathological substrates. Neuronal Pentraxin 2(NPTX2) is a synaptic protein that drives the GABAergic inhibitory circuit. Our aim was to examine if NPTX2 cerebral spinal fluid (CSF) levels in DLB patients were altered and how these levels related to other synaptic protein levels and to cognitive function and decline. Methods: NPTX2, VGF, and α-synuclein levels were determined in CSF of cognitive healthy (n = 27), DLB (n = 48), and AD (n = 20) subjects. Multiple cognitive domains were tested, and data were compared using linear models. Results: Decreased NPTX2 levels were observed in DLB (median = 474) and AD (median = 453) compared to cognitive healthy subjects (median = 773). Strong correlations between NPTX2, VGF, and α-synuclein were observed dependent on diagnosis. Combined, these markers had a high differentiating power between DLB and cognitive healthy subjects (AUC = 0.944). Clinically, NPTX2 levels related to global cognitive function and cognitive decline in the visual spatial domain. Conclusion: NPTX2 CSF levels were reduced in DLB and closely correlated to decreased VGF and α-synuclein CSF levels. CSF NPTX2 levels in DLB related to decreased functioning in the visual spatial domain.
Collapse
|
11
|
Kumar A, Kumar R, Flanagan J, Långström B, Björndahl L, Darreh-Shori T. Esomeprazole reduces sperm motility index by targeting the spermic cholinergic machinery: A mechanistic study for the association between use of proton pump inhibitors and reduced sperm motility index. Biochem Pharmacol 2020; 182:114212. [PMID: 32866455 DOI: 10.1016/j.bcp.2020.114212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Recent studies have linked prolonged use of the most commonly prescribed proton pump inhibitors (PPIs) with declined human sperm function and infertility. Here, we report for the first time the most plausible underlying mechanism for this unwarranted secondary mode of action. We followed up on a recent serendipitous discovery in our laboratory regarding PPIs' off-target action and performed detailed pharmacodynamic analyses by combining in silico and in vitro studies to determine the off-target effect of one of the most commonly used PPI, esomeprazole, on the key human acetylcholine biosynthesizing enzyme, choline acetyltransferase (ChAT; EC 2.3.1.6). A pivotal enzyme in the spermic cholinergic system that governs the sperm motility, concentration and quality. Our results were conclusive and showed that both the racemic form, omeprazole and its pure S-enantiomer, esomeprazole, acted as potent mixed-competitive inhibitor of human ChAT with a global inhibition constant (Ki) of 88 nM (95%CI: 10-167 nM) for esomeprazole and 178 nM (95%CI: 140-230 nM) for the racemic drug omeprazole. Most importantly, esomeprazole substantially reduces both total number of motile sperm (by 36%, p < 0.001; and 21% p < 0.0001, at 10 and 100 nM, respectively) as well as the total number of sperm with progressive motility (by 42% p < 0.0016 and by 26% p < 0.0001, respectively) after 60 min relative to 20 min incubation in our ex vivo functional assay performed on ejaculated human sperm. In conclusion, this study presents a completely new perspective regarding PPIs secondary mode of action/unwarranted side effects and calls for further mechanistic and larger clinical studies to elucidate the role of PPIs in infertility.
Collapse
Affiliation(s)
- Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Rajnish Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - John Flanagan
- ANOVA, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Lars Björndahl
- ANOVA, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Bae HJ, Kim J, Jeon SJ, Kim J, Goo N, Jeong Y, Cho K, Cai M, Jung SY, Kwon KJ, Ryu JH. Green tea extract containing enhanced levels of epimerized catechins attenuates scopolamine-induced memory impairment in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112923. [PMID: 32360798 DOI: 10.1016/j.jep.2020.112923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea has been used as a traditional medicine to control brain function and digestion. Recent works suggest that drinking green tea could prevent cognitive function impairment. During tea manufacturing processes, such as brewing and sterilization, green tea catechins are epimerized. However, the effects of heat-epimerized catechins on cognitive function are still unknown. To take this advantage, we developed a new green tea extract, high temperature processed-green tea extract (HTP-GTE), which has a similar catechin composition to green tea beverages. AIM OF THE STUDY This study aimed to investigate the effect of HTP-GTE on scopolamine-induced cognitive dysfunction and neuronal differentiation, and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS The neuronal differentiation promoting effects of HTP-GTE in SH-SY5Y cells was assessed by evaluating neurite length and the expression level of synaptophysin. The DNA methylation status at the synaptophysin promoter was determined in differentiated SH-SY5Y cells and in the hippocampi of mice. HTP-GTE was administered for 10 days at doses of 30, 100 and 300 mg/kg (p.o.) to mice, and its effects on cognitive functions were measured by Y-maze and passive avoidance tests under scopolamine-induced cholinergic blockade state. RESULTS HTP-GTE induced neuronal differentiation and neurite outgrowth via the upregulation of synaptophysin gene expression. These beneficial effects of HTP-GTE resulted from reducing DNA methylation levels at the synaptophysin promoter via the suppression of DNMT1 activity. The administration of HTP-GTE ameliorated cognitive impairments in a scopolamine-treated mouse model. CONCLUSIONS These results suggest that HTP-GTE could alleviate cognitive impairment by regulating synaptophysin expression and DNA methylation levels. Taken together, HTP-GTE would be a promising treatment for the cognitive impairment observed in dysfunction of the cholinergic neurotransmitter system.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jihyun Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Se Jin Jeon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, South Korea
| | - Jaehoon Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nayeon Goo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yongwoo Jeong
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyungnam Cho
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mudan Cai
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Ja Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, South Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Kumar R, Kumar A, Nordberg A, Långström B, Darreh-Shori T. Proton pump inhibitors act with unprecedented potencies as inhibitors of the acetylcholine biosynthesizing enzyme-A plausible missing link for their association with incidence of dementia. Alzheimers Dement 2020; 16:1031-1042. [PMID: 32383816 DOI: 10.1002/alz.12113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Several pharmacoepidemiological studies indicate that proton pump inhibitors (PPIs) significantly increase the risk of dementia. Yet, the underlying mechanism is not known. Here, we report the discovery of an unprecedented mode of action of PPIs that explains how PPIs may increase the risk of dementia. METHODS Advanced in silico docking analyses and detailed enzymological assessments were performed on PPIs against the core-cholinergic enzyme, choline-acetyltransferase (ChAT), responsible for biosynthesis of acetylcholine (ACh). RESULTS This report shows compelling evidence that PPIs act as inhibitors of ChAT, with high selectivity and unprecedented potencies that lie far below their in vivo plasma and brain concentrations. DISCUSSION Given that accumulating evidence points at cholinergic dysfunction as a driving force of major dementia disorders, our findings mechanistically explain how prolonged use of PPIs may