1
|
Schaeffel F, Swiatczak B. Mechanisms of emmetropization and what might go wrong in myopia. Vision Res 2024; 220:108402. [PMID: 38705024 DOI: 10.1016/j.visres.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Studies in animal models and humans have shown that refractive state is optimized during postnatal development by a closed-loop negative feedback system that uses retinal image defocus as an error signal, a mechanism called emmetropization. The sensor to detect defocus and its sign resides in the retina itself. The retina and/or the retinal pigment epithelium (RPE) presumably releases biochemical messengers to change choroidal thickness and modulate the growth rates of the underlying sclera. A central question arises: if emmetropization operates as a closed-loop system, why does it not stop myopia development? Recent experiments in young human subjects have shown that (1) the emmetropic retina can perfectly distinguish between real positive defocus and simulated defocus, and trigger transient axial eye shortening or elongation, respectively. (2) Strikingly, the myopic retina has reduced ability to inhibit eye growth when positive defocus is imposed. (3) The bi-directional response of the emmetropic retina is elicited with low spatial frequency information below 8 cyc/deg, which makes it unlikely that optical higher-order aberrations play a role. (4) The retinal mechanism for the detection of the sign of defocus involves a comparison of defocus blur in the blue (S-cone) and red end of the spectrum (L + M-cones) but, again, the myopic retina is not responsive, at least not in short-term experiments. This suggests that it cannot fully trigger the inhibitory arm of the emmetropization feedback loop. As a result, with an open feedback loop, myopia development becomes "open-loop".
Collapse
Affiliation(s)
- Frank Schaeffel
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Section Neurobiology of the Eye, Institute of Ophthalmic Research, University of Tübingen, Germany; Zeiss Vision Lab, Institute of Ophthalmic Research, University of Tübingen, Germany.
| | - Barbara Swiatczak
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| |
Collapse
|
2
|
Li L, Liao C, Zhang X, Lu J, Zeng Y, Fu M, Wang D. Association between body stature with ocular biometrics and refraction among Chinese preschoolers. BMC Ophthalmol 2024; 24:107. [PMID: 38448947 PMCID: PMC10916180 DOI: 10.1186/s12886-024-03372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
PURPOSE To evaluate the association of body stature with ocular biometrics and refraction in preschool children. METHODS A cross-sectional, school-based study was conducted in Shenzhen, China. Preschool children aged 3 to 6 from 10 randomly-selected kindergartens were recruited. Ocular biometric parameters, including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD), corneal radius curvature (CR), axial length to corneal radius ratio (AL-to-CR ratio) and lens thickness (LT) were measured using non-contact partial-coherence laser interferometry. Cycloplegic refractions were obtained by a desktop autorefractor. Body height and weight were measured using standard procedures. The association between body stature and ocular biometrics were analyzed with univariable and multivariable regression model. RESULTS A total of 373 preschoolers were included. AL, ACD, VCD, CR, and AL-to-CR ratio, were positively associated with height and weight (p < 0.05), whereas LT was negatively associated with height and weight (p < 0.01). No association was observed between stature and central cornea thickness and refraction. After adjusted for age and gender in a multivariable regression model, AL had positive associations with height (p < 0.01) and weight (p < 0.01). However, refraction had no significant association with stature parameters. CONCLUSION Taller and heavier preschoolers had eyes with longer AL, deeper vitreous chamber, and flatter cornea. The significant associations between body stature and ocular biometric parameters reveal the driving influence of body development on the growth of eyeballs in preschoolers.
Collapse
Affiliation(s)
- Linling Li
- Shenzhen Maternity and Child Healthcare Hospital, No. 2004, Hongli Road, Futian district, 510060, Shenzhen, People's Republic of China
| | - Chimei Liao
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, 54S.Xianlie Road, 510060, Guangzhou, People's Republic of China
| | - Xiaojuan Zhang
- Shenzhen Maternity and Child Healthcare Hospital, No. 2004, Hongli Road, Futian district, 510060, Shenzhen, People's Republic of China
| | - Juan Lu
- Shenzhen Maternity and Child Healthcare Hospital, No. 2004, Hongli Road, Futian district, 510060, Shenzhen, People's Republic of China
| | - Yangfa Zeng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, 54S.Xianlie Road, 510060, Guangzhou, People's Republic of China
| | - Min Fu
- Shenzhen Maternity and Child Healthcare Hospital, No. 2004, Hongli Road, Futian district, 510060, Shenzhen, People's Republic of China.
| | - Decai Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, 54S.Xianlie Road, 510060, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Zhang Y, Liu Y, An M. Analysis and validation of potential ICD-related biomarkers in development of myopia using machine learning. Int Ophthalmol 2024; 44:116. [PMID: 38411755 DOI: 10.1007/s10792-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/19/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE We aimed to identify and verify potential biomarkers in the development of myopia associated with immunogenic cell death (ICD). METHODS We download high myopia (HM) dataset GSE136701 from Gene Expression Omnibus. Differentially expressed genes in HM were identified to overlapped with ICD-related genes. Least absolute shrinkage and selection operator were used to select the Hub genes. Furthermore, the correlation between the hub genes and immune infiltration, immune response activities, and hub genes Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was investigated using Spearman's rank correlation. Prediction of the miRNAs upstream of the Hub genes was based on the TargetScan database. We used guinea pig lens-induced myopia model's scleral tissues performed quantitative real-time polymerase chain reaction. RESULTS We identified overlapped with ICD-related genes (LY96, IL1A, IL33, and AGER) and two genes (LY96 and AGER) as hub genes. Single sample gene set enrichment analysis and Spearman's rank correlation revealed that hub gene expression levels in HM were significantly correlated with the infiltration percentages of CD56dim natural killer cells, macrophages, immature B cells, and the immune response activities of APC co-stimulation and Kyoto Encyclopedia of Genes and Genomes pathways, such as terpenoid backbone biosynthesis, aminoacyl-trna biosynthesis, Huntington's disease, oxidative phosphorylation; there were a few additional signaling pathways compared to normal samples. Additionally, several miRNA were predicted as upstream regulators of LY96 and AGER. LY96 was identified as a significantly differentially expressed biomarker in myopia guinea pig's scleral tissues, as verified by qPCR. CONCLUSION LY96 was identified and verified as a ICD-related potential myopia biomarker. Molecular mechanisms or pathways involved in myopia development by LY96 requires further research.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yanli Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Khanal S, Norton TT, Gawne TJ. Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia. Vision Res 2023; 204:108161. [PMID: 36529048 PMCID: PMC9974583 DOI: 10.1016/j.visres.2022.108161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
During postnatal development, an emmetropization feedback mechanism uses visual cues to modulate the axial growth of eyes so that, with maturation, images of distant objects are in focus on the retina. If the visual cues indicate that the eye has become too long, it generates STOP signals that slow eye elongation. Myopia is a failure of this process where the eye becomes too long. The existing animal models of myopia have been essential in understanding the mechanics of emmetropization but use visual cues that lead to rapidly progressing myopia and don't match the stimuli that lead to human myopia. Form deprivation removes esssentially all spatial contrast. Minus lens wear accurately guides axial elongation to restore sharp focus: technically it is not a model of myopia! In contrast, childhood myopia involves a slow drift into myopia, even with the presence of clear images. We hypothesize that, in the modern visual environment, STOP signals are present but often are not quite strong enough to prevent myopic progression. Using tree shrews, small diurnal mammals closely related to primates, we have developed an animal model that we propose better represents this situation. We used limited bandwidth light to provide limited chromatic cues for emmetropization that are not quite enough to produce fully effective STOP signaling, resulting in a slow drift into myopia as seen in children. We hypothesize that this animal model of myopia may prove useful in evaluating anti-myopia therapies where form deprivation and minus lens wear would be too powerful.
