1
|
Singh K, Scalia J, Legare R, Quddus MR, Sung CJ. Immunohistochemical findings and clinicopathological features of breast cancers with pathogenic germline mutations in Non-BRCA genes. Hum Pathol 2024; 146:49-56. [PMID: 38608781 DOI: 10.1016/j.humpath.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Deleterious germline mutations in multiple genes confer an increased breast cancer (BC) risk. Immunohistochemical (IHC) expression of protein products of mutated high-risk genes has not been investigated in BC. We hypothesized that pathogenic mutations may lead to an abnormal IHC expression pattern in the tumor cells. BCs with deleterious germline mutations in CHEK2, ATM, PALB2 & PTEN were identified. Immunohistochemistry was performed using Dako staining platform on formalin fixed paraffin embedded tumor tissue. Primary antibodies for PALB2 (ab202970), ATM [2C1(1A10)}, CHK2 (EPR4325), and PTEN (138G6) proteins were used for BCs with respective deleterious mutations. IHC expression was assessed in tumor and adjacent benign breast tissue. Total 27 BCs with 10 CHEK2, 9 ATM, 6 PALB2 & 2 PTEN deleterious germline mutations were identified. IHC staining was performed on 8 CHEK2, 7 ATM, 6 PALB2 & 2 PTEN cases. Abnormal CHEK2 IHC staining was identified in 7/8(88%) BCs. Three distinct CHK2 IHC patterns were noted: 1) Strong diffuse nuclear positivity (5 BC), 2) Null-pattern (2 BC), & 3) Normal breast-like staining in 1 BC Four of 5 (80%) strong CHK2 staining BC had missense CHEK2 mutations. Null-pattern was present with a missense & a frameshift mutation. Normal breast-like CHEK2 IHC staining pattern was present in 1 BC with CHEK2 frameshift mutation. Loss of nuclear/cytoplasmic PTEN IHC expression was noted in 2 in-situ carcinomas. Abnormal PTEN and CHK2 IHC were present in atypical ductal hyperplasia and flat epithelial atypia. ATM and PALB2 IHC expression patterns were similar in tumor cells and benign breast epithelium: mild to moderate intensity nuclear and cytoplasmic staining. We report abnormal CHEK2 IHC expression in 88% of BCs with pathogenic CHEK2 mutations. With PTEN and CHEK2 pathogenic mutations, abnormal IHC patterns are seen in early atypical proliferative lesions. IHC may be applied to identify CHEK2 & PTEN mutated BCs and precursor lesions.
Collapse
Affiliation(s)
- Kamaljeet Singh
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Staff Pathologist, Women & Infants Hospital, 101 Dudley Street, Providence, RI, 02903, USA.
| | - Jennifer Scalia
- Genetics, Breast Health Center, Women & Infants Hospital, 101 Dudley Street, Providence, RI, 02903, USA
| | - Robert Legare
- Medical Oncology, Westerly Hospital, 25 Wells Street, Westerly, RI, 02903, USA
| | - M Ruhul Quddus
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Staff Pathologist, Women & Infants Hospital, 101 Dudley Street, Providence, RI, 02903, USA
| | - C James Sung
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Staff Pathologist, Women & Infants Hospital, 101 Dudley Street, Providence, RI, 02903, USA
| |
Collapse
|
2
|
Yoo YC, Park S, Kim HJ, Jung HE, Kim JY, Kim MH. Preoperative Routine Laboratory Markers for Predicting Postoperative Recurrence and Death in Patients with Breast Cancer. J Clin Med 2021; 10:2610. [PMID: 34199276 PMCID: PMC8231951 DOI: 10.3390/jcm10122610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple, convenient, and reliable preoperative prognostic indicators are needed to estimate the future risk of recurrences and guide the treatment decisions associated with breast cancer. We evaluated preoperative hematological markers related to recurrence and mortality and investigated independent risk factors for recurrence and mortality in patients after breast cancer surgery. We reviewed electronic medical records of patients with invasive breast cancer diagnosed at our tertiary institution between November 2005 and December 2010 and followed them until 2015. We compared two groups of patients classified according to recurrence or death and identified risk factors for postoperative outcomes. Data from 1783 patients were analyzed ultimately. Cancer antigen (CA) 15-3 and red cell distribution width (RDW) had the highest area under the curve values among several preoperative hematological markers for disease-free survival and overall survival (0.590 and 0.637, respectively). Patients with both preoperative CA 15-3 levels over 11.4 and RDW over 13.5 had a 1.7-fold higher risk of recurrence (hazard ratio (HR): 1.655; 95% confidence interval (CI): 1.154-2.374; p = 0.007) and mortality (HR: 1.723; 95% CI: 1.098-2.704; p = 0.019). In conclusion, relatively high preoperative RDW (>13.5) and CA 15-3 levels (>11.4) had the highest predictive power for mortality and recurrence, respectively. When RDW and CA 15-3 exceeded the cut-off value, the risk of recurrence and death also increased approximately 1.7 times.