increase incidence of dementia. This call for restrictions for prolonged use of PPIs in elderly, and in patients with dementia or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Rajnish Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Sinclair LI, Kumar A, Darreh-Shori T, Love S. Visual hallucinations in Alzheimer's disease do not seem to be associated with chronic hypoperfusion of to visual processing areas V2 and V3 but may be associated with reduced cholinergic input to these areas. ALZHEIMERS RESEARCH & THERAPY 2019; 11:80. [PMID: 31511061 PMCID: PMC6740037 DOI: 10.1186/s13195-019-0519-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Background Up to 20% of patients with AD experience hallucinations. The pathological substrate is not known. Visual hallucinations (VH) are more common in dementia with Lewy bodies (DLB). In autopsy studies, up to 60% of patients with AD have concomitant Lewy body pathology. Decreased perfusion of the occipital lobe has been implicated in DLB patients with VH, and post-mortem studies point to both decreased cholinergic activity and reduced oxygenation of the occipital cortex in DLB. Methods We used biochemical methods to assess microvessel density (level of von Willebrand factor, a marker of endothelial cell content), ante-mortem oxygenation (vascular endothelial growth factor, a marker of tissue hypoxia; myelin-associated glycoprotein to proteolipid protein-1 ratio, a measure of tissue oxygenation relative to metabolic demand), cholinergic innervation (acetylcholinesterase and choline acetyltransferase), butyrylcholinesterase and insoluble α-synuclein content in the BA18 and BA19 occipital cortex obtained post-mortem from 23 AD patients who had experienced visual hallucinations, 19 AD patients without hallucinations, 19 DLB patients, and 36 controls. The cohorts were matched for age, gender and post-mortem interval. Results There was no evidence of reduced microvessel density, hypoperfusion or reduction in ChAT activity in AD with visual hallucinations. Acetylcholinesterase activity was reduced in both BA18 and BA19, in all 3 dementia groups, and the concentration was also reduced in BA19 in the DLB and AD without visual hallucinations groups. Insoluble α-synuclein was raised in the DLB group in both areas but not in AD either with or without visual hallucinations. Conclusions Our results suggest that visual hallucinations in AD are associated with cholinergic denervation rather than chronic hypoperfusion or α-synuclein accumulation in visual processing areas of the occipital cortex. Electronic supplementary material The online version of this article (10.1186/s13195-019-0519-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsey Isla Sinclair
- Population Health Sciences, Oakfield House, University of Bristol, Clifton, Bristol, BS8 2BN, UK. .,Translational Health Sciences, Level 1 Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - Amit Kumar
- Division of Clinical Geriatrics, NEO Plan 7, Department of Neurobiology, Care Sciences and Society (NVS), H1, 141 52, Huddinge, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, NEO Plan 7, Department of Neurobiology, Care Sciences and Society (NVS), H1, 141 52, Huddinge, Sweden
| | - Seth Love
- Translational Health Sciences, Level 1 Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| |
Collapse
|
15
|
Bereczki E, Branca RM, Francis PT, Pereira JB, Baek JH, Hortobágyi T, Winblad B, Ballard C, Lehtiö J, Aarsland D. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain 2019; 141:582-595. [PMID: 29324989 DOI: 10.1093/brain/awx352] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023] Open
Abstract
See Attems and Jellinger (doi:10.1093/brain/awx360) for a scientific commentary on this article.Cognitive changes occurring throughout the pathogenesis of neurodegenerative diseases are directly linked to synaptic loss. We used in-depth proteomics to compare 32 post-mortem human brains in the prefrontal cortex of prospectively followed patients with Alzheimer's disease, Parkinson's disease with dementia, dementia with Lewy bodies and older adults without dementia. In total, we identified 10 325 proteins, 851 of which were synaptic proteins. Levels of 25 synaptic proteins were significantly altered in the various dementia groups. Significant loss of SNAP47, GAP43, SYBU (syntabulin), LRFN2, SV2C, SYT2 (synaptotagmin 2), GRIA3 and GRIA4 were further validated on a larger cohort comprised of 92 brain samples using ELISA or western blot. Cognitive impairment before death and rate of cognitive decline significantly correlated with loss of SNAP47, SYBU, LRFN2, SV2C and GRIA3 proteins. Besides differentiating Parkinson's disease dementia, dementia with Lewy bodies, and Alzheimer's disease from controls with high sensitivity and specificity, synaptic proteins also reliably discriminated Parkinson's disease dementia from Alzheimer's disease patients. Our results suggest that these particular synaptic proteins have an important predictive and discriminative molecular fingerprint in neurodegenerative diseases and could be a potential target for early disease intervention.
Collapse
Affiliation(s)
- Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden
| | - Rui M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Paul T Francis
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, UK
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Novum, 14186 Stockholm, Sweden
| | - Jean-Ha Baek
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden
| | - Clive Ballard
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Aoki Y, Kazui H, Pascal-Marqui RD, Ishii R, Yoshiyama K, Kanemoto H, Suzuki Y, Sato S, Hata M, Canuet L, Iwase M, Ikeda M. EEG Resting-State Networks in Dementia with Lewy Bodies Associated with Clinical Symptoms. Neuropsychobiology 2019; 77:206-218. [PMID: 30654367 DOI: 10.1159/000495620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by progressive cognitive decline, fluctuating cognition, visual hallucinations, rapid eye movement sleep behavior disorder, and parkinsonism. DLB is the second most common type of degenerative dementia of all dementia cases. However, DLB, particularly in the early stage, is underdiagnosed and sometimes misdiagnosed with other types of dementia. Thus, it is of great interest investigating neurophysiological markers of DLB. METHOD We introduced exact low-resolution brain electromagnetic tomography (eLORETA)-independent component analysis (ICA) to assess activities of 5 electroencephalography (EEG) resting-state networks (RSNs) in 41 drug-free DLB patients. RESULTS Compared to 80 healthy controls, DLB patients had significantly decreased activities in occipital visual and sensorimotor networks, where DLB patients and healthy controls showed no age dependences in all EEG-RSN activities. Also, we found correlations between all EEG-RSN activities and DLB symptoms. Specifically, decreased occipital α activity showed correlations with worse brain functions related to attention/concentration, visuospatial discrimination, and global cognition. Enhanced visual perception network activity correlated with milder levels of depression and anxiety. Enhanced self-referential network activity correlated with milder levels of depression. Enhanced memory perception network activity correlated with better semantic memory, visuospatial discrimination function, and global cognitive function as well as with severer visual hallucination. In addition, decreased sensorimotor network activity correlated with a better semantic memory. CONCLUSION These results indicate that eLORETA-ICA can detect EEG-RSN activity alterations in DLB related to symptoms. Therefore, eLORETA-ICA with EEG data can be a useful noninvasive tool for sensitive detection of EEG-RSN activity changes characteristic of DLB and for understanding the neurophysiological mechanisms underlying this disease.