Collapse
Affiliation(s)
- Safal Khanal
- Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Thomas T Norton
- Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Timothy J Gawne
- Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), Birmingham, AL, United States.
| |
Collapse
|
5
|
Zhou J, He H, Yang Q, Wang JY, You ZP, Liu LL. Comparison of anterior sclera thickness in emmetropes and myopes. BMC Ophthalmol 2023; 23:67. [PMID: 36782174 PMCID: PMC9926670 DOI: 10.1186/s12886-023-02775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND This study aimed to compare anterior scleral thicknesses (ASTs) in people with emmetropia and myopia to explore the effect of myopia on AST. METHODS In this cross-sectional study, 93 participants (i.e., 93 eyes) with emmetropia and myopia underwent ocular imaging via anterior segment optical coherence tomography. We acquired raw B-scan OCT images along each of the four meridians (superior, inferior, nasal, and temporal), The AST was estimated from the limbus to a distance of 6 mm. The participants were aged between 20 and 50 years (mean age: 30.2 ± 8.8 years). The axial length (AL) was 22.50 ~ 33.04 mm (mean AL: 26.51 ± 2.65 mm), and the spherical equivalent (SE) was + 0.50 ~ 27.5 D (mean SE: -7.20 ± 6.5 D). The selected sample comprised 37 males and 56 females who were categorized as emmetropes, mild-moderate myopes, or high myopes. The four meridians of AST, AL, and refractive error were observed. RESULTS The AL was significantly negatively correlated with the four meridians of AST (the r value ranged between - 0.511 and - 0.228, P < 0.05). There was no significant correlation between age and inferior diameter (r = 0.113, P = 0.314), but age was positively correlated with the average AST of the superior, temporal, and nasal diameters (the r value ranged between 0.452 and 0.552, P < 0.05). There was no significant correlation between sex and AST (the T value ranged between - 1.816 and - 0.130, P > 0.05). Except for the inferior diameters of 1 mm, 5 mm, and 6 mm and the temporal diameter of 1 mm, the four diameters in the emmetropia group and the high myopia group were statistically significant at a distance of 0 ~ 6 mm from the limbus (P < 0.05). CONCLUSION The AST is negatively correlated with AL and positively correlated with age. Compared with emmetropic eyes, the AST is thinner in highly myopic eyes. Myopia affects AST, which may be useful for monitoring progression in cases of myopia.
Collapse
Affiliation(s)
- Jie Zhou
- grid.260463.50000 0001 2182 8825Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, No.463 of Bayi Road, Donghu District, Nanchang, Jiangxi 330006 China
| | - Hai He
- grid.260463.50000 0001 2182 8825Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, No.463 of Bayi Road, Donghu District, Nanchang, Jiangxi 330006 China
| | - Qiang Yang
- grid.260463.50000 0001 2182 8825Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, No.463 of Bayi Road, Donghu District, Nanchang, Jiangxi 330006 China
| | - Jiang-Ying Wang
- grid.260463.50000 0001 2182 8825Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, No.463 of Bayi Road, Donghu District, Nanchang, Jiangxi 330006 China
| | - Zhi-Peng You
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, No.463 of Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Li-Li Liu
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, No.463 of Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Choroidal Vascular Density Quantification in High Myopia with or without Choroidal Neovascularization Using Optical Coherence Tomography Angiography. J Ophthalmol 2023; 2023:1504834. [PMID: 36713357 PMCID: PMC9883103 DOI: 10.1155/2023/1504834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose The aim of this study was to analyze choroidal vascular density alteration in high myopia with or without choroidal neovascularization by using optical coherence tomography angiography (OCTA). Methods This was a cross-sectional, observational study that included 60 high-myopia eyes. All the participants had comprehensive ophthalmic assessments with visual acuity, intraocular pressure, slit lamp-assisted biomicroscopy, color fundus photography, axial length, optometry, and OCTA. Age, sex, and comorbidities were collected from their medical charts. Univariate and multiple analyses were made to compare the age, spherical equivalent, choroidal vascular density, gender, and choroidal thickness between normal and patients with choroidal neovascularization. Results 60 eyes with high myopia were included in our study, including 30 eyes with choroidal neovascularization and 30 eyes without choroidal neovascularization or other fundus pathology. The mean age of high myopic patients was older in the choroidal neovascularization group than in the normal group (48.43 ± 19.06 years vs. 28.83 ± 9.92 years, p < 0.01). The mean choroidal thickness of high myopic patients was thinner in the neovascularization group than in the normal group (68.81 ± 48.81 μm vs. 137.80 ± 66.33 μm, p < 0.01). The mean choroidal vascular density in the normal group was greater than in the choroidal neovascularization group (82.43 ± 8.73 vs. 67.54 ± 12.56, p < 0.01). There was no significant difference in spherical equivalent between the choroidal neovascularization group and the normal group (-10.56 ± 2.97D vs. -11.93 ± 3.38D, p = 0.11). Multivariate analysis showed that after adjusting for covariates, less choroidal vascular density and older age were independent factors associated with choroidal neovascularization in the high myopic eye. Conclusion Decreased choroidal vascular density and older age played an important role in the development of choroidal neovascularization in high myopic eyes. OCTA may help us to identify the highly myopic patients that need to intervene.
Collapse
|
7
|
Mai S, Zhu X, Wan EYC, Wu S, Yonathan JN, Wang J, Li Y, Ma JYW, Zuo B, Tse DYY, Lo PC, Wang X, Chan KM, Wu DM, Xiong W. Postnatal eye size in mice is controlled by SREBP2-mediated transcriptional repression of Lrp2 and Bmp2. Development 2022; 149:276005. [PMID: 35833708 PMCID: PMC9382895 DOI: 10.1242/dev.200633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.
Collapse
Affiliation(s)
- Shuyi Mai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Esther Yi Ching Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shengyu Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Jun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Li
- College of Information and Computer, Taiyuan University of Technology, 030024 Taiyuan, China
| | - Jessica Yuen Wuen Ma
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Bing Zuo
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Dennis Yan-Yin Tse
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China.,Research Centre for SHARP Vision, Hong Kong Polytechnic University, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - David M Wu
- Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Yu X, Sun N, Guo C, Zhao Z, Ye M, Zhang J, Ge J, Fan Z. Evaluation of MYRF as a candidate gene for primary angle closure glaucoma. Mol Vis 2021; 27:734-740. [PMID: 35136345 PMCID: PMC8763663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/27/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Primary angle-closure glaucoma (PACG) is a leading cause of blindness. Despite tremendous human effort and financial input, no definitive causative gene has been identified either through genome-wide association or Mendelian family studies. In the current study, novel candidate genes for PACG were investigated by studying the variants of nanophthalmos-associated genes. METHODS A case-control study was conducted that included 45 PACG patients and 12 normal controls with short axial length (AL, less than 23.5 mm but more than 20.5 mm). Whole-exome sequencing (WES) was performed to screen the variants in previously identified nanophthalmos-associated genes, as well as other risk genes. RESULTS The age range of the 45 PACG patients was 24 to 80 years, with an average AL of 21.87±0.65 mm (range: 20.54-23.45 mm) in the right eye and 21.89±0.64 mm (range 20.60-23.23 mm) in the left eye. Four novel myelin regulatory factor (MYRF) gene missense variants (p.G117S, p.H1057R, p.H230R, and p.R316C) were identified in four out of the 45 enrolled PACG patients, respectively. No MYRF or other nanophthalmos-associated gene variants were detected in the 12 normal controls. CONCLUSIONS An appropriate approach was adopted to investigate the genetics of PACG through nanophthalmos-associated genes. A genetic variant, MYRF, was identified in four out of 45 PACG patients, which might be a novel candidate gene for PACG.
