1
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Brügger LMDO, dos Santos MML, Lara FA, Mietto BS. What happens when Schwann cells are exposed to Mycobacterium leprae - A systematic review. IBRO Neurosci Rep 2023; 15:11-16. [PMID: 38204570 PMCID: PMC10776321 DOI: 10.1016/j.ibneur.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 01/12/2024] Open
Abstract
Mycobacterium leprae, the pathogen that causes human leprosy, has a unique affinity for infecting and persisting inside Schwann cells, the principal glia of the peripheral nervous system. Several studies have focused on this intricate host-pathogen interaction as an attempt to advance the current knowledge of the mechanisms governing nerve destruction and disease progression. However, during the chronic course of leprosy neuropathy, Schwann cells can respond to and internalize both live and dead M. leprae and bacilli-derived antigens, and this may result in divergent cellular pathobiological responses. This may also distinctly contribute to tissue degeneration, failure to repair, inflammatory reactions, and nerve fibrosis, hallmarks of the disease. Therefore, the present study systematically searched for published studies on M. leprae-Schwann cell interaction in vitro to summarize the findings and provide a focused discussion of Schwann cell dynamics following challenge with leprosy bacilli.
Collapse
|
3
|
Zhang Y, Do KK, Wang F, Lu X, Liu JY, Li C, Ceresa BP, Zhang L, Dean DC, Liu Y. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol 2023; 6:434. [PMID: 37081200 PMCID: PMC10119281 DOI: 10.1038/s42003-023-04831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, 78229, USA
| | - Khoi K Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, 250021, Jinan, China
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Chi Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, China
| | - Douglas C Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Mushtaq S. Ulcerated cutaneous lesions in type 1 lepra reaction healing with morpheaform scarring: an unusual presentation. Int J Dermatol 2023; 62:e350-e351. [PMID: 36683019 DOI: 10.1111/ijd.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Affiliation(s)
- Sabha Mushtaq
- Department of Dermatology, Venereology & Leprology, Government Medical College, University of Jammu, Jammu, Jammu & Kashmir (J&K), India
| |
Collapse
|
5
|
de Souza BJ, Mendes MA, Sperandio da Silva GM, Sammarco-Rosa P, de Moraes MO, Jardim MR, Sarno EN, Pinheiro RO, Mietto BS. Gene Expression Profile of Mycobacterium leprae Contribution in the Pathology of Leprosy Neuropathy. Front Med (Lausanne) 2022; 9:861586. [PMID: 35492305 PMCID: PMC9051340 DOI: 10.3389/fmed.2022.861586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Peripheral neuropathy is the main cause of physical disability in leprosy patients. Importantly, the extension and pattern of peripheral damage has been linked to how the host cell will respond against Mycobacterium leprae (M. leprae) infection, in particular, how the pathogen will establish infection in Schwann cells. Interestingly, viable and dead M. leprae have been linked to neuropathology of leprosy by distinct mechanisms. While viable M. leprae promotes transcriptional modifications that allow the bacteria to survive through the use of the host cell's internal machinery and the subvert of host metabolites, components of the dead bacteria are associated with the generation of a harmful nerve microenvironment. Therefore, understanding the pathognomonic characteristics mediated by viable and dead M. leprae are essential for elucidating leprosy disease and its associated reactional episodes. Moreover, the impact of the viable and dead bacteria in Schwann cells is largely unknown and their gene signature profiling has, as yet, been poorly explored. In this study, we analyzed the early differences in the expression profile of genes involved in peripheral neuropathy, dedifferentiation and plasticity, neural regeneration, and inflammation in human Schwann cells challenged with viable and dead M. leprae. We substantiated our findings by analyzing this genetic profiling in human nerve biopsies of leprosy and non-leprosy patients, with accompanied histopathological analysis. We observed that viable and dead bacteria distinctly modulate Schwann cell genes, with emphasis to viable bacilli upregulating transcripts related to glial cell plasticity, dedifferentiation and anti-inflammatory profile, while dead bacteria affected genes involved in neuropathy and pro-inflammatory response. In addition, dead bacteria also upregulated genes associated with nerve support, which expression profile was similar to those obtained from leprosy nerve biopsies. These findings suggest that early exposure to viable and dead bacteria may provoke Schwann cells to behave differentially, with far-reaching implications for the ongoing neuropathy seen in leprosy patients, where a mixture of active and non-active bacteria are found in the nerve microenvironment.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Bruno Siqueira Mietto