Collapse
Affiliation(s)
- Yasunori Aoki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan, .,Department of Psychiatry, Nippon Life Hospital, Osaka, Japan,
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi University, Kochi, Japan
| | - Roberto D Pascal-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland.,Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Yoshiyama
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Psychiatry, Mizuma Hospital, Osaka, Japan.,Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Osaka, Japan
| | - Yukiko Suzuki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shunsuke Sato
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Leonides Canuet
- Department of Clinical Psychology and Psychobiology, La Laguna University, Tenerife, Spain
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Increased Active OMI/HTRA2 Serine Protease Displays a Positive Correlation with Cholinergic Alterations in the Alzheimer's Disease Brain. Mol Neurobiol 2018; 56:4601-4619. [PMID: 30361890 PMCID: PMC6657433 DOI: 10.1007/s12035-018-1383-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
OMI/HTRA2 (high-temperature requirement serine protease A2) is a mitochondrial serine protease involved in several cellular processes, including autophagy, chaperone activity, and apoptosis. Few studies on the role of OMI/HTRA2 in Alzheimer's disease (AD) are available, but none on its relationship with the cholinergic system and neurotrophic factors as well as other AD-related proteins. In this study, immunohistochemical analyses revealed that AD patients had a higher cytosolic distribution of OMI/HTRA2 protein compared to controls. Quantitative analyses on brain extracts indicated a significant increase in the active form of OMI/HTRA2 in the AD brain. Activated OMI/HTRA2 protein positively correlated with stress-associated read-through acetylcholinesterase activity. In addition, α7 nicotinic acetylcholine receptor gene expression, a receptor also known to be localized on the outer membrane of mitochondria, showed a strong correlation with OMI/HTRA2 gene expression in three different brain regions. Interestingly, the activated OMI/HTRA2 levels also correlated with the activity of the acetylcholine-biosynthesizing enzyme, choline acetyltransferase (ChAT); with levels of the neurotrophic factors, NGF and BDNF; with levels of the soluble fragments of amyloid precursor protein (APP); and with gene expression of the microtubule-associated protein tau in the examined brain regions. Overall, the results demonstrate increased levels of the mitochondrial serine protease OMI/HTRA2, and a coherent pattern of association between the activated form of OMI/HTRA2 and several key proteins involved in AD pathology. In this paper, we propose a new hypothetical model to highlight the importance and needs of further investigation on the role of OMI/HTRA2 in the mitochondrial function and AD.
Collapse
|
18
|
Adams JW, Alvarez VE, Mez J, Huber BR, Tripodis Y, Xia W, Meng G, Kubilus CA, Cormier K, Kiernan PT, Daneshvar DH, Chua AS, Svirsky S, Nicks R, Abdolmohammadi B, Evers L, Solomon TM, Cherry JD, Aytan N, Mahar I, Devine S, Auerbach S, Alosco ML, Nowinski CJ, Kowall NW, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, Au R, McKee AC, Stein TD. Lewy Body Pathology and Chronic Traumatic Encephalopathy Associated With Contact Sports. J Neuropathol Exp Neurol 2018; 77:757-768. [PMID: 30053297 PMCID: PMC6097837 DOI: 10.1093/jnen/nly065] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury has been associated with increased risk of Parkinson disease and parkinsonism, and parkinsonism and Lewy body disease (LBD) can occur with chronic traumatic encephalopathy (CTE). To test whether contact sports and CTE are associated with LBD, we compared deceased contact sports athletes (n = 269) to cohorts from the community (n = 164) and the Boston University Alzheimer disease (AD) Center (n = 261). Participants with CTE and LBD were more likely to have β-amyloid deposition, dementia, and parkinsonism than CTE alone (p < 0.05). Traditional and hierarchical clustering showed a similar pattern of LBD distribution in CTE compared to LBD alone that was most frequently neocortical, limbic, or brainstem. In the community-based cohort, years of contact sports play were associated with neocortical LBD (OR = 1.30 per year, p = 0.012), and in a pooled analysis a threshold of >8 years of play best predicted neocortical LBD (ROC analysis, OR = 6.24, 95% CI = 1.5-25, p = 0.011), adjusting for age, sex, and APOE ɛ4 allele status. Clinically, dementia was significantly associated with neocortical LBD, CTE stage, and AD; parkinsonism was associated with LBD pathology but not CTE stage. Contact sports participation may increase risk of developing neocortical LBD, and increased LBD frequency may partially explain extrapyramidal motor symptoms sometimes observed in CTE.
Collapse
Affiliation(s)
- Jason W Adams
- Boston University Alzheimer’s Disease and CTE Center
| | - Victor E Alvarez
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jesse Mez
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | | | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Gaoyuan Meng
- Boston University Alzheimer’s Disease and CTE Center
- VA Boston Healthcare System, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
| | | | - Kerry Cormier
- Boston University Alzheimer’s Disease and CTE Center
| | | | | | - Alicia S Chua
- Boston University Alzheimer’s Disease and CTE Center
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sarah Svirsky
- Boston University Alzheimer’s Disease and CTE Center
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center
| | | | - Laney Evers
- Boston University Alzheimer’s Disease and CTE Center
| | | | | | | | | | - Sherral Devine
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | - Sanford Auerbach
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | - Michael L Alosco
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | | | - Neil W Kowall
- Department of Neurology
- VA Boston Healthcare System, Boston, MA
| | - Lee E Goldstein
- Boston University Alzheimer’s Disease and CTE Center
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Brigid Dwyer
- Department of Neurology
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, MA
| | - Douglas I Katz
- Department of Neurology
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, MA
| | - Robert C Cantu
- Boston University Alzheimer’s Disease and CTE Center
- Concussion Legacy Foundation
- Department of Anatomy and Neurobiology
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
- Department of Neurosurgery, Emerson Hospital, Concord, MA
| | - Robert A Stern
- Department of Neurology
- Department of Anatomy and Neurobiology
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
| | - Rhoda Au
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Ann C McKee
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Thor D Stein
- Boston University Alzheimer’s Disease and CTE Center
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
19
|