Collapse
Affiliation(s)
- Xiaowei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Congcong Guo
- Jiaojiang Center for Disease Control and Prevention, Taizhou, China
| | - Zhenni Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiamin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhigang Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
9
|
Liu S, Chen H, Ma W, Zhong Y, Liang Y, Gu L, Lu X, Li J. Non-coding RNAs and related molecules associated with form-deprivation myopia in mice. J Cell Mol Med 2021; 26:186-194. [PMID: 34841657 PMCID: PMC8742199 DOI: 10.1111/jcmm.17071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
The role of miRNAs and its regulatory mechanism in myopia are indeterminate. Our study aimed to investigate potential myopia‐associated non‐coding RNAs and related molecules by performing a comprehensive bioinformatic analysis of miRNA expression profile of mice with form‐deprivation myopia (FDM). Differentially expressed miRNAs in two raw microarray data sets (GSE58124 and GSE84220) from Gene Expression Omnibus (GEO) database were comprehensively analysed using GEO2R. Target genes were predicted using miRDB and enriched with Metascape online tool. Protein‐protein interaction (PPI) networks were constructed utilizing STRING and Cytoscape. Significant differentially expressed miRNAs were validated by real‐time polymerase chain reaction (qRT‐PCR) using RNA extracted from monocular FDM ocular tissues. As result, we identified three upregulated miRNAs (mmu‐miR‐1936, mmu‐miR‐338‐5p, and mmu‐miR‐673‐3p) significantly associated with myopia in the two microarray data sets (p < 0.05 and |Log (Fold Change) |>1). GO functional analysis suggested these three miRNAs were targeted in genes mostly enriched in morphogenesis and developmental growth of retinal tissues. Enrichment analysis revealed top eight transcription factors, including PAX6 and Smad3, related to myopia. Ten hub genes, including Rbx1, Fbxl3, Fbxo27, Fbxl7, Fbxo4, Cul3, Cul2, Klhl5, Fbxl16 and Klhl42, associated with ubiquitin conjugation were identified. qRT‐PCR confirmed the increased expression of mmu‐miR‐1936 and mmu‐miR‐338‐5p (p < 0.05), but no statistical difference was observed in mmu‐miR‐673‐3p expression in myopic retinas. Our findings indicated mmu‐miR‐1936, mmu‐miR‐338‐5p and mmu‐miR‐673‐3p upregulation may be associated with myopia development via post‐transcriptional gene regulation, and identified potential molecules that could be further explored in future studies of the mechanism in myopia.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huijie Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Liang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lishan Gu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Wei J, Kong D, Yu X, Wei L, Xiong Y, Yang A, Drobe B, Bao J, Zhou J, Gao Y, He Z. Is Peripheral Motion Detection Affected by Myopia? Front Neurosci 2021; 15:683153. [PMID: 34163327 PMCID: PMC8215660 DOI: 10.3389/fnins.2021.683153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose The current study was to investigate whether myopia affected peripheral motion detection and whether the potential effect interacted with spatial frequency, motion speed, or eccentricity. Methods Seventeen young adults aged 22–26 years participated in the study. They were six low to medium myopes [spherical equivalent refractions −1.0 to −5.0 D (diopter)], five high myopes (<-5.5 D) and six emmetropes (+0.5 to −0.5 D). All myopes were corrected by self-prepared, habitual soft contact lenses. A four-alternative forced-choice task in which the subject was to determine the location of the phase-shifting Gabor from the four quadrants (superior, inferior, nasal, and temporal) of the visual field, was employed. The experiment was blocked by eccentricity (20° and 27°), spatial frequency (0.6, 1.2, 2.4, and 4.0 cycles per degree (c/d) for 20° eccentricity, and 0.6, 1.2, 2.0, and 3.2 c/d for 27° eccentricity), as well as the motion speed [2 and 6 degree per second (d/s)]. Results Mixed-model analysis of variances showed no significant difference in the thresholds of peripheral motion detection between three refractive groups at either 20° (F[2,14] = 0.145, p = 0.866) or 27° (F[2,14] = 0.475, p = 0.632). At 20°, lower motion detection thresholds were associated with higher myopia (p < 0.05) mostly for low spatial frequency and high-speed targets in the nasal and superior quadrants, and for high spatial frequency and high-speed targets in the temporal quadrant in myopic viewers. Whereas at 27°, no significant correlation was found between the spherical equivalent and the peripheral motion detection threshold under all conditions (all p > 0.1). Spatial frequency, speed, and quadrant of the visual field all showed significant effect on the peripheral motion detection threshold. Conclusion There was no significant difference between the three refractive groups in peripheral motion detection. However, lower motion detection thresholds were associated with higher myopia, mostly for low spatial frequency targets, at 20° in myopic viewers.