- Laboratory of Cell Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- *Correspondence: Bruno Siqueira Mietto
| |
Collapse
|
6
|
Zeb1 Regulation of Wound Healing-Induced Inflammation in Alkali-Damaged Corneas. iScience 2022; 25:104038. [PMID: 35340433 PMCID: PMC8941209 DOI: 10.1016/j.isci.2022.104038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The cornea is an avascular tissue for vision clarity. Alkali burn could cause severe traumatic damage on the cornea with inflammation and neovascularization (NV), leading to vision reduction and blindness. Mechanisms underlying corneal inflammation and NV are not as clear. We previously reported that Zeb1 is an important factor in corneal NV, and we sought to clarify whether it is also involved in regulation of corneal inflammation. We analyzed the alkali burn-induced corneal inflammation and wound healing in both Zeb1+/+ and Zeb1−/+ littermates through a multidisciplinary approach. We provide evidence that Zeb1 forms a positive regulatory loop with Tgfb to regulate early corneal inflammation by maintenance of immune cell viability and mobility and later wound healing by activation of both Nf-κb and Tgfb-related Stat3 signaling pathways. We believe that ZEB1 is a potential therapeutic target, and inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition. Traumatic wound induces inflammation in the cornea, resulting in vision reduction Zeb1 is a key factor to retain immune cell viability, mobility, and cytokine expression Zeb1 regulates cytokine gene expression through both Nf-κb and Stat3 pathways Inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition
Collapse
|
7
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
8
|
Jabeen S, Saini J, Vengalil S, Lavania M, Singh I, Nashi S, Preethish-Kumar V, Polavarapu K, Mahajan NP, Mahadevan A, Yasha TC, Nandeesh B, Gnanakumar K, Sengupta U, Nalini A. Neuroimaging in leprosy: The nerves and beyond. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.jrid.2020.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Angst DBM, Pinheiro RO, Vieira JSDS, Cobas RA, Hacker MDAVB, Pitta IJR, Giesel LM, Sarno EN, Jardim MR. Cytokine Levels in Neural Pain in Leprosy. Front Immunol 2020; 11:23. [PMID: 32038662 PMCID: PMC6992577 DOI: 10.3389/fimmu.2020.00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pain is a frequent symptom in leprosy patients. It may be predominantly nociceptive, as in neuritis, or neuropathic, due to injury or nerve dysfunction. The differential diagnosis of these two forms of pain is a challenge in clinical practice, especially because it is quite common for a patient to suffer from both types of pain. A better understanding of cytokine profile may serve as a tool in assessing patients and also help to comprehend pathophysiology of leprosy pain. Patients with leprosy and neural pain (n = 22), neuropathic pain (n = 18), neuritis (nociceptive pain) (n = 4), or no pain (n = 17), further to those with diabetic neuropathy and neuropathic pain (n = 17) were recruited at Souza Araujo Out-Patient Unit (Fiocruz, Rio de Janeiro, RJ, Brazil). Serum levels of IL1β, IL-6, IL-10, IL-17, TNF, CCL-2/MCP-1, IFN-γ, CXCL-10/IP-10, and TGF-β were evaluated in the different Groups. Impairment in thermal or pain sensitivity was the most frequent clinical finding (95.5%) in leprosy neuropathy patients with and without pain, but less frequent in Diabetic Group (88.2%). Previous reactional episodes have occurred in patients in the leprosy and Pain Group (p = 0.027) more often. Analysis of cytokine levels have demonstrated that the concentrations of IL-1β, TNF, TGF-β, and IL-17 in serum samples of patients having leprosy neuropathy in combination with neuropathic or nociceptive pain were higher when compared to the samples of leprosy neuropathy patients without pain. In addition, these cytokine levels were significantly augmented in leprosy patients with neuropathic pain in relation to those with neuropathic pain due to diabetes. IL-1β levels are an independent variable associated with both types of pain in patients with leprosy neuropathy. IL-6 concentration was increased in both groups with pain. Moreover, CCL-2/MCP-1 and CXCL-10/IP-10 levels were higher in patients with diabetic neuropathy over those with leprosy neuropathy. In brief, IL-1β is an independent variable related to neuropathic and nociceptive pain in patients with leprosy, and could be an important biomarker for patient follow-up. IL-6 was higher in both groups with pain (leprosy and diabetic patients), and could be a therapeutic target in pain control.