Wood PL, Tippireddy S, Feriante J, Woltjer RL. Augmented frontal cortex diacylglycerol levels in Parkinson's disease and Lewy Body Disease. PLoS One 2018. [PMID: 29513680 PMCID: PMC5841652 DOI: 10.1371/journal.pone.0191815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Research from our laboratory, and that of other investigators, has demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of subjects with Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI). We have extended these observations to investigate the frontal cortex of subjects with Parkinson’s disease (PD) and Lewy Body Disease (LBD), with and without coexisting pathologic features of AD. Methods/Principal findings Utilizing a high-resolution mass spectrometry analytical platform, we clearly demonstrate that DAG levels are significantly increased in the frontal cortex of subjects with PD, LBD with intermediate neocortical AD neuropathology, and in LBD with established neocortical AD neuropathology. In the case of the PD cohort, increases in cortical DAG levels were detected in cases with no neocortical pathology but were greater in subjects with neocortical pathology. These data suggest that DAG changes occur early in the disease processes and are amplified as cortical dysfunction becomes more established. Conclusions These findings suggest that altered DAG synthesis/metabolism is a common feature of neurodegenerative diseases, characterized by proteinopathy, that ultimately result in cognitive deficits. With regard to the mechanism responsible for these biochemical alterations, selective decrements in cortical levels of phosphatidylcholines in LBD and PD suggest that augmented degradation and/or decreased synthesis of these structural glycerophospholipids may contribute to increases in the pool size of free DAGs. The observed augmentation of DAG levels may be phospholipase-driven since neuroinflammation is a consistent feature of all disease cohorts. If this conclusion can be validated it would support utilizing DAG levels as a biomarker of the early disease process and the investigation of early intervention with anti-inflammatory agents.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
- * E-mail:
| | - Soumya Tippireddy
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
| | - Joshua Feriante
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University and Portland VA Medical Center, Portland, OR, United States of America
| |
Collapse
|
20
|
Wood PL, Cebak JE, Woltjer RL. Diacylglycerols as biomarkers of sustained immune activation in Proteinopathies associated with dementia. Clin Chim Acta 2018; 476:107-110. [DOI: 10.1016/j.cca.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
|
21
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
22
|
Colom-Cadena M, Pegueroles J, Herrmann AG, Henstridge CM, Muñoz L, Querol-Vilaseca M, Martín-Paniello CS, Luque-Cabecerans J, Clarimon J, Belbin O, Núñez-Llaves R, Blesa R, Smith C, McKenzie CA, Frosch MP, Roe A, Fortea J, Andilla J, Loza-Alvarez P, Gelpi E, Hyman BT, Spires-Jones TL, Lleó A. Synaptic phosphorylated α-synuclein in dementia with Lewy bodies. Brain 2017; 140:3204-3214. [PMID: 29177427 PMCID: PMC5841145 DOI: 10.1093/brain/awx275] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 11/14/2022] Open
Abstract
Dementia with Lewy bodies is characterized by the accumulation of Lewy bodies and Lewy neurites in the CNS, both of which are composed mainly of aggregated α-synuclein phosphorylated at Ser129. Although phosphorylated α-synuclein is believed to exert toxic effects at the synapse in dementia with Lewy bodies and other α-synucleinopathies, direct evidence for the precise synaptic localization has been difficult to achieve due to the lack of adequate optical microscopic resolution to study human synapses. In the present study we applied array tomography, a microscopy technique that combines ultrathin sectioning of tissue with immunofluorescence allowing precise identification of small structures, to quantitatively investigate the synaptic phosphorylated α-synuclein pathology in dementia with Lewy bodies. We performed array tomography on human brain samples from five patients with dementia with Lewy bodies, five patients with Alzheimer's disease and five healthy control subjects to analyse the presence of phosphorylated α-synuclein immunoreactivity at the synapse and their relationship with synapse size. Main analyses were performed in blocks from cingulate cortex and confirmed in blocks from the striatum of cases with dementia with Lewy bodies. A total of 1 318 700 single pre- or postsynaptic terminals were analysed. We found that phosphorylated α-synuclein is present exclusively in dementia with Lewy bodies cases, where it can be identified in the form of Lewy bodies, Lewy neurites and small aggregates (<0.16 µm3). Between 19% and 25% of phosphorylated α-synuclein deposits were found in presynaptic terminals mainly in the form of small aggregates. Synaptic terminals that co-localized with small aggregates of phosphorylated α-synuclein were significantly larger than those that did not. Finally, a gradient of phosphorylated α-synuclein aggregation in synapses (pre > pre + post > postsynaptic) was observed. These results indicate that phosphorylated α-synuclein is found at the presynaptic terminals of dementia with Lewy bodies cases mainly in the form of small phosphorylated α-synuclein aggregates that are associated with changes in synaptic morphology. Overall, our data support the notion that pathological phosphorylated α-synuclein may disrupt the structure and function of the synapse in dementia with Lewy bodies.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Abigail G Herrmann
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Euan MacDonald Centre, and Centre for Dementia Prevention, Edinburgh, EH8 9JZ, UK
| | - Christopher M Henstridge
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Euan MacDonald Centre, and Centre for Dementia Prevention, Edinburgh, EH8 9JZ, UK
| | - Laia Muñoz
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carla San Martín-Paniello
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Joan Luque-Cabecerans
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Clarimon
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Núñez-Llaves
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Colin Smith
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
| | | | - Matthew P Frosch
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Allyson Roe
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona Spain
| | - Bradley T Hyman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Euan MacDonald Centre, and Centre for Dementia Prevention, Edinburgh, EH8 9JZ, UK
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
23
|
Iizuka T, Iizuka R, Kameyama M. Cingulate island sign temporally changes in dementia with Lewy bodies. Sci Rep 2017; 7:14745. [PMID: 29116145 PMCID: PMC5677123 DOI: 10.1038/s41598-017-15263-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
The cingulate island sign (CIS) that reflects sparing of the posterior cingulate cortex (PCC) relative to the precuneus plus cuneus on FDG-PET and brain perfusion SPECT, has been proposed as a feature of dementia with Lewy bodies (DLB). As the CIS is influenced by concomitant Alzheimer's disease (AD)-type neurofibrillary tangle (NFT) pathology, we postulated that the CIS gradually disappears as DLB progresses. To determine temporal changes in the CIS, 24 patients with mild DLB and 7 with prodromal DLB underwent 123I-IMP-SPECT and MMSE twice at an interval of two years. The CIS was evaluated as a ratio that was derived by dividing IMP accumulation in the PCC with that in the precuneus plus cuneus. We found that the CIS changed over time and that the relationship between CIS ratios and MMSE scores was inverted U-shaped. Thus, the CIS was most obvious in the vicinity of an MMSE score of 22 and it gradually diminished as the MMSE score decreased. Moreover, a lower CIS ratio in mild DLB was associated with a worse prognosis for cognitive decline, presumably due to concomitant AD-type NFT pathology. Our findings would provide a foundation for the appropriate usage of CIS as a biomarker.