Collapse
Affiliation(s)
- Young-Chul Yoo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (Y.-C.Y.); (H.-J.K.)
| | - Seho Park
- Devision of Breast Cancer, Department of General Surgery, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Hyun-Joo Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (Y.-C.Y.); (H.-J.K.)
| | - Hyun-Eom Jung
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (H.-E.J.); (J.-Y.K.)
| | - Ji-Young Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (H.-E.J.); (J.-Y.K.)
| | - Myoung-Hwa Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea
| |
Collapse
|
3
|
Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021; 17:2193-2208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: We aim to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) and identify key genes as biomarkers for the prognosis of HCC. Materials & methods: Differentially expressed genes between HCC tissues and normal tissues were identified via the Gene Expression Omnibus tool. The top ten hub genes screened by the degree of the protein nodes in the protein-protein interaction network also showed significant associations with overall survival in HCC patients. Results: A prognostic model containing a five-gene signature was constructed to predict the prognosis of HCC via multivariate Cox regression analysis. Conclusion: This study identified a novel five-gene signature (CDK1, CCNB1, CCNB2, BUB1 and KIF11) as a significant independent prognostic factor.
Collapse
Affiliation(s)
- Q Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Z Meng
- The People's Hospital of Henan Province, Zhengzhou, Henan, 450003, China
| | - X X Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Y F Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - W H Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
4
|
Matson DR, Denu RA, Zasadil LM, Burkard ME, Weaver BA, Flynn C, Stukenberg PT. High nuclear TPX2 expression correlates with TP53 mutation and poor clinical behavior in a large breast cancer cohort, but is not an independent predictor of chromosomal instability. BMC Cancer 2021; 21:186. [PMID: 33622270 PMCID: PMC7901195 DOI: 10.1186/s12885-021-07893-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Targeting Protein for Xenopus Kinesin Like Protein 2 (TPX2) is a microtubule associated protein that functions in mitotic spindle assembly. TPX2 also localizes to the nucleus where it functions in DNA damage repair during S-phase. We and others have previously shown that TPX2 RNA levels are strongly associated with chromosomal instability (CIN) in breast and other cancers, and TPX2 RNA levels have been demonstrated to correlate with aggressive behavior and poor clinical outcome across a range of solid malignancies, including breast cancer. METHODS We perform TPX2 IHC on a cohort of 253 primary breast cancers and adopt a clinically amenable scoring system to separate tumors into low, intermediate, or high TPX2 expression. We then correlate TPX2 expression against diverse pathologic parameters and important measures of clinical outcome, including disease-specific and overall survival. We link TPX2 expression to TP53 mutation and evaluate whether TPX2 is an independent predictor of chromosomal instability (CIN). RESULTS We find that TPX2 nuclear expression strongly correlates with high grade morphology, elevated clinical stage, negative ER and PR status, and both disease-specific and overall survival. We also show that increased TPX2 nuclear expression correlates with elevated ploidy, supernumerary centrosomes, and TP53 mutation. TPX2 nuclear expression correlates with CIN via univariate analyses but is not independently predictive when compared to ploidy, Ki67, TP53 mutational status, centrosome number, and patient age. CONCLUSIONS Our findings demonstrate a strong correlation between TPX2 nuclear expression and aggressive tumor behavior, and show that TPX2 overexpression frequently occurs in the setting of TP53 mutation and elevated ploidy. However, TPX2 expression is not an independent predictor of CIN where it fails to outperform existing clinical and pathologic metrics.