Collapse
Affiliation(s)
- Débora Bartzen Moraes Angst
- Leprosy Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Neurology of Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | | | | | - Roberta Arnoldi Cobas
- Endocrinology Discipline of the Faculty of Medical Sciences, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Izabela Jardim Rodrigues Pitta
- Leprosy Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Neurology of Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Louise Mara Giesel
- Leprosy Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Márcia Rodrigues Jardim
- Leprosy Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Neurology of Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Neurology Discipline of the Faculty of Medical Sciences, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Mietto BS, de Souza BJ, Rosa PS, Pessolani MCV, Lara FA, Sarno EN. Myelin breakdown favours Mycobacterium leprae survival in Schwann cells. Cell Microbiol 2019; 22:e13128. [PMID: 31652371 DOI: 10.1111/cmi.13128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.
Collapse
Affiliation(s)
- Bruno Siqueira Mietto
- Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | - Flavio Alves Lara
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Antunes SLG, Jardim MR, Vital RT, Pascarelli BMDO, Nery JADC, Amadeu TP, Sales AM, da Costa EAF, Sarno EN. Fibrosis: a distinguishing feature in the pathology of neural leprosy. Mem Inst Oswaldo Cruz 2019; 114:e190056. [PMID: 31389520 PMCID: PMC6684007 DOI: 10.1590/0074-02760190056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fibrosis in the peripheral nerve is the end stage of leprous neuropathy and
the cause of the resulting permanent neural function impairments. Preventive
measures to avoid this irreversible pathological state are a relief strategy
for leprosy sufferers. OBJECTIVES The present study describes the frequency of fibrosis along with its
characterisation and pathogenic development. METHODS Six-hundred-and-thirteen nerve samples were sorted from 278 neural leprosy
(NL) and 335 non-leprosy neuropathy patients (ON). The total number of
samples was histologically examined by routine staining methods
(haematoxylin-eosin, Wade staining and Gomori’s trichrome) and fibrosis was
evaluated via semi-quantitative estimation. FINDINGS Fibrosis was most frequent in the NL group (33% against 0.4% in ON) while
fibrosis in association with endoneurial microfasciculation was found in 38
(41.3%) of the NL samples in the examination of semithin sections. Pericytic
activation in the perivascular environment was confirmed to be the source of
the fibroblasts and perineurial cells delimiting microfascicles. End-stage
fibrosis in leprosy displays an arrangement of microfascicles devoid of
neural components (i.e., Schwann cells and axons) lined by an intermediate
phenotype of fibroblastic-perineurial cells filled with bundles of collagen
fibres. MAIN CONCLUSIONS The present study underscores that fibrosis is frequently the severe end
stage of neural leprosy NL pathogeny after analysing the notably distinct
development of fibrosis within the neural environment.
Collapse
Affiliation(s)
- Sérgio Luiz Gomes Antunes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | - Márcia Rodrigues Jardim
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | - Robson Teixeira Vital
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | | | | | - Thaís Porto Amadeu
- Universidade do Estado do Rio de Janeiro, Departamento de Patologia e Laboratórios, Rio de Janeiro, RJ, Brasil
| | - Anna Maria Sales
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | | | - Euzenir Nunes Sarno
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
de Camargo RM, da Silva WL, Medeiros P, Belone ADFF, Latini ACP. Polymorphisms in the TGFB1 and IL2RA genes are associated with clinical forms of leprosy in Brazilian population. Mem Inst Oswaldo Cruz 2018; 113:e180274. [PMID: 30540075 PMCID: PMC6287188 DOI: 10.1590/0074-02760180274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Leprosy is a chronic infectious disease caused by Mycobacterium leprae, and compromises the skin and peripheral nerves. This disease has been classified as multibacillary (MB) or paucibacillary (PB) depending on the host immune response. Genetic epidemiology studies in leprosy have shown the influence of human genetic components on the disease outcomes. OBJECTIVES We conducted an association study for IL2RA and TGFB1 genes with clinical forms of leprosy based on two case-control samples. These genes encode important molecules for the immunosuppressive activity of Treg cells and present differential expressions according to the clinical forms of leprosy. Furthermore, IL2RA is a positional candidate gene because it is located near the 10p13 chromosome region, presenting a linkage peak for PB leprosy. METHODS A total of 885 leprosy cases were included in the study; 406 cases from Rondonópolis County (start population), a hyperendemic region for leprosy in Brazil, and 479 cases from São Paulo state (replication population), which has lower epidemiological indexes for the disease. We tested 11 polymorphisms in the IL2RA gene and the missense variant rs1800470 in the TGFB1 gene. FINDINGS The AA genotype of rs2386841 in IL2RA was associated with the PB form in the start population. The AA genotype of rs1800470 in TGFB1 was associated with the MB form in the start population, and this association was confirmed for the replication population. MAIN CONCLUSIONS We demonstrated, for the first time, an association data with the PB form for a gene located on chromosome 10. In addition, we reported the association of TGFB1 gene with the MB form. Our results place these genes as candidates for validation and replication studies in leprosy polarisation.