Collapse
Affiliation(s)
- Tomomichi Iizuka
- Center for Dementia, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 24-1-3, Matsuyama, Kiyose-City, Tokyo, 204-8522, Japan.
| | - Rui Iizuka
- Department of Biology, Waseda University, 1-104 Totsukamachi, Shinjuku-ku, Tokyo, 169-8050, Japan
| | - Masashi Kameyama
- Division of Nuclear Medicine, Department of Radiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Radiology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
24
|
Firbank MJ, Lloyd J, O'Brien JT. The relationship between hallucinations and FDG-PET in dementia with Lewy bodies. Brain Imaging Behav 2017; 10:636-9. [PMID: 26239998 DOI: 10.1007/s11682-015-9434-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visual hallucinations are common in dementia with Lewy bodies (DLB), although their etiology is unclear. This study aimed to investigate the relationship between severity and frequency of hallucinations and regional brain glucose metabolism. We performed brain FDG-PET scanning on 28 subjects with DLB (mean age 76). The neuropsychiatric index (NPI) was used to assess frequency and severity of hallucinations. We used the SPM package to investigate voxelwise correlations between NPI hallucination score (severity x frequency) and FDG uptake relative to the cerebellum. There was a bilateral medial occipital region where reduced FDG was associated with increased hallucination severity and frequency. We conclude that the reduced occipital metabolism frequently seen in DLB is associated with frequency and severity of visual hallucinations. Further studies are required to investigate whether this is the result of deficits in top-down or bottom-up visual processing pathways.
Collapse
Affiliation(s)
- Michael J Firbank
- Institute of Neuroscience and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Jim Lloyd
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
25
|
Min J, Kim JH, Choi KH, Yoon HH, Jeon SR. Is There Additive Therapeutic Effect When GCSF Combined with Adipose-Derived Stem Cell in a Rat Model of Acute Spinal Cord Injury? J Korean Neurosurg Soc 2017; 60:404-416. [PMID: 28689389 PMCID: PMC5544377 DOI: 10.3340/jkns.2016.1010.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Objective Functional and neural tissue recovery has been reported in many animal studies conducted with stem cells. However, the combined effect of cytokines and stem cells has not yet been adequately researched. Here, we analyzed the additive effects of granulocyte colony-stimulating factor (GCSF) on adipose-derived stem cells (ADSCs) infusion in the treatment of acute spinal cord injury (SCI) in rats. Methods Four days after intrathecal infusion tubes implantation in Sprague-Dawley rats, SCI was induced with an infinite horizon impactor. In the Sham group (n=5), phosphate-buffered saline was injected 3, 7, and 14 days after SCI. GCSF, ADSCs, and ADSCs with GCSF were injected at the same time in the GCSF (n=8), ADSC (n=8), and ADSC+GCSF groups (n=7), respectively. Results The ADSC and ADSC+GCSF groups, but not the GCSF group, showed significantly higher Basso-Beattie-Bresnahan scores than the Sham group during 8 weeks (p<0.01), but no significant difference between the ADSC and ADSC+GCSF groups. In the ladder rung test, all four groups were significantly different from each other, with the ADSC+GCSF group showing the best improvement (p<0.01). On immunofluorescent staining (GAP43, MAP2), western blotting (GAP43), and reverse transcription polymerase chain reaction (GAP43, nerve growth factor), the ADSC and ADSC+GCSF groups showed higher levels than the Sham and GCSF groups. Conclusion Our analyses suggest that the combination of GCSF and ADSCs infusions in acute SCI in the rat does not have a significant additive effect. Hence, when combination agents for SCI stem cell therapy are considered, molecules other than GCSF, or modifications to the methodology, should be investigated.
Collapse
Affiliation(s)
- Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Hyo Choi
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Abstract
Background: Possession of APOEɛ4 is a strong risk factor for late-onset Alzheimer’s disease and is associated with loss of synaptic proteins in the elderly even in the absence of Alzheimer’s disease. Objective: We hypothesized that ɛ4 allele possession in non-demented adults aged under-75 would also be associated with alterations in the levels of synaptic proteins. Methods: We measured synaptophysin, PSD95, drebrin, SNAP-25, and septin 7 by ELISA in hippocampus and superior temporal gyrus from 103 adults aged <75 without dementia. Corresponding gene expression was measured by RT-PCR. Results: There was no evidence that ɛ4 affected levels of the proteins measured. Instead we found an increase in post-synaptic proteins in the hippocampi of those with an ɛ32 genotype. The evidence was strongest for drebrin (p = 0.011). There was some evidence of increased synaptic protein gene expression in ɛ4 carriers. Conclusions: People with an APOEɛ32 genotype have a reduced risk of Alzheimer’s disease. It may be relevant that they have a higher level of post-synaptic proteins in the hippocampus even in earlier adulthood.
Collapse
Affiliation(s)
- Lindsey I Sinclair
- School of Social and Community Medicine, University of Bristol, Oakfield House, Clifton, Bristol, UK
| | - Seth Love
- School of Clinical Sciences, University of Bristol, Level 1 Learning and Research Building, Southmead Hospital, Bristol, UK
| |
Collapse
|
27
|
Lahut S, Gispert S, Ömür Ö, Depboylu C, Seidel K, Domínguez-Bautista JA, Brehm N, Tireli H, Hackmann K, Pirkevi C, Leube B, Ries V, Reim K, Brose N, den Dunnen WF, Johnson M, Wolf Z, Schindewolf M, Schrempf W, Reetz K, Young P, Vadasz D, Frangakis AS, Schröck E, Steinmetz H, Jendrach M, Rüb U, Başak AN, Oertel W, Auburger G. Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson's disease. Dis Model Mech 2017; 10:619-631. [PMID: 28108469 PMCID: PMC5451169 DOI: 10.1242/dmm.028035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.