Collapse
Affiliation(s)
- Junhan Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Deying Kong
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Yu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lili Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Xiong
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Adeline Yang
- WEIRC, WMU-Essilor International Research Centre, Wenzhou, China.,R&D AMERA, Essilor International, Singapore, Singapore
| | - Björn Drobe
- WEIRC, WMU-Essilor International Research Centre, Wenzhou, China.,R&D AMERA, Essilor International, Singapore, Singapore
| | - Jinhua Bao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China.,WEIRC, WMU-Essilor International Research Centre, Wenzhou, China
| | - Jiawei Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Gao
- WEIRC, WMU-Essilor International Research Centre, Wenzhou, China.,R&D AMERA, Essilor International, Singapore, Singapore
| | - Zhifen He
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Koli S, Labelle-Dumais C, Zhao Y, Paylakhi S, Nair KS. Identification of MFRP and the secreted serine proteases PRSS56 and ADAMTS19 as part of a molecular network involved in ocular growth regulation. PLoS Genet 2021; 17:e1009458. [PMID: 33755662 PMCID: PMC8018652 DOI: 10.1371/journal.pgen.1009458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/02/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Precise regulation of ocular size is a critical determinant of normal visual acuity. Although it is generally accepted that ocular growth relies on a cascade of signaling events transmitted from the retina to the sclera, the factors and mechanism(s) involved are poorly understood. Recent studies have highlighted the importance of the retinal secreted serine protease PRSS56 and transmembrane glycoprotein MFRP, a factor predominantly expressed in the retinal pigment epithelium (RPE), in ocular size determination. Mutations in PRSS56 and MFRP constitute a major cause of nanophthalmos, a condition characterized by severe reduction in ocular axial length/extreme hyperopia. Interestingly, common variants of these genes have been implicated in myopia, a condition associated with ocular elongation. Consistent with these findings, mice with loss of function mutation in PRSS56 or MFRP exhibit a reduction in ocular axial length. However, the molecular network and cellular processes involved in PRSS56- and MFRP-mediated ocular axial growth remain elusive. Here, we show that Adamts19 expression is significantly upregulated in the retina of mice lacking either Prss56 or Mfrp. Importantly, using genetic mouse models, we demonstrate that while ADAMTS19 is not required for ocular growth during normal development, its inactivation exacerbates ocular axial length reduction in Prss56 and Mfrp mutant mice. These results suggest that the upregulation of retinal Adamts19 is part of an adaptive molecular response to counteract impaired ocular growth. Using a complementary genetic approach, we show that loss of PRSS56 or MFRP function prevents excessive ocular axial growth in a mouse model of early-onset myopia caused by a null mutation in Irbp, thus, demonstrating that PRSS56 and MFRP are also required for pathological ocular elongation. Collectively, our findings provide new insights into the molecular network involved in ocular axial growth and support a role for molecular crosstalk between the retina and RPE involved in refractive development. During ocular refractive development, the eye’s growth is modulated, such that the ocular axial length matches the optical power enabling the eyes to achieve optimal focus. Alterations in ocular growth mainly contribute to refractive errors. Mutations in human PRSS56 and MFRP are responsible for nanophthalmos that exhibit a severe reduction in ocular axial length, and high hyperopia. Importantly, mutant mouse models lacking either Müller glia expressed PRSS56, or retinal pigment epithelium (RPE) localized MFRP exhibit ocular axial length reduction. Here, we have identified Adamts19 as a factor whose levels were significantly upregulated in the retina of mice lacking either Prss56 or Mfrp. Importantly, utilizing Adamts19 knockout mice we demonstrate that upregulation of retinal Adamts19 expression constitutes a compensatory mechanism that provides partial protection against ocular axial reduction due to mutation in Prss56 and Mfrp. Next, utilizing a mouse model of early-onset myopia, we demonstrate that the mutant Irbp induced ocular axial elongation is completely dependent on Prss56 as well as Mfrp, suggesting an interplay between Müller glia and RPE in the regulation of ocular axial growth. Collectively, these findings suggest that ocular refractive development relies on complex interactions occurring between genetic factors in the retina and RPE.
Collapse
Affiliation(s)
- Swanand Koli
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Yin Zhao
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Seyyedhassan Paylakhi
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - K. Saidas Nair
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ucak T, Icel E, Yilmaz H, Karakurt Y, Tasli G, Ugurlu A, Bozkurt E. Alterations in optical coherence tomography angiography findings in patients with high myopia. Eye (Lond) 2020; 34:1129-1135. [PMID: 32094474 DOI: 10.1038/s41433-020-0824-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The aim of this study was to determine the macular changes using optical coherence tomography (OCT) and OCT-angiography (OCT-A) in eyes with high myopia. Determining the alterations in vascular structures can provide a clearer understanding of the pathophysiological mechanisms of this disease and help define new treatment options and preventive measures. MATERIALS AND METHODS Ninety-two patients with high myopia (axial length ≥ 26 mm) and 70 control cases without any known systemic or ocular diseases were enrolled in this prospective study. One eye of each patient was included in the statistical analyses. RESULTS Retinal nerve fiber layer (RNFL) thickness and Early Treatment Diabetic Retinopathy Study (ETDRS) macula map values were lower in myopia compared with the controls. Both superior and inferior ganglion cell complex (GCC) thicknesses were significantly thinner in the high myopia compared with the controls (p < 0.001). Regarding the OCT-A findings, although superficial or deep foveal avascular zones (FAZ) did not significantly differ between the two groups, the density values of superficial and deep microvessels were significantly lower in the high myopia group compared with the control cases. CONCLUSIONS In patients with high myopia, with an increase in the axial length and a decrease in RNFL and GCC thicknesses, the vascular densities of the superficial and deep retina were reduced in the macular region.
Collapse
Affiliation(s)
- Turgay Ucak
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey.
| | - Erel Icel
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Hayati Yilmaz
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Yucel Karakurt
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Gamze Tasli
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Adem Ugurlu
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Erdinc Bozkurt
- Department of Ophthalmology, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
13
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
14
|
Sun W, Li Y, Li J, Zhang X, Feng Q, Zhang Z, Kang J, Huang X. Cytokine fibroblast growth factor 10 (FGF10) polymorphisms are associated with risk of myopia in young children. J Cell Biochem 2019; 120:15241-15247. [PMID: 31021460 DOI: 10.1002/jcb.28790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Myopia has become a major public health issue worldwide. Identification of genetic loci related to myopia in young children may advance our knowledge of the pathogenesis of myopia. Fibroblast growth factor 10 (FGF10) plays essential roles for the development of myopia through modulating extracellular matrix-associated genes. Studies revealed that genetic variants of FGF10 were associated with extreme myopia in adults. However, their associations with susceptibility of myopia in young children, which are less affected by confounding factors and more suitable for studying genetic factors of myopia, have not been explored. In the current study, we evaluated 13 tagSNPs that captured 100% of genetic variation in the FGF10 gene region for their associations with myopia in a large Chinese case-control study with 900 myopia children and 900 nonmyopia children. We found rs2973644 was significantly associated with increased risk of myopia (odds ratio [OR]: 1.26; 95% confidence intervals [CI]: 1.06-1.49; P = 0.009). furthermore, rs339501 (OR: 1.73; 95% CI: 1.18-2.53; P = 0.005), rs2973644 (OR: 1.57; 95% CI: 1.13-2.19; P = 0.007), and rs79002828 (OR: 1.83; 95% CI: 1.20-2.77; P = 0.005) were significantly associated with increased risk of high myopia in young children. Functional assessment of rs2973644 by luciferase assays revealed the risk G allele causes a higher expression level of FGF10 than the protective A allele. Our results do support that genetic variants of cytokine FGF10 are associated with susceptibility of myopia (as well as high myopia) in young children and further exploration are needed for myopia in children.
Collapse
Affiliation(s)
- Wei Sun
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Yinan Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medcial University, Guangzhou, Guangdong, China
| | - Jing Li
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Xiaoming Zhang
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Qingyang Feng
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Zhenyu Zhang
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Jianfang Kang
- Department of Ophthalmology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Xuelin Huang
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Axial Elongation in Myopic Children and its Association With Myopia Progression in the Correction of Myopia Evaluation Trial. Eye Contact Lens 2018; 44:248-259. [PMID: 29923883 DOI: 10.1097/icl.0000000000000505] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Describe axial elongation using 14-year longitudinal data in a large, ethnically diverse group of myopic children, estimate age and axial length (AL) at stabilization, and evaluate associations between the progression and stabilization of AL and myopia. METHODS Axial length was measured by A-scan ultrasonography annually. Axial length data were fit with individual polynomial functions and curve-based parameters (AL at stabilization and age at stabilization when annual rate of axial elongation ≤0.06 mm) were estimated. For myopia progression, noncycloplegic spherical equivalent refractions were fit with Gompertz functions. RESULTS Four hundred thirty-one participants, with AL and myopia data fit successfully, were classified into four cohorts: Younger (n=30); Older (n=334); AL Stabilized at Baseline (n=19); and AL Not Stabilized (n=48). At AL stabilization, for participants in the Younger and Older Cohorts, mean (SD) age and AL were 16.3 (2.4) years and 25.2 (0.9) mm, respectively. No associations were found between age at AL stabilization and ethnicity, sex, or number of myopic parents. At stabilization, sex and number of myopic parents (both P<0.003), but not ethnicity, were significantly associated with AL. Axial length and myopia progression curves were highly correlated overall (all r>0.77, P<0.0001). However, unlike AL, the amount of myopia did not differ significantly between males and females. CONCLUSIONS In most of the participants, AL increased rapidly at younger ages and then slowed and stabilized. The close association between growth and stabilization of AL and myopia is consistent with the suggestion that axial elongation is the primary ocular component in myopia progression and stabilization.