Collapse
Affiliation(s)
- Rodrigo Mendes de Camargo
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| | - Weber Laurentino da Silva
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| | - Priscila Medeiros
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| | | | - Ana Carla Pereira Latini
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| |
Collapse
|
13
|
Pinheiro RO, Schmitz V, Silva BJDA, Dias AA, de Souza BJ, de Mattos Barbosa MG, de Almeida Esquenazi D, Pessolani MCV, Sarno EN. Innate Immune Responses in Leprosy. Front Immunol 2018; 9:518. [PMID: 29643852 PMCID: PMC5882777 DOI: 10.3389/fimmu.2018.00518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Alves Dias
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
da Silva DS, Teixeira LAC, Beghini DG, Ferreira ATDS, Pinho MDBM, Rosa PS, Ribeiro MR, Freire MDC, Hacker MA, Nery JADC, Pessolani MCV, Tovar AMF, Sarno EN, Perales J, Bozza FA, Esquenazi D, Monteiro RQ, Lara FA. Blood coagulation abnormalities in multibacillary leprosy patients. PLoS Negl Trop Dis 2018; 12:e0006214. [PMID: 29565968 PMCID: PMC5863944 DOI: 10.1371/journal.pntd.0006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background Leprosy is a chronic dermato-neurological disease caused by Mycobacterium leprae infection. In 2016, more than 200,000 new cases of leprosy were detected around the world, representing the most frequent cause of infectious irreversible deformities and disabilities. Principal findings In the present work, we demonstrate a consistent procoagulant profile on 40 reactional and non-reactional multibacillary leprosy patients. A retrospective analysis in search of signs of coagulation abnormalities among 638 leprosy patients identified 35 leprosy patients (5.48%) which displayed a characteristic lipid-like clot formed between blood clot and serum during serum harvesting, herein named ‘leprosum clot’. Most of these patients (n = 16, 45.7%) belonged to the lepromatous leprosy pole of the disease. In addition, formation of the leprosum clot was directly correlated with increased plasma levels of soluble tissue factor and von Willebrand factor. High performance thin layer chromatography demonstrated a high content of neutral lipids in the leprosum clot, and proteomic analysis demonstrated that the leprosum clot presented in these patients is highly enriched in fibrin. Remarkably, differential 2D-proteomics analysis between leprosum clots and control clots identified two proteins present only in leprosy patients clots: complement component 3 and 4 and inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP). In agreement with those observations we demonstrated that M. leprae induces hepatocytes release of IHRP in vitro. Conclusions We demonstrated that leprosy MB patients develop a procoagulant status due to high levels of plasmatic fibrinogen, anti-cardiolipin antibodies, von Willebrand factor and soluble tissue factor. We propose that some of these components, fibrinogen for example, presents potential as predictive biomarkers of leprosy reactions, generating tools for earlier diagnosis and treatment of these events. Hemostatic illnesses are frequently associated with acute and chronic infections. In the present work we demonstrated that leprosy patients developed hemostatic abnormalities, like the formation of an atypical lipid clot mass during sera harvesting, a phenomenon previously observed and never unraveled. We characterize the nature of the “leprosum clot”, formed during a protrombotic state developed by some patients. During the proteomic analysis of the leprosum clot we discovered a set of potential serum biomarkers to leprosy reactional episodes diagnosis, which at this moment is based only in clinical features. Taking together, our data suggest that leprosy patients are suffering from a procoagulant status, being beneficiated by the introduction of routine coagulation tests during their treatment, which will aloud physicians to prevent some of the acute clinical symptoms related with superficial vein thrombosis such as cyanosis and tissue necrosis observed during severe cases of leprosy reactional episodes.