Collapse
Affiliation(s)
- Suna Lahut
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
- NDAL, Boğaziçi University, Istanbul 34342, Turkey
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Özgür Ömür
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
- NDAL, Boğaziçi University, Istanbul 34342, Turkey
| | - Candan Depboylu
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Kay Seidel
- Dr Senckenberg Chronomedical Institute, Goethe University, Frankfurt/Main 60590, Germany
| | | | - Nadine Brehm
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Hülya Tireli
- Department of Neurology, Haydarpaşa Numune Training and Research Hospital, Istanbul 34668, Turkey
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | - Barbara Leube
- Institute of Human Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Vincent Ries
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology and Center for the Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Nils Brose
- Department of Molecular Neurobiology and Center for the Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Wilfred F den Dunnen
- Department of Pathology and Medical Biology, Medical Center, University, Groningen 9700 RB, The Netherlands
| | - Madrid Johnson
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University, Frankfurt/Main 60438, Germany
| | - Zsuzsanna Wolf
- Haemophilia Centre, Medical Clinic III, Institute of Immunohaematology and Transfusion Medicine, Goethe University, Frankfurt/Main 60590, Germany
| | - Marc Schindewolf
- Department of Internal Medicine, Division of Vascular Medicine and Hemostaseology, Goethe University, Frankfurt 60590, Germany
| | - Wiebke Schrempf
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität, Dresden 01307, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Münster, Münster 48149, Germany
| | - David Vadasz
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University, Frankfurt/Main 60438, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Helmuth Steinmetz
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Marina Jendrach
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Udo Rüb
- Dr Senckenberg Chronomedical Institute, Goethe University, Frankfurt/Main 60590, Germany
| | | | - Wolfgang Oertel
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| |
Collapse
|
28
|
Santpere G, Garcia-Esparcia P, Andres-Benito P, Lorente-Galdos B, Navarro A, Ferrer I. Transcriptional network analysis in frontal cortex in Lewy body diseases with focus on dementia with Lewy bodies. Brain Pathol 2017; 28:315-333. [PMID: 28321951 DOI: 10.1111/bpa.12511] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
The present study investigates global transcriptional changes in frontal cortex area 8 in incidental Lewy Body disease (iLBD), Parkinson disease (PD) and Dementia with Lewy bodies (DLB). We identified different coexpressed gene sets associated with disease stages, and gene ontology categories enriched in gene modules and differentially expressed genes including modules or gene clusters correlated to iLBD comprising upregulated dynein genes and taste receptors, and downregulated innate inflammation. Focusing on DLB, we found modules with genes significantly enriched in functions related to RNA and DNA production, mitochondria and energy metabolism, purine metabolism, chaperone and protein folding system and synapses and neurotransmission (particularly the GABAergic system). The expression of more than fifty selected genes was assessed with real time quantitative polymerase chain reaction. Our findings provide, for the first time, evidence of molecular cortical alterations in iLBD and involvement of several key metabolic pathways and gene hubs in DLB which may underlie cognitive impairment and dementia.
Collapse
Affiliation(s)
- Gabriel Santpere
- Department of Neurobiology, Yale School of Medicine, New Haven, CT.,Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Belen Lorente-Galdos
- Department of Neurobiology, Yale School of Medicine, New Haven, CT.,Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
| | - Arcadi Navarro
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, Barcelona, Spain.,Institute of Science and Technology, Centre for Genomic Regulation (CRG), Barcelona, Spain.,National Institute for Bioinformatics (INB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain.,Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain.,Institute of Neurosciences, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain
| |
Collapse
|
29
|
Garcia-Esparcia P, López-González I, Grau-Rivera O, García-Garrido MF, Konetti A, Llorens F, Zafar S, Carmona M, Del Rio JA, Zerr I, Gelpi E, Ferrer I. Dementia with Lewy Bodies: Molecular Pathology in the Frontal Cortex in Typical and Rapidly Progressive Forms. Front Neurol 2017; 8:89. [PMID: 28348546 PMCID: PMC5346561 DOI: 10.3389/fneur.2017.00089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Irene López-González
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - María Francisca García-Garrido
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Anusha Konetti
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Molecular and Cellular Neurobiotechnology, Department of Cell Biology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Department of Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Yabuki Y, Matsuo K, Izumi H, Haga H, Yoshida T, Wakamori M, Kakei A, Sakimura K, Fukuda T, Fukunaga K. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca 2+ channel enhancer. Neuropharmacology 2017; 117:1-13. [PMID: 28093211 DOI: 10.1016/j.neuropharm.2017.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/27/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
T-type voltage-gated Ca2+ channels (T-VGCCs) function in the pathophysiology of epilepsy, pain and sleep. However, their role in cognitive function remains unclear. We previously reported that the cognitive enhancer ST101, which stimulates T-VGCCs in rat cortical slices, was a potential Alzheimer's disease therapeutic. Here, we introduce a more potent T-VGCC enhancer, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate), and characterize its pharmacological properties in brain. Based on whole cell patch-clamp analysis, SAK3 (0.01-10 nM) significantly enhanced Cav3.1 currents in neuro2A cells ectopically expressing Cav3.1. SAK3 (0.1-10 nM nM) also enhanced Cav3.3 but not Cav3.2 currents in the transfected cells. Notably, Cav3.1 and Cav3.3 T-VGCCs were localized in cholinergic neurve systems in hippocampus and in the medial septum. Indeed, acute oral administration of SAK3 (0.5 mg/kg, p.o.), but not ST101 (0.5 mg/kg, p.o.) significantly enhanced acetylcholine (ACh) release in the hippocampal CA1 region of naïve mice. Moreover, acute SAK3 (0.5 mg/kg, p.o.) administration significantly enhanced hippocampal ACh levels in olfactory-bulbectomized (OBX) mice, rescuing impaired memory-related behaviors. Treatment of OBX mice with the T-VGCC-specific blocker NNC 55-0396 (12.5 mg/kg, i.p.) antagonized both enhanced ACh release and memory improvements elicited by SAK3 administration. We also observed that SAK3-induced ACh releases were significantly blocked in the hippocampus from Cav3.1 knockout (KO) mice. These findings suggest overall that T-VGCCs play a key role in cognition by enhancing hippocampal ACh release and that the cognitive enhancer SAK3 could be a candidate therapeutic in Alzheimer's disease.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Yoshida
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Minoru Wakamori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Akikazu Kakei
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
31
|
Vallortigara J, Whitfield D, Quelch W, Alghamdi A, Howlett D, Hortobágyi T, Johnson M, Attems J, O'Brien JT, Thomas A, Ballard CG, Aarsland D, Francis PT. Decreased Levels of VAMP2 and Monomeric Alpha-Synuclein Correlate with Duration of Dementia. J Alzheimers Dis 2016; 50:101-10. [PMID: 26639969 DOI: 10.3233/jad-150707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alpha-synuclein (α-syn) aggregations are the key pathological hallmark of dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), but are also frequently present in Alzheimer's disease (AD). Much remains unknown about the role of α-syn in the synapse and the wider role of synaptic dysfunction in these dementias. Changes in concentrations of key 'SNAP (Soluble N-ethylmaleimide Sensitive Factor Attachment Protein) Receptor' (SNARE) proteins as a consequence of alterations in the aggregation state of α-syn may contribute to synaptic dysfunction in patients with DLB, PDD, and AD and result in impaired cognition. We have studied a large cohort (n = 130) of autopsy confirmed DLB, PDD, AD, and control brains. Using semi-quantitative western blotting, we have demonstrated significant changes across the diagnostic groups of DLB, PDD, and AD in the SNARE and vesicle proteins syntaxin, Munc18, VAMP2, and monomeric α-syn in the prefrontal cortex, with a significant reduction of Munc18 in AD patients (p < 0.001). This correlated to the final MMSE score before death (p = 0.016). We also identified a significant negative correlation between the duration of dementia and the levels of the binding partners VAMP2 (p = 0.0004) and monomeric α-syn (p = 0.0002). Our findings may indicate that an upregulation of SNARE complex related proteins occurs in the early stages of disease as an attempt at compensating for failing synapses, prior to widespread deposition of pathological α-syn.