Collapse
Affiliation(s)
- Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Ryan A Denu
- Department of Medicine, University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Lauren M Zasadil
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark E Burkard
- Department of Medicine, University of Wisconsin Hospitals and Clinics, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth A Weaver
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher Flynn
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Hwang HJ, Nam SK, Park H, Park Y, Koh J, Na HY, Kwak Y, Kim WH, Lee HS. Prediction of TP53 mutations by p53 immunohistochemistry and their prognostic significance in gastric cancer. J Pathol Transl Med 2020; 54:378-386. [PMID: 32601264 PMCID: PMC7483024 DOI: 10.4132/jptm.2020.06.01] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023] Open
Abstract
Background Recently, molecular classifications of gastric cancer (GC) have been proposed that include TP53 mutations and their functional activity. We aimed to demonstrate the correlation between p53 immunohistochemistry (IHC) and TP53 mutations as well as their clinicopathological significance in GC. Methods Deep targeted sequencing was performed using surgical or biopsy specimens from 120 patients with GC. IHC for p53 was performed and interpreted as strong, weak, or negative expression. In 18 cases (15.0%) with discrepant TP53 mutation and p53 IHC results, p53 IHC was repeated. Results Strong expression of p53 was associated with TP53 missense mutations, negative expression with other types of mutations, and weak expression with wild-type TP53 (p<.001). The sensitivity for each category was 90.9%, 79.0%, and 80.9%, and the specificity was 95.4%, 88.1%, and 92.3%, respectively. The TNM stage at initial diagnosis exhibited a significant correlation with both TP53 mutation type (p=.004) and p53 expression status (p=.029). The Kaplan-Meier survival analysis for 109 stage II and III GC cases showed that patients with TP53 missense mutations had worse overall survival than those in the wild-type and other mutation groups (p=.028). Strong expression of p53 was also associated with worse overall survival in comparison to negative and weak expression (p=.035). Conclusions Results of IHC of the p53 protein may be used as a simple surrogate marker of TP53 mutations. However, negative expression of p53 and other types of mutations of TP53 should be carefully interpreted because of its lower sensitivity and different prognostic implications.
Collapse
Affiliation(s)
- Hye Jung Hwang
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyunjin Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yujun Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
6
|
D’Amico S, Krasnowska EK, Manni I, Toietta G, Baldari S, Piaggio G, Ranalli M, Gambacurta A, Vernieri C, Di Giacinto F, Bernassola F, de Braud F, Lucibello M. DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells 2020; 9:E1260. [PMID: 32438775 PMCID: PMC7290969 DOI: 10.3390/cells9051260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trastuzumab emtansine (T-DM1) is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugated to the microtubule-targeting agent emtansine (DM1). T-DM1 is an effective agent in the treatment of patients with HER2-positive breast cancer whose disease has progressed on the first-line trastuzumab containing chemotherapy. However, both primary and acquired tumour resistance limit its efficacy. Increased levels of the phosphorylated form of Translationally Controlled Tumour Protein (phospho-TCTP) have been shown to be associated with a poor clinical response to trastuzumab therapy in HER2-positive breast cancer. Here we show that phospho-TCTP is essential for correct mitosis in human mammary epithelial cells. Reduction of phospho-TCTP levels by dihydroartemisinin (DHA) causes mitotic aberration and increases microtubule density in the trastuzumab-resistant breast cancer cells HCC1954 and HCC1569. Combinatorial studies show that T-DM1 when combined with DHA is more effective in killing breast cells compared to the effect induced by any single agent. In an orthotopic breast cancer xenograft model (HCC1954), the growth of the tumour cells resumes after having achieved a complete response to T-DM1 treatment. Conversely, DHA and T-DM1 treatment induces a severe and irreversible cytotoxic effect, even after treatment interruption, thus, improving the long-term efficacy of T-DM1. These results suggest that DHA increases the effect of T-DM1 as poison for microtubules and supports the clinical development of the combination of DHA and T-DM1 for the treatment of aggressive HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Silvia D’Amico