Collapse
|
16
|
Paylakhi S, Labelle-Dumais C, Tolman NG, Sellarole MA, Seymens Y, Saunders J, Lakosha H, deVries WN, Orr AC, Topilko P, John SWM, Nair KS. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error. PLoS Genet 2018. [PMID: 29529029 PMCID: PMC5864079 DOI: 10.1371/journal.pgen.1007244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.
Collapse
Affiliation(s)
- Seyyedhassan Paylakhi
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Nicholas G Tolman
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Michael A. Sellarole
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Yusef Seymens
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Joseph Saunders
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Hesham Lakosha
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Wilhelmine N. deVries
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Andrew C. Orr
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Piotr Topilko
- Ecole Normale Supérieure, Institut de Biologie de l’ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, France
| | - Simon WM. John
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Ophthalmology, Tufts University School of Medicine Boston, MA, United States of America
| | - K. Saidas Nair
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Refraction and Ocular Biometry of Preschool Children in Shanghai, China. J Ophthalmol 2018; 2018:5205946. [PMID: 29692930 PMCID: PMC5859869 DOI: 10.1155/2018/5205946] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose To investigate the refraction and ocular biometry characteristics and to examine the prevalence of refractive errors in preschool children aged 3 to 6 years in Shanghai, China. Methods A school-based cross-sectional study was conducted in Jiading and Xuhui District, Shanghai, in 2013. We randomly selected 7 kindergartens in Jiading District and 10 kindergartens in Xuhui District, with a probability proportionate to size. The children underwent comprehensive eye examinations, including cycloplegic refraction and biometric measurements. Myopia, hyperopia, astigmatism were defined as spherical equivalent (SE) ≤ −0.50 D, SE ≥ +2.00 D, and cylindrical diopters ≤ −1.00 D. Results The mean SE for 3- to 6-year-old children was +1.20 D (standard deviation [SD] 1.05), and the mean axial length (AL) was 22.29 mm (SD 0.73). The overall prevalence of myopia and astigmatism was 3.7% and 18.3%, respectively. No difference in prevalence of astigmatism was found across age groups. There was a statistically significant association between lower cylindrical diopters and higher spherical diopters (Spearman's correlation: −0.21, P < 0.001). Conclusion Chinese children aged 3 to 6 years in the Shanghai area were mostly mildly hyperopic, with a low prevalence of myopia. Refractive astigmatism for children may be relatively stable throughout the preschool stage. Astigmatism was significantly associated with refractive error.
Collapse
|
18
|
Effect of Altered Retinal Cones/Opsins on Refractive Development under Monochromatic Lights in Guinea Pigs. J Ophthalmol 2018; 2018:9197631. [PMID: 29675275 PMCID: PMC5838468 DOI: 10.1155/2018/9197631] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To analyze the changes of refraction and metabolism of the retinal cones under monochromatic lights in guinea pigs. Methods Sixty guinea pigs were randomly divided into a short-wavelength light (SL) group, a middle-wavelength light (ML) group, and a white light (WL) group. Refraction and axial length were measured before and after 10-week illumination. The densities of S-cones and M-cones were determined by retinal cone immunocytochemistry, and the expressions of S-opsins and M-opsins were determined by real-time PCR and Western blot. Results After 10-week illumination, the guinea pigs developed relative hyperopia in the SL group and relative myopia in the ML group. Compared with the WL group, the density of S-cones and S-opsins increased while M-cones and M-opsins decreased in the SL group (all, p < 0.05); conversely, the density of S-cones and S-opsins decreased while M-cones and M-opsins increased in the ML group (all, p < 0.05). Increased S-cones/opsins and decreased M-cones/opsins were induced by short-wavelength lights. Decreased S-cones/opsins and increased M-cones/opsins were induced by middle-wavelength lights. Conclusions Altered retinal cones/opsins induced by monochromatic lights might be involved in the refractive development in guinea pigs.
Collapse
|
19
|
Abstract
The incidence of myopia is constantly on the rise. Patients of high myopia and pathological myopia are young and can lose vision due to a number of degenerative changes occurring at the macula. With the emergence of new technologies such as swept-source optical coherence tomography (OCT) and OCT angiography, our understanding of macular pathology in myopia has improved significantly. New conditions such as myopic traction maculopathy have been defined. Early, noninvasive detection of myopic choroidal neovascularization and its differentiation from lacquer cracks is possible with a greater degree of certainty. We discuss the impact of these new exciting and promising technologies and management of macular pathology in myopia. Incorporation of OCT in the microscope has also improved macular surgery. New concepts such as fovea-sparing internal limiting membrane peeling have emerged. A review of literature and our experience in managing all these conditions are discussed.
Collapse
Affiliation(s)
- Atul Kumar
- Vitreo-Retina and Uveitis Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Vitreo-Retina and Uveitis Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Devesh Kumawat
- Vitreo-Retina and Uveitis Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ganesh Pillay
- Vitreo-Retina and Uveitis Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Summers JA, Harper AR, Feasley CL, Van-Der-Wel H, Byrum JN, Hermann M, West CM. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye. J Biol Chem 2016; 291:18991-9005. [PMID: 27402828 DOI: 10.1074/jbc.m116.725523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/31/2022] Open
Abstract
All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth.
Collapse
Affiliation(s)
| | | | - Christa L Feasley
- Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, Thermo Fisher Scientific, West Palm Beach, Florida 33407
| | - Hanke Van-Der-Wel
- Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, and
| | - Jennifer N Byrum
- Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr Gasse 9/2, 1030 Vienna, Austria
| | - Christopher M West
- Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, and
| |
Collapse
|
21
|
Peripheral contrast sensitivity and attention in myopia. Vision Res 2016; 125:49-54. [PMID: 27264028 DOI: 10.1016/j.visres.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022]
Abstract
Disruption of normal visual experience or changes in the normal interaction between central and peripheral retinal input may lead to the development of myopia. In order to examine the relationship between peripheral contrast sensitivity and myopia, we manipulated attentional load for foveal vision in emmetropes and myopes while observers detected targets with peripheral vision. Peripheral contrast detection thresholds were measured binocularly using vertical Gabor stimuli presented at three eccentricities (±8°, 17°, 30°) in a spatial 2 alternative forced choice task. Contrast thresholds were measured in young adult (mean age 24.5±2.6years) emmetropes (n=17; group SE: +0.19±0.32D) and myopes (n=25; group SE: -3.74±1.99D). Attention at central fixation was manipulated with: (1) a low attention task, requiring simple fixation; or (2) a high attention task, which required subjects to perform a mathematical task. We found that at 30° all subjects exhibited lower contrast sensitivity (higher thresholds). In addition, myopes (Wilcoxon, p<0.01), but not emmetropes (Wilcoxon, p=0.1), had a significant decrease in sensitivity at 30° during the high attention task. However, the attention dependent threshold increase for myopes was not significantly greater than for emmetropes (Wilcoxon, p=0.27). Attentional load did not increase thresholds at 8° or 17° for either refractive group. These data indicate that myopes experience a greater decrease in contrast sensitivity in the far periphery than emmetropes when attention is deployed in central vision.