Collapse
Affiliation(s)
- Julie Vallortigara
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David Whitfield
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - William Quelch
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amani Alghamdi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David Howlett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mary Johnson
- Institute of Neuroscience, Newcastle University, CAV, Newcastle upon Tyne, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, CAV, Newcastle upon Tyne, UK
| | - John T O'Brien
- Institute of Neuroscience, Newcastle University, CAV, Newcastle upon Tyne, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Alan Thomas
- Institute of Neuroscience, Newcastle University, CAV, Newcastle upon Tyne, UK
| | - Clive G Ballard
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Department of Neurobiology, Ward Sciences and Society, Karolinska Institute, Stockholm, Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
32
|
Pietrzak M, Papp A, Curtis A, Handelman SK, Kataki M, Scharre DW, Rempala G, Sadee W. Gene expression profiling of brain samples from patients with Lewy body dementia. Biochem Biophys Res Commun 2016; 479:875-880. [PMID: 27666482 DOI: 10.1016/j.bbrc.2016.09.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 11/28/2022]
Abstract
Dementia with Lewy Bodies (DLB) is the second most common neurodegenerative disorder in the elderly. The development and progression of DLB remain unclear. In this study we used next generation sequencing to assess RNA expression profiles and cellular processes associated with DLB in the anterior cingulate cortex, a brain region affected by DLB pathology. The expression measurements were made in autopsy brain tissues from 8 DLB subjects and 10 age-matched controls using AmpliSeq technology with ion torrent sequencing. The analysis of RNA expression profiles revealed 490 differentially expressed genes, among which 367 genes were down-regulated and 123 were up-regulated. Functional enrichment analysis of genes differentially expressed in DLB indicated downregulation of genes associated with myelination, neurogenesis, and regulation of nervous system development. miRNA binding sites enriched in these mRNAs yielded a list of candidate miRNAs participating in DLB pathophysiology. Our study provides a comprehensive picture of gene expression landscape in DLB, identifying key cellular processes associated with DLB pathology.
Collapse
Affiliation(s)
- Maciej Pietrzak
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA; Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA
| | - Audrey Papp
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amanda Curtis
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Samuel K Handelman
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Maria Kataki
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Grzegorz Rempala
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA; Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Khundakar AA, Hanson PS, Erskine D, Lax NZ, Roscamp J, Karyka E, Tsefou E, Singh P, Cockell SJ, Gribben A, Ramsay L, Blain PG, Mosimann UP, Lett DJ, Elstner M, Turnbull DM, Xiang CC, Brownstein MJ, O'Brien JT, Taylor JP, Attems J, Thomas AJ, McKeith IG, Morris CM. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations. Acta Neuropathol Commun 2016; 4:66. [PMID: 27357212 PMCID: PMC4928325 DOI: 10.1186/s40478-016-0334-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/12/2023] Open
Abstract
Dementia with Lewy bodies (DLB) patients frequently experience well formed recurrent complex visual hallucinations (RCVH). This is associated with reduced blood flow or hypometabolism on imaging of the primary visual cortex. To understand these associations in DLB we used pathological and biochemical analysis of the primary visual cortex to identify changes that could underpin RCVH. Alpha-synuclein or neurofibrillary tangle pathology in primary visual cortex was essentially absent. Neurone density or volume within the primary visual cortex in DLB was also unchanged using unbiased stereology. Microarray analysis, however, demonstrated changes in neuropeptide gene expression and other markers, indicating altered GABAergic neuronal function. Calcium binding protein and GAD65/67 immunohistochemistry showed preserved interneurone populations indicating possible interneurone dysfunction. This was demonstrated by loss of post synaptic GABA receptor markers including gephyrin, GABARAP, and Kif5A, indicating reduced GABAergic synaptic activity. Glutamatergic neuronal signalling was also altered with vesicular glutamate transporter protein and PSD-95 expression being reduced. Changes to the primary visual cortex in DLB indicate that reduced GABAergic transmission may contribute to RCVH in DLB and treatment using targeted GABAergic modulation or similar approaches using glutamatergic modification may be beneficial.
Collapse
Affiliation(s)
- Ahmad A Khundakar
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Peter S Hanson
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Daniel Erskine
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Nichola Z Lax
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Joseph Roscamp
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Evangelia Karyka
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Eliona Tsefou
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Preeti Singh
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Gribben
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Lynne Ramsay
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Peter G Blain
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Urs P Mosimann
- University Hospital of Old Age Psychiatry, University Bern, CH 3010, Bern, Switzerland
| | - Deborah J Lett
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Matthias Elstner
- Department of Neurology and Clinical Neurophysiology, Academic Hospital Bogenhausen, Technical University of Munich, Munich, Germany
| | - Douglass M Turnbull
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Charles C Xiang
- Laboratory of Genetics at the National Institute of Mental Health/National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, MD20892, USA
| | - Michael J Brownstein
- Laboratory of Genetics at the National Institute of Mental Health/National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, MD20892, USA
| | - John T O'Brien
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, CB2 0SP, UK
| | - John-Paul Taylor
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Johannes Attems
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Alan J Thomas
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Ian G McKeith
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Christopher M Morris
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK.
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK.
- Laboratory of Genetics at the National Institute of Mental Health/National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, MD20892, USA.
| |
Collapse
|
34
|
Synaptic proteins predict cognitive decline in Alzheimer's disease and Lewy body dementia. Alzheimers Dement 2016; 12:1149-1158. [DOI: 10.1016/j.jalz.2016.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 11/21/2022]
|
35
|
Iizuka T, Kameyama M. Cingulate island sign on FDG-PET is associated with medial temporal lobe atrophy in dementia with Lewy bodies. Ann Nucl Med 2016; 30:421-9. [PMID: 27098829 DOI: 10.1007/s12149-016-1076-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The cingulate island sign (CIS), which refers to sparing of the posterior cingulate relative to the precuneus and cuneus, has been proposed as an FDG-PET imaging feature of dementia with Lewy bodies (DLB). The sign is reportedly associated with Alzheimer's disease (AD) type neurofibrillary tangle (NFT) pathology in autopsy cases. To confirm this relationship using neuroimaging modalities in vivo, we investigated associations between CIS and the medial temporal lobe (MTL) atrophy in DLB. METHODS Twenty-four patients each of DLB and AD underwent both (18)F-FDG-PET and MRI with voxel-based morphometry. Dopamine transporter (DAT) density was also measured by DAT-SPECT in all those with DLB and in five with AD. The accumulation of FDG in the posterior cingulate ROI was divided by that in the precuneus plus cuneus ROI to derive the CIS ratio from the FDG-PET images. Values for cognitive function of Mini-Mental State Examination (MMSE), Frontal Assessment Battery (FAB) and Ray Auditory Verbal Learning Test (RAVLT) and scores for the core-feature triad of fluctuation, hallucination and parkinsonism were also statistically analyzed. RESULTS The CIS ratio was higher in DLB than in AD (p < 0.001). The degree of MTL atrophy was lower in DLB than in AD (p < 0.001). The CIS ratio and the degree of MTL atrophy were inversely correlated with DLB (p < 0.001) and with AD (p < 0.05). The CIS ratio did not significantly correlate with DAT density in DLB or with MMSE, FAB, fluctuation score and parkinsonism score. However, the CIS ratio significantly correlated with RAVLT and hallucination scores (both, p < 0.05). CONCLUSIONS The CIS on FDG-PET in DLB was associated with MTL atrophy but not with striatal DAT density, suggesting that the CIS is a useful neuroimaging biomarker to evaluate coexisting AD-type NFT pathology in vivo. The CIS was also associated with memory impairment and visual hallucination in DLB.