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Ewa Krystyna Krasnowska
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Marco Ranalli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flavio Di Giacinto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- Oncology and Hemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Maria Lucibello
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| |
Collapse
|
7
|
Chang JW, Ding Y, Tahir Ul Qamar M, Shen Y, Gao J, Chen LL. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Carcinogenesis 2020; 40:624-632. [PMID: 30944926 DOI: 10.1093/carcin/bgz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/06/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022] Open
Abstract
Prioritization of cancer-related genes from gene expression profiles and proteomic data is vital to improve the targeted therapies research. Although computational approaches have been complementing high-throughput biological experiments on the understanding of human diseases, it still remains a big challenge to accurately discover cancer-related proteins/genes via automatic learning from large-scale protein/gene expression data and protein-protein interaction data. Most of the existing methods are based on network construction combined with gene expression profiles, which ignore the diversity between normal samples and disease cell lines. In this study, we introduced a deep learning model based on a sparse auto-encoder to learn the specific characteristics of protein interactions in cancer cell lines integrated with protein expression data. The model showed learning ability to identify cancer-related proteins/genes from the input of different protein expression profiles by extracting the characteristics of protein interaction information, which could also predict cancer-related protein combinations. Comparing with other reported methods including differential expression and network-based methods, our model got the highest area under the curve value (>0.8) in predicting cancer-related genes. Our study prioritized ~500 high-confidence cancer-related genes; among these genes, 211 already known cancer drug targets were found, which supported the accuracy of our method. The above results indicated that the proposed auto-encoder model could computationally prioritize candidate proteins/genes involved in cancer and improve the targeted therapies research.
Collapse
Affiliation(s)
- Ji-Wei Chang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuduan Ding
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Muhammad Tahir Ul Qamar
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yin Shen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Junxiang Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ling-Ling Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
8
|
Ran Z, Chen W, Shang J, Li X, Nie Z, Yang J, Li N. Clinicopathological and prognostic implications of polo-like kinase 1 expression in colorectal cancer: A systematic review and meta-analysis. Gene 2019; 721:144097. [PMID: 31493507 DOI: 10.1016/j.gene.2019.144097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Polo-like kinase 1 (PLK1) is a potential prognostic marker in colorectal cancer (CRC). Nevertheless, the clinicopathological and prognostic roles of PLK1 in CRC are still undefined. Therefore, we performed a meta-analysis to investigate the clinicopathological and prognostic relevance of PLK1 expression in CRC patients. METHODS Studies published between 2003 and 2016 were selected for the meta-analysis based on an electronic literature search (PubMed, EMBASE and Chinese databases). Studies that investigated the clinicopathological and prognostic impacts of PLK1 expression in CRC patients were included for this analysis. RESULTS Eleven studies that enrolled 1147 CRC patients were included in our meta-analysis. The effect of PLK1 level on overall survival (OS) was reported in five studies, which included 702 patients. Ten studies investigated the clinicopathological role of PLK1 expression in CRC patients. Consequently, PLK1 overexpression was associated with poorer OS in CRC patients. Furthermore, the results revealed that higher PLK1 levels were also observed in CRC tissues compared with that of normal colorectal tissues. In addition, this meta-analysis also revealed positive correlations between PLK1 upregulation and lymph node metastasis or invasion. PLK1 overexpression was significantly correlated with advanced TNM stages and higher Dukes stages. CONCLUSION This meta-analysis strongly supports the hypothesis that PLK1 might serve as an important factor in evaluating the biological behavior and prognosis of CRC.