Collapse
|
22
|
Jin GM, Zhao XJ, Chen AM, Chen YX, Li Q. Association of COL1A1 polymorphism with high myopia: a Meta-analysis. Int J Ophthalmol 2016; 9:604-9. [PMID: 27162737 DOI: 10.18240/ijo.2016.04.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/20/2015] [Indexed: 02/02/2023] Open
Abstract
AIM To investigate the association between collagen type I alpha 1 (COL1A1) gene and high myopia. METHODS In this Meta-analysis, we examined 5 published case-control studies that involved 1942 high myopia cases and 2929 healthy controls to assess the association between the COL1A1 rs2075555 polymorphism and high myopia risk. We calculated the pooled odds ratios (ORs) of COL1A1 rs2075555 polymorphism in high myopia cases vs healthy controls to evaluate the strength of the association. RESULTS Overall, there was no significant difference both in the genotype and allele distributions of COL1A1 rs2075555 polymorphism between high myopia cases and healthy controls: CC vs AA OR=1.10, 95% confidence interval (CI)=0.76-1.58; AC vs AA OR=0.98, 95%CI 0.80-1.20; CC/AC vs AA/OR=1.01, 95%CI 0.84-1.22; CC vs AC/AA OR=1.06, 95%CI=0.93-1.20; C vs A OR=1.06, 95%CI 0.91-1.23). In addition, in the stratified analyses by ethnicity, no significant associations were found in any genetic model both in European and Asia cohorts. CONCLUSION Our results indicate that the COL1A1 rs2075555 polymorphism may not affect susceptibility to high myopia.
Collapse
Affiliation(s)
- Guang-Ming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Jing Zhao
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ai-Ming Chen
- Department of Pharmacy, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yong-Xing Chen
- Department of Otorhinolaryngology, Jiangmen Central Hospital, Jiangmen 529030, Guangdong Province, China
| | - Qin Li
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
23
|
Zhang X, Zhou X, Qu X. Association between COL1A1 polymorphisms and high myopia: a meta-analysis. Int J Clin Exp Med 2015; 8:5862-5868. [PMID: 26131177 PMCID: PMC4483928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Previous studies of the association between COL1A1 polymorphisms and high myopia risk have yielded conflicting results. To help resolve the discrepancies, we performed a meta-analysis to estimate the relationship between COL1A1 polymorphisms and high myopia risk. METHODS We searched for case-control and cohort studies in MEDLINE, EMBASE, and OVID. Odds ratios (OR) with 95% confidence intervals (CI) were derived for single-nucleotide polymorphisms (SNPs). We also analyzed heterogeneity and publication bias. RESULTS This meta-analysis was based on five studies of rs2075555 (1,944 high myopia cases and 3,060 controls), and three studies of rs2269336 (1,454 high myopia cases and 1,512 controls). The combined results showed an association between rs2075555 and high myopia in the dominant (OR = 0.86, 95% CI = 0.71-0.99) and homozygote models (OR = 0.79, 95% CI = 0.64-0.97). In the recessive model for rs2269336, OR was 1.26 (95% CI = 1.05-1.50); in the heterozygote model, OR was 0.81 (95% CI = 0.69-0.96). Begg's and Egger's tests for rs2075555 showed no evidence of publication bias. CONCLUSIONS This meta-analysis suggests COL1A1 rs2075555 is a potential low risk factor for high myopia.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Myopia Key Laboratory of The Health MinistryShanghai, China
| | - Xingtao Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Myopia Key Laboratory of The Health MinistryShanghai, China
| | - Xinhua Qu
- Translational Medicine Center, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
24
|
Park HN, Jabbar SB, Tan CC, Sidhu CS, Abey J, Aseem F, Schmid G, Iuvone PM, Pardue MT. Visually-driven ocular growth in mice requires functional rod photoreceptors. Invest Ophthalmol Vis Sci 2014; 55:6272-9. [PMID: 25183765 DOI: 10.1167/iovs.14-14648] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Proper refractive eye growth depends on several features of the visual image and requisite retinal pathways. In this study, we determined the contribution of rod pathways to normal refractive development and form deprivation (FD) myopia by testing Gnat1(-/-) mice, which lack functional rods due to a mutation in rod transducin-α. METHODS Refractive development was measured in Gnat1(-/-) (n = 30-36) and wild-type (WT) mice (n = 5-9) from 4 to 12 weeks of age. FD was induced monocularly from 4 weeks of age using head-mounted diffuser goggles (Gnat1(-/-), n = 9-10; WT, n = 7-8). Refractive state and ocular biometry were obtained weekly using a photorefractor, 1310 nm optical coherence tomography, and partial coherence interferometry. We measured retinal dopamine and its metabolite, DOPAC, using HPLC. RESULTS During normal development, the refractions of WT mice started at 5.36 ± 0.68 diopters (D) and became more hyperopic before plateauing at 7.78 ± 0.64 D. In contrast, refractions in Gnat1(-/-) mice were stable at 7.39 ± 1.22 D across all ages. Three weeks of FD induced a 2.54 ± 0.77 D myopic shift in WT mice, while Gnat1(-/-) mice did not respond to FD at any age. Axial lengths of Gnat1(-/-) and WT mice increased with age, but differences between genotypes or with goggling did not reach statistical significance and fell within the precision of the instruments. The DOPAC levels were significantly lower in Gnat1(-/-) mice from 2 to 12 weeks of age with DOPAC/dopamine ratio peaking earlier in Gnat1(-/-) compared to WT mice. No differences in dopamine were seen in response to FD or between genotypes. CONCLUSIONS Functional rod photoreceptors are critical to normal refractive development and the response to FD in mice. Dopamine levels may not directly modulate the refractive state of the mouse eye, but tonic levels of dopamine during development may determine susceptibility to myopia.
Collapse
Affiliation(s)
- Han na Park
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Seema B Jabbar
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Christopher C Tan
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Curran S Sidhu
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jane Abey
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Fazila Aseem
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Gregor Schmid
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States Atlanta Veterans Administration Center of Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| |
Collapse
|
25
|
Refractive index measurement of the mouse crystalline lens using optical coherence tomography. Exp Eye Res 2014; 125:62-70. [PMID: 24939747 DOI: 10.1016/j.exer.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 11/24/2022]
Abstract
In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lenses using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p < 0.001). Lens thickness was not significantly different between the two strains at any age (p = 0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p < 0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p = 0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p = 0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p < 0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data.