Collapse
Affiliation(s)
- Débora Santos da Silva
- Lab. of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Daniela Gois Beghini
- Lab. of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Mariana Andrea Hacker
- Lab. of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Ana Maria Freire Tovar
- Lab. of Conjunctive Tissue, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Lab. of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonas Perales
- Lab. of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernando Augusto Bozza
- Department of Critical Care, National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Danuza Esquenazi
- Lab. of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Robson Queiroz Monteiro
- Lab. of Hemostasis and Poisons, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Alves Lara
- Lab. of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
15
|
Salgado CG, Pinto P, Bouth RC, Gobbo AR, Messias ACC, Sandoval TV, Dos Santos AMR, Moreira FC, Vidal AF, Goulart LR, Barreto JG, da Silva MB, Frade MAC, Spencer JS, Santos S, Ribeiro-Dos-Santos Â. miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology. Front Immunol 2018; 9:463. [PMID: 29593724 PMCID: PMC5854644 DOI: 10.3389/fimmu.2018.00463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Leprosy remains as a public health problem and its physiopathology is still not fully understood. MicroRNAs (miRNA) are small RNA non-coding that can interfere with mRNA to regulate gene expression. A few studies using DNA chip microarrays have explored the expression of miRNA in leprosy patients using a predetermined set of genes as targets, providing interesting findings regarding the regulation of immune genes. However, using a predetermined set of genes restricted the possibility of finding new miRNAs that might be involved in different mechanisms of disease. Thus, we examined the miRNome of tuberculoid (TT) and lepromatous (LL) patients using both blood and lesional biopsies from classical leprosy patients (LP) who visited the Dr. Marcello Candia Reference Unit in Sanitary Dermatology in the State of Pará and compared them with healthy subjects. Using a set of tools to correlate significantly differentially expressed miRNAs with their gene targets, we identified possible interactions and networks of miRNAs that might be involved in leprosy immunophysiopathology. Using this approach, we showed that the leprosy miRNA profile in blood is distinct from that in lesional skin as well as that four main groups of genes are the targets of leprosy miRNA: (1) recognition and phagocytosis, with activation of immune effector cells, where the immunosuppressant profile of LL and immunoresponsive profile of TT are clearly affected by miRNA expression; (2) apoptosis, with supportive data for an antiapoptotic leprosy profile based on BCL2, MCL1, and CASP8 expression; (3) Schwann cells (SCs), demyelination and epithelial–mesenchymal transition (EMT), supporting a role for different developmental or differentiation gene families, such as Sox, Zeb, and Hox; and (4) loss of sensation and neuropathic pain, revealing that RHOA, ROCK1, SIGMAR1, and aquaporin-1 (AQP1) may be involved in the loss of sensation or leprosy pain, indicating possible new therapeutic targets. Additionally, AQP1 may also be involved in skin dryness and loss of elasticity, which are well known signs of leprosy but with unrecognized physiopathology. In sum, miRNA expression reveals new aspects of leprosy immunophysiopathology, especially on the regulation of the immune system, apoptosis, SC demyelination, EMT, and neuropathic pain.