Collapse
Affiliation(s)
- Tomomichi Iizuka
- Department of Neurology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 24-1-3, Matsuyama, Kiyose, Tokyo, 204-8522, Japan.
| | - Masashi Kameyama
- Division of Nuclear Medicine, Department of Radiology School of Medicine, Keio University, Tokyo, Japan.,Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
36
|
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12:633-44. [PMID: 26776762 DOI: 10.1016/j.jalz.2015.12.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-β appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study. METHODS We identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences. RESULTS Meta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers. DISCUSSION The present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected.
Collapse
Affiliation(s)
- Martijn C de Wilde
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John W Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
|
38
|
Abstract
BACKGROUND Dementia with Lewy body (DLB) is considered to be the second most common form of neurodegenerative disorders after Alzheimer's disease (AD), affecting as many as 100,000 people in the UK and up to 1.3 million in the USA. However, nearly half of patients with DLB remain undiagnosed thus depriving many of them from an early and adequate treatment of their distressing symptoms. Accurate and early diagnosis of DLB is important for both patients and their caregivers, since the neuropsychiatric symptoms require specific management. METHODS In the current study, we review the most recent developments in the field of molecular nuclear imaging to diagnose DLB. RESULTS The review addresses, the neurotransmitter based (dopaminergic, cholinergic, and glutamatergic) nuclear imaging techniques, role of the autonomic dysfunction and its visualization in DLB with myocardial sympathetic imaging and vesicular catecholamine uptake, as well as the use of amyloid polypeptides and glial markers as molecular imaging probes in the clinical diagnosis of DLB. CONCLUSIONS Most of the above nuclear imaging methods are restricted to highly specialized clinical centers, and thus not applicable to a large number of patients requiring dementia (e.g. DLB) diagnosis in routine clinical setting. Validating them against more readily accessible peripheral biomarkers, e.g. CSF and blood biomarkers linked to the DLB process, may facilitate their use in wider clinical settings.
Collapse
|
39
|
Relevance of subcortical visual pathways disruption to visual symptoms in dementia with Lewy bodies. Cortex 2014; 59:12-21. [PMID: 25113955 DOI: 10.1016/j.cortex.2014.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/14/2014] [Accepted: 07/10/2014] [Indexed: 11/21/2022]
Abstract
Visual hallucinations represent a core diagnostic criterion for dementia with Lewy bodies (DLB). We hypothesized that thalamic regions, which are critically involved in the modulation of visual transmission, may be differentially disrupted in DLB as compared to Alzheimer's Disease (AD) and that these deficits could relate to visual dysfunction in DLB patients. Magnetic Resonance and Diffusion Tensor Imaging (DTI) were performed with a 3 T scanner on a sample population of 15 DLB patients, 15 AD patients and 13 healthy volunteers. Regional thalamic micro-structural changes were assessed by parcelling the thalamus based on its connectivity to cortex and to amygdala and by measuring the mean diffusivity (MD) in each connectivity-defined sub-region. Micro-structural grey matter damage associated to higher MD values was found bilaterally in DLB compared to controls in the sub-regions projecting from thalamus to prefrontal and parieto-occipital cortices. Right thalamic sub-region projecting to amygdala and left thalamic sub-region projecting to motor cortex were also affected in DLB compared to controls. Higher MD values were found bilaterally in AD compared to controls in the thalamic sub-regions projecting to temporal cortex. Specific comparison between the two forms of dementia found differences: the sub-regions which project from thalamus to parieto-occipital cortex and to amygdala showed higher MD values in DLB compared to AD patients. In DLB patients, correlation analysis showed a significant correlation between NPI hallucinations item scores and MD values in the right thalamic sub-regions projecting to parietal and occipital cortices. The present study demonstrates how thalamic connectivity alterations between higher and lower visual areas may be relevant in explaining visual hallucinations in DLB.
Collapse
|
40
|
Structural alteration of the dorsal visual network in DLB patients with visual hallucinations: a cortical thickness MRI study. PLoS One 2014; 9:e86624. [PMID: 24466177 PMCID: PMC3900597 DOI: 10.1371/journal.pone.0086624] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/15/2013] [Indexed: 11/19/2022] Open
Abstract
Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients.
Collapse
|
41
|
Fujishiro H, Iseki E, Kasanuki K, Chiba Y, Ota K, Murayama N, Sato K. A follow up study of non-demented patients with primary visual cortical hypometabolism: Prodromal dementia with Lewy bodies. J Neurol Sci 2013; 334:48-54. [DOI: 10.1016/j.jns.2013.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/27/2013] [Accepted: 07/20/2013] [Indexed: 11/16/2022]
|
42
|
Kokhan VS, Van'kin GI, Bachurin SO, Shamakina IY. Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice. BMC Neurosci 2013; 14:53. [PMID: 23672583 PMCID: PMC3659041 DOI: 10.1186/1471-2202-14-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Gamma-synuclein is a member of the synuclein family of cytoplasmic, predominantly neuron-specific proteins. Despite numerous evidences for the importance of gamma-synuclein in the control of monoamine homeostasis, cytoskeleton reorganization and chaperone activity, its role in the regulation of cognitive behavior still remain unknown. Our previous study revealed that gamma-synuclein knockout mice are characterized by high habituation scores. Since a number of processes including spatial memory of the environment may affect habituation, in the present study we have carried out behavioral evaluation of spatial and working memory in gamma-synuclein knockout mice. Results Inactivation of gamma-synuclein gene led to the improvement of working memory in mice as revealed by passive and active avoidance tests. At the same time behavioral tests, designed to assess spatial learning and memory (Morris water maze and Object location tests), showed no differences between gamma-synuclein knockouts and wild type mice. Conclusions These findings indicate that young mice with targeted inactivation of gamma-synuclein gene have improved working memory, but not spatial learning and memory. Our results suggest that gamma-synuclein is directly involved in the regulation of cognitive functions.
Collapse
Affiliation(s)
- Viktor S Kokhan
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia.
| | | | | | | |
Collapse
|