Collapse
Affiliation(s)
- Zihan Ran
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China; The Genius Medicine Consortium (TGMC), Shanghai, PR China.
| | - Wenjie Chen
- The Genius Medicine Consortium (TGMC), Shanghai, PR China; Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Jun Shang
- The Genius Medicine Consortium (TGMC), Shanghai, PR China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xuemei Li
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China
| | - Zhiyan Nie
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC), Shanghai, PR China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Na Li
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China.
| |
Collapse
|
9
|
Morphologic and immunophenotypical features distinguishing Merkel cell polyomavirus-positive and negative Merkel cell carcinoma. Mod Pathol 2019; 32:1605-1616. [PMID: 31201352 DOI: 10.1038/s41379-019-0288-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023]
Abstract
In 2008, Feng et al. identified Merkel cell polyomavirus integration as the primary oncogenic event in ~80% of Merkel cell carcinoma cases. The remaining virus-negative Merkel cell carcinoma cases associated with a high mutational load are most likely caused by UV radiation. The current study aimed to compare the morphological and immunohistochemical features of 80 virus-positive and 21 virus-negative Merkel cell carcinoma cases. Microscopic evaluation revealed that elongated nuclei-similar to the spindle-shape variant of small cell lung cancer-were less frequent in Merkel cell polyomavirus-positive Merkel cell carcinoma compared to the virus-negative subset (p = 0.005). Moreover, virus-negative cases more frequently displayed a "large-cell neuroendocrine carcinoma" phenotype with larger cell size (p = 0.0026), abundant cytoplasm (p = 4×10-7) and prominent nucleoli (p = 0.002). Analysis of immunohistochemical data revealed frequent positivity for thyroid transcription factor 1 and cytokeratin 7, either absence or overexpression of p53, as well as frequent lack of neurofilament expression in virus-negative cases. By contrast, cytokeratin 8, 18 and 20 and a CD99 with a dot pattern as well as high EMA expression were identified as characteristic features of virus-positive Merkel cell carcinoma. In particular, the CD99 dot-like expression pattern was strongly associated with presence of the Merkel cell polyomavirus in Merkel cell carcinoma (sensitivity = 81%, specificity = 90%, positive likelihood ratio = 8.08). To conclude, virus-positive and -negative Merkel cell carcinoma are characterized by distinct morphological and immunohistochemical features, which implies a significant difference in tumor biology and behavior. Importantly, we identified the CD99 staining pattern as a marker indicating the virus status of this skin cancer.
Collapse
|
10
|
de Cárcer G, Venkateswaran SV, Salgueiro L, El Bakkali A, Somogyi K, Rowald K, Montañés P, Sanclemente M, Escobar B, de Martino A, McGranahan N, Malumbres M, Sotillo R. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun 2018; 9:3012. [PMID: 30069007 PMCID: PMC6070485 DOI: 10.1038/s41467-018-05429-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is overexpressed in a wide spectrum of human tumors, being frequently considered as an oncogene and an attractive cancer target. However, its contribution to tumor development is unclear. Using a new inducible knock-in mouse model we report here that Plk1 overexpression results in abnormal chromosome segregation and cytokinesis, generating polyploid cells with reduced proliferative potential. Mechanistically, these cytokinesis defects correlate with defective loading of Cep55 and ESCRT complexes to the abscission bridge, in a Plk1 kinase-dependent manner. In vivo, Plk1 overexpression prevents the development of Kras-induced and Her2-induced mammary gland tumors, in the presence of increased rates of chromosome instability. In patients, Plk1 overexpression correlates with improved survival in specific breast cancer subtypes. Therefore, despite the therapeutic benefits of inhibiting Plk1 due to its essential role in tumor cell cycles, Plk1 overexpression has tumor-suppressive properties by perturbing mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Sharavan Vishaan Venkateswaran
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - Lorena Salgueiro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Konstantina Rowald
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pablo Montañés
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Manuel Sanclemente
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Beatriz Escobar
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Alba de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Rocío Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
11
|
Liu D, You P, Luo Y, Yang M, Liu Y. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition. Pharmacology 2018; 102:58-66. [PMID: 29879712 DOI: 10.1159/000489564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
AIMS The study aimed to investigate the molecular mechanism of inhibition of proliferation and apoptosis induction by galangin against MCF-7 human breast cancer cells. METHODS Cell Counting Kit-8 assay was used to assess cell viability and flow cytometry was used to detect cell apoptosis. The expression level of apoptosis-related proteins (cleaved-caspase-9, cleaved-caspase-8, cleaved-caspase-3, Bad, cleaved-Bid, Bcl-2, Bax, p-phosphatidylinositol 3-kinase [PI3K], and p-Akt) and cell cycle-related proteins (cyclin D3, cyclin B1, cyclin-dependent kinases CDK1, CDK2, CDK4, p21, p27, p53) were evaluated by Western blotting. RESULTS Galangin increased the expression of Bax and decreased the expression of Bcl-2 in a concentration-dependent manner, inhibited cell viability, and induced apoptosis. Meanwhile, the expression of cleavage of caspase-9, caspase-8, caspase-3, Bid, and Bad increased significantly while the expression of p-PI3K and p-Akt proteins decreased. In addition, the protein levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated while the expression levels of p21, p27, and p53 were upregulated significantly. CONCLUSION Galangin could suppress the viability of MCF-7 cells and induce cell apoptosis via the mitochondrial pathway and PI3K/Akt inhibition as well as cell cycle arrest.