Collapse
Affiliation(s)
- Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| | - Raquel Carvalho Bouth
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Angélica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Ana Caroline Cunha Messias
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | | | | | | | | | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Josafá Gonçalves Barreto
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil.,Laboratório de Epidemiologia Espacial (LabEE), Campus Castanhal, UFPA, Belém, Brazil
| | - Moisés Batista da Silva
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Marco Andrey Cipriani Frade
- Divisão de Dermatologia, Departamento de Clínica Médica da Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| |
Collapse
|
16
|
Meng Q, Bhandary B, Osinska H, James J, Xu N, Shay-Winkler K, Gulick J, Willis MS, Lander C, Robbins J. MMI-0100 Inhibits Cardiac Fibrosis in a Mouse Model Overexpressing Cardiac Myosin Binding Protein C. J Am Heart Assoc 2017; 6:JAHA.117.006590. [PMID: 28871043 PMCID: PMC5634300 DOI: 10.1161/jaha.117.006590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Cardiac stress can trigger production of a 40‐kDa peptide fragment derived from the amino terminus of the cardiac myosin‐binding protein C. Cardiac stress, as well as cMyBP‐C mutations, can trigger production of 1 such truncated protein fragment, a 40‐kDa peptide fragment derived from the amino terminus of cMyBP‐C. Genetic expression of this 40‐kDa fragment in mouse cardiomyocytes (cMyBP‐C40k) leads to cardiac disease, fibrosis, and death within the first year. Fibrosis can occur in many cardiovascular diseases, and mitogen‐activated protein kinase––activated protein kinase‐2 signaling has been implicated in a variety of fibrotic processes. Recent studies demonstrated that mitogen‐activated protein kinase––activated protein kinase‐2 inhibition using the cell‐permeant peptide inhibitor MMI‐0100 is protective in the setting of acute myocardial infarction. We hypothesized that MMI‐0100 might also be protective in a chronic model of fibrosis, produced as a result of cMyBP‐C40k cardiomyocyte expression. Methods and Results Nontransgenic and cMyBP‐C40k inducible transgenic mice were given MMI‐0100 or PBS daily for 30 weeks. In control groups, long‐term MMI‐0100 was benign, with no measurable effects on cardiac anatomy, function, cell viability, hypertrophy, or probability of survival. In the inducible transgenic group, MMI‐0100 treatment reduced cardiac fibrosis, decreased cardiac hypertrophy, and prolonged survival. Conclusions Pharmaceutical inhibition of mitogen‐activated protein kinase––activated protein kinase‐2 signaling via MMI‐0100 treatment is beneficial in the context of fibrotic cMyBPC40k disease.
Collapse
Affiliation(s)
- Qinghang Meng
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Bidur Bhandary
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Jeanne James
- Children's Hospital of Wisconsin-Milwaukee Campus, Milwaukee, WI
| | - Na Xu
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Kritton Shay-Winkler
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - James Gulick
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC
| | | | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| |
Collapse
|
17
|
Li Q, Chen J, Chen Y, Cong X, Chen Z. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia. Mol Med Rep 2016; 13:2393-400. [PMID: 26820076 PMCID: PMC4768999 DOI: 10.3892/mmr.2016.4810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post-compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR-labeled DRG neurons were significantly higher, relative to the sham-operated group, however, the numbers of FG-labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)-extracellular signal-regulated kinase 1/2, and significantly lower levels of p-c-Jun N-terminal kinase and p-p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF-β1, CTGF and collagen type I, with involvement of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobin Cong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
18
|
Batista e Sá VW, Gomes MK, Rangel MLS, Sanchez TA, Moreira FA, Hoefle S, Souto IB, da Cunha AJLA, Fontana AP, Vargas CD. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy. PLoS Negl Trop Dis 2015. [PMID: 26203653 PMCID: PMC4512691 DOI: 10.1371/journal.pntd.0003944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). METHODS In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. FINDINGS Dynamometry performance of the patients' most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. CONCLUSION Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1.
Collapse
Affiliation(s)
- Vagner Wilian Batista e Sá
- Núcleo de Pesquisas em Fisioterapia, Universidade Castelo Branco, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (VWBeS); (CDV)
| | - Maria Katia Gomes
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luíza Sales Rangel
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago Arruda Sanchez
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Azaline Moreira
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sebastian Hoefle
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Cognitive and Behavioral Neuroscience Unit and Neuroinformatics Workgroup, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Inaiacy Bittencourt Souto
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio José Ledo Alves da Cunha
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Fontana
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Domingues Vargas
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Neurologia Deolindo Couto da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (VWBeS); (CDV)
| |
Collapse
|
19
|
CXCL10, MCP-1, and Other Immunologic Markers Involved in Neural Leprosy. Appl Immunohistochem Mol Morphol 2015; 23:220-9. [DOI: 10.1097/pai.0000000000000074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Andrade PR, Pinheiro RO, Sales AM, Illarramendi X, de Mattos Barbosa MG, Moraes MO, Jardim MR, da Costa Nery JA, Sampaio EP, Sarno EN. Type 1 reaction in leprosy: a model for a better understanding of tissue immunity under an immunopathological condition. Expert Rev Clin Immunol 2015; 11:391-407. [DOI: 10.1586/1744666x.2015.1012501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|