Collapse
|
26
|
Hysi PG, Mahroo OA, Cumberland P, Wojciechowski R, Williams KM, Young TL, Mackey DA, Rahi JS, Hammond CJ. Common mechanisms underlying refractive error identified in functional analysis of gene lists from genome-wide association study results in 2 European British cohorts. JAMA Ophthalmol 2014; 132:50-6. [PMID: 24264139 DOI: 10.1001/jamaophthalmol.2013.6022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE To date, relatively few genes responsible for a fraction of heritability have been identified by means of large genetic association studies of refractive error. OBJECTIVE To explore the genetic mechanisms that lead to refractive error in the general population. DESIGN, SETTING, AND PARTICIPANTS Genome-wide association studies were carried out in 2 British population-based independent cohorts (N = 5928 participants) to identify genes moderately associated with refractive error. MAIN OUTCOMES AND MEASURES Enrichment analyses were used to identify sets of genes overrepresented in both cohorts. Enriched groups of genes were compared between both participating cohorts as a further measure against random noise. RESULTS Groups of genes enriched at highly significant statistical levels were remarkably consistent in both cohorts. In particular, these results indicated that plasma membrane (P = 7.64 × 10⁻³⁰), cell-cell adhesion (P = 2.42 × 10⁻¹⁸), synaptic transmission (P = 2.70 × 10⁻¹⁴), calcium ion binding (P = 3.55 × 10⁻¹⁵), and cation channel activity (P = 2.77 × 10⁻¹⁴) were significantly overrepresented in relation to refractive error. CONCLUSIONS AND RELEVANCE These findings provide evidence that development of refractive error in the general population is related to the intensity of photosignal transduced from the retina, which may have implications for future interventions to minimize this disorder. Pathways connected to the procession of the nerve impulse are major mechanisms involved in the development of refractive error in populations of European origin.
Collapse
Affiliation(s)
- Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, England
| | - Omar A Mahroo
- Department of Ophthalmology, King's College London, London, England3Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England
| | - Phillippa Cumberland
- Centre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, University College London, London, England
| | | | - Katie M Williams
- Department of Ophthalmology, King's College London, London, England
| | - Terri L Young
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - David A Mackey
- Lions Eye Institute, University of Western Australia, Centre for Ophthalmology and Visual Science, Perth, Australia
| | - Jugnoo S Rahi
- Centre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, University College London, London, England
| | - Christopher J Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London, London, England2Department of Ophthalmology, King's College London, London, England
| |
Collapse
|
27
|
Sharmila F, Abinayapriya, Ramprabhu K, Kumaramanickavel G, R R Sudhir, Sripriya S. Genetic analysis of axial length genes in high grade myopia from Indian population. Meta Gene 2014; 2:164-75. [PMID: 25606400 PMCID: PMC4287827 DOI: 10.1016/j.mgene.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/29/2022] Open
Abstract
Purpose To study the putative association of Membrane frizzled related protein (MFRP) and Visual system homeobox protein (VSX2) gene variants with axial length (AL) in myopia. Method A total of 189 samples with (N = 98) and without (N = 91) myopia were genotyped for the MRFP and VSX2 variations in ABI Prism 3100 AVANT genetic analyzer. Genotype/haplotype analysis was performed using PLINK, Haploview and THESIAS softwares. Results Fifteen variations were observed in the MFRP gene of which, rs36015759 (c.492C > T, T164T) in exon 5 was distributed at a high frequency in the controls and significantly associated with a low risk for myopia (P = 4.10 ∗ e− 07 OR < 1.0). An increased frequency for the coding haplotype block [CGTCGG] harboring rs36015759 was observed in controls (31%) than cases (8%) that also correlated with a decreased mean AL (− 1.35085; P = 0.000444) by THESIAS analysis. The ‘T’ allele of rs36015759 was predicted to abolish the binding site for splicing enhancer (SRp40) by FASTSNP analysis. Conclusion Myopia is a complex disorder influenced by genetic and environmental factors. Our work shows evidence of association of a specific MFRP haplotype which was more prevalent in controls with decreased AL. However, replication and functional studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ferdinamarie Sharmila
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India ; Birla Institute of Technology & Science (BITS), Pilani, 333 031 Rajasthan, India
| | - Abinayapriya
- Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Karthikeyan Ramprabhu
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India
| | | | - R R Sudhir
- Preventive Ophthalmology Department, Sankara Nethralaya, Chennai, India
| | - Sarangapani Sripriya
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India
| |
Collapse
|
28
|
Flitcroft DI. Emmetropisation and the aetiology of refractive errors. Eye (Lond) 2014; 28:169-79. [PMID: 24406411 DOI: 10.1038/eye.2013.276] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022] Open
Abstract
The distribution of human refractive errors displays features that are not commonly seen in other biological variables. Compared with the more typical Gaussian distribution, adult refraction within a population typically has a negative skew and increased kurtosis (ie is leptokurtotic). This distribution arises from two apparently conflicting tendencies, first, the existence of a mechanism to control eye growth during infancy so as to bring refraction towards emmetropia/low hyperopia (ie emmetropisation) and second, the tendency of many human populations to develop myopia during later childhood and into adulthood. The distribution of refraction therefore changes significantly with age. Analysis of the processes involved in shaping refractive development allows for the creation of a life course model of refractive development. Monte Carlo simulations based on such a model can recreate the variation of refractive distributions seen from birth to adulthood and the impact of increasing myopia prevalence on refractive error distributions in Asia.
Collapse
|
29
|
Norton TT, Siegwart JT. Light levels, refractive development, and myopia--a speculative review. Exp Eye Res 2013; 114:48-57. [PMID: 23680160 PMCID: PMC3742693 DOI: 10.1016/j.exer.2013.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022]
Abstract
Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways.
Collapse
Affiliation(s)
- Thomas T Norton
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
30
|
Yamaguchi T, Ohnuma K, Konomi K, Satake Y, Shimazaki J, Negishi K. Peripheral optical quality and myopia progression in children. Graefes Arch Clin Exp Ophthalmol 2013; 251:2451-61. [PMID: 23760671 DOI: 10.1007/s00417-013-2398-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/22/2013] [Accepted: 05/28/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND To investigate the peripheral optical quality and its relationship with axial elongation, myopic progression in Japanese children. METHODS Twenty-nine Japanese children, ages 10 to 12 years old, with baseline refraction from +0.75 D to -5.5 D, were included and followed for 9 months. The central and peripheral point spread functions (PSFs; 0°, 10°, 20°, 30° nasally) were obtained at 0.25 D steps around ±2.5 D of best-focus PSF (BF-PSF) using double-pass PSF system. Modulation transfer function (MTF) area of the BF-PSF was calculated from BF-PSF to represent the peripheral optical quality. Relative peripheral defocus (RPD), the refraction of anterior/posterior focal lines, MTF area, and their correlations with myopia progression were analyzed. RESULTS The average refractive change in 9 months was -0.5 ± 0.8 D. The change in axial length was significantly positively correlated with the amount of myopic progression (P = 0.0058) and RPD (P = 0.0007, 0.0036 and 0.0040, at 10°, 20°, 30° respectively) at the initial visit, but did not correlate with the peripheral MTF area. Myopic progression of more than 0.5 D with axial elongation was observed in seven children (MP group). The RPDs at 20° and 30° in the MP group were significantly more hyperopic than in the non-MP group (P = 0.002 and 0.007), whereas there was no significant difference in axial length, and central and peripheral MTF area between the MP and non-MP groups. MP group had more hyperopic focal lines compared with non-MP group at 20° and 30°. CONCLUSION These results suggest that the progression of axial myopia in children is associated with hyperopic RPD and refraction of focal lines, not with peripheral optical quality.
Collapse
Affiliation(s)
- Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, Japan, 272-8513,
| | | | | | | | | | | |
Collapse
|
31
|
Pardue MT, Stone RA, Iuvone PM. Investigating mechanisms of myopia in mice. Exp Eye Res 2013; 114:96-105. [PMID: 23305908 DOI: 10.1016/j.exer.2012.12.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
Genetic and environmental factors have been shown to control visually-guided eye growth and influence myopia development. However, investigations into the intersection of these two factors in controlling refractive development have been limited by the lack of a genetically modifiable animal model. Technological advances have now made it possible to assess refractive state and ocular biometry in the small mouse eye and therefore to exploit the many genetic mouse mutants to investigate mechanisms of visually-guided eye growth. This review considers the benefits and challenges of studying refractive development in mice, compares the results of refractive error and ocular biometry from wild-type strains and genetic models in normal laboratory visual environments or with disrupted visual input, and discusses some of the remaining challenges in interpreting data from the mouse to validate and standardize methods between labs.
Collapse
Affiliation(s)
- Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | |
Collapse
|
32
|
Abstract
PURPOSE To compare measurements of murine ocular axial lengths (ALs) made with 780 nm partial coherence interferometry (PCI) and 1310 nm spectral domain-optical coherence tomography (SD-OCT). METHODS AL was measured at postnatal day (P) 58 in C57BL/6J mice. Repeated AL measurements were taken using a custom-made 780 nm PCI and a commercial 1310 nm SD-OCT. Intra- and interuser variability was assessed along the central optical axis and 2-degree off-axes angles with the SD-OCT. Data were collected and analyzed using Cronbach alpha (α), Bland-Altman coefficient of repeatability, agreement plots, and intraclass correlation coefficients (ICC). RESULTS AL measurements agreed well between the two instruments (3.262 ± 0.042 mm for PCI; 3.264 ± 0.047 mm for SD-OCT; n = 20 eyes). The ICC for PCI compared with SD-OCT was 0.92, confirming high agreement between the two instruments. Intrauser ICC for the PCI and SD-OCT were 0.814 and 0.995, respectively. Similarly, interuser ICC for PCI and SD-OCT were 0.970 and 0.943, respectively. Using SD-OCT, a 2-degree misalignment of the eye along the horizontal meridian produced mean differences in AL of -0.002 ± 0.017 mm relative to the centrally aligned images, whereas similar misalignment along the vertical meridian created 0.005 ± 0.018 mm differences in AL measurements. CONCLUSIONS AL measurements from the 780 nm PCI and 1310 nm SD-OCT correlate well. Multiple statistical indices indicate that both instruments have good precision and agreement for measuring murine ocular AL in vivo. Although the vertical meridian had the greater variability in AL in the small mouse eye; 2-degree off-axes differences were within the SD of centrally aligned AL.
Collapse
|
33
|
Zhang D, Shi Y, Gong B, He F, Lu F, Lin H, Wu Z, Cheng J, Chen B, Liao S, Ma S, Hu J, Yang Z. An association study of the COL1A1 gene and high myopia in a Han Chinese population. Mol Vis 2011; 17:3379-83. [PMID: 22219633 PMCID: PMC3247168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Single nucleotide polymorphisms (SNPs) in the collagen type I (COL1A1) gene have been shown to be significantly associated with high myopia in a Japanese population. This present study was conducted to investigate whether COL1A1 is associated with high myopia in a Han Chinese population. METHODS High myopia is defined by a spherical equivalent of less than or equal to -6.00 diopter sphere and an axial length longer than or equal to 26.0 mm in the affected eye. We genotyped rs2075555 and rs2269336 SNPs in COL1A1 in a Ha n Chinese group composed of 697 high myopia patients and 762 normal controls. RESULTS Neither of the two SNPs showed significant association with high myopia (p(allelic)=0.252 for rs2075555, and p(allelic)=0.699 for rs2269336). CONCLUSIONS Our study revealed that SNPs in COL1A1 are not significantly associated with high myopia in the Han Chinese population.
Collapse
Affiliation(s)
- Dingding Zhang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Yi Shi
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Bo Gong
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Fei He
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Fang Lu
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - He Lin
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Zhengzheng Wu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Jing Cheng
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Bin Chen
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Shihuang Liao
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Shi Ma
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Jianbin Hu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| | - Zhenglin Yang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan, China
| |
Collapse
|
34
|
Yu L, Li ZK, Gao JR, Liu JR, Xu CT. Epidemiology, genetics and treatments for myopia. Int J Ophthalmol 2011; 4:658-69. [PMID: 22553740 DOI: 10.3980/j.issn.2222-3959.2011.06.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022] Open
Abstract
Myopia is a significant public health problem and its prevalence is increasing over time and genetic factors in disease development are important. The prevalence and incidence of myopia within sampled population often varies with age, country, sex, race, ethnicity, occupation, environment, and other factors. Myopia growth is under a combination of genes and their products in time and space to complete the coordination role of the guidance. Myopia-related genes include about 70 genetic loci to which primary myopias have been mapped, although the number is constantly increasing and depends to some extent on definition. Of these, several are associated with additional abnormalities, mostly as part of developmental syndromes. These tend to result from mutations in genes encoding transcriptional activators, and most of these have been identified by sequencing candidate genes in patients with developmental anomalies. Currently, COL1A1 (collagen alpha-1 chain of type I), COL2A1 (collagen alpha-1 chain of type II), ACTC1 (actin, alpha, cardiac muscle 1), PAX6 (paired box gene 6) and NIPBL (nipped-B homolog), and so on have been mapped. Myopia is most commonly treated with spectacles or glasses. The most common surgical procedure performed to correct myopia is laser in situ keratomileusis (LASIK). This review of the recent advances on epidemiology, genetic locations and treatments of myopia are summarized.
Collapse
Affiliation(s)
- Lei Yu
- Department of Ophthalmology, Xi'an Fourth Municipal People's Hospital, Xi'an 710004, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
35
|
Wisard J, Faulkner A, Chrenek MA, Waxweiler T, Waxweiler W, Donmoyer C, Liou GI, Craft CM, Schmid GF, Boatright JH, Pardue MT, Nickerson JM. Exaggerated eye growth in IRBP-deficient mice in early development. Invest Ophthalmol Vis Sci 2011; 52:5804-11. [PMID: 21642628 DOI: 10.1167/iovs.10-7129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because interphotoreceptor retinoid-binding protein (IRBP) is expressed before being needed in its presumptive role in the visual cycle, we tested whether it controls eye growth during development. METHODS The eyes of congenic IRBP knockout (KO) and C57BL/6J wild-type (WT) mice ranging in age from postnatal day (P)2 to P440 were compared by histology, laser micrometry, cycloplegic photorefractions, and partial coherence interferometry. RESULTS The size and weight of IRBP KO mouse eyes were greater than those of the WT mouse, even before eye-opening. Excessive ocular enlargement started between P7 and P10, with KO retinal arc lengths becoming greater compared with WT from P10 through P30 (18%; P < 0.01). The outer nuclear layer (ONL) of KO retinas became 20% thinner between P12 to P25, and progressed to 38% thinner at P30. At P30, there were 30% fewer cones per vertical section in KO than in WT retinas. Bromodeoxyuridine (BrdU) labeling indicated the same number of retinal cells were born in KO and WT mice. A spike in apoptosis was observed in KO outer nuclear layer at P25. These changes in size were accompanied by a large decrease in hyperopic refractive error, which reached -4.56 ± 0.70 diopters (D) versus +9.98 ± 0.993 D (mean ± SD) in WT, by postnatal day 60 (P60). CONCLUSIONS; In addition to its role in the visual cycle, IRBP is needed for normal eye development. How IRBP mediates ocular development is unknown.
Collapse
Affiliation(s)
- Jeffrey Wisard
- Department of Ophthalmology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|