Collapse
Affiliation(s)
- Dan Liu
- School of Pharmacy, Hubei Key Laboratory of Resource Science and Chemistry in Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Pengtao You
- School of Pharmacy, Hubei Key Laboratory of Resource Science and Chemistry in Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Luo
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Min Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanwen Liu
- School of Pharmacy, Hubei Key Laboratory of Resource Science and Chemistry in Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
12
|
Yao D, Gu P, Wang Y, Luo W, Chi H, Ge J, Qian Y. Inhibiting polo-like kinase 1 enhances radiosensitization via modulating DNA repair proteins in non-small-cell lung cancer. Biochem Cell Biol 2018; 96:317-325. [PMID: 29040814 DOI: 10.1139/bcb-2017-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assure faithful chromosome segregation, cells make use of the spindle assembly checkpoint, which can be activated in aneuploid cancer cells. In this study, the efficacies of inhibiting polo-like kinase 1 (PLK1) on the radiosensitization of non-small-cell lung cancer (NSCLC) cells were studied. Clonogenic survival assay was performed to identify the effects of the PLK1 inhibitor on radiosensitivity within NSCLC cells. Mitotic catastrophe assessment was used to measure the cell death and histone H2AX protein (γH2AX) foci were utilized to assess the DNA double-strand breaks (DSB). The transcriptome was analyzed via unbiased profiling of microarray expression. The results showed that the postradiation mitotic catastrophe induction and the DSB repair were induced by PLK1 inhibitor BI-6727, leading to an increase in the radiosensitivity of NSCLC cells. BI-6727 in combination with radiation significantly induced the delayed tumor growth. PLK1-silenced NSCLC cells showed an altered mRNA and protein expression related to DNA damaging, replication, and repairing, including the DNA-dependent protein kinase (DNAPK) and topoisomerase II alpha (TOPO2A). Furthermore, inhibition of PLK1 blocked 2 important DNA repair pathways. To summarize, our study showed PLK1 kinase as an option in the therapy of NSCLC.
Collapse
Affiliation(s)
- Da Yao
- a Department of Cardiovascular Surgery Center, Anhui Province Hospital of Anhui Medical University, Hefei, 230001, PR China
| | - Peigui Gu
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Youyu Wang
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Weibin Luo
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Huiliang Chi
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Jianjun Ge
- a Department of Cardiovascular Surgery Center, Anhui Province Hospital of Anhui Medical University, Hefei, 230001, PR China
| | - Youhui Qian
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| |
Collapse
|
13
|
Watanabe G, Chiba N, Nomizu T, Furuta A, Sato K, Miyashita M, Tada H, Suzuki A, Ohuchi N, Ishida T. Increased centrosome number in BRCA-related breast cancer specimens determined by immunofluorescence analysis. Cancer Sci 2018; 109:2027-2035. [PMID: 29601120 PMCID: PMC5989840 DOI: 10.1111/cas.13595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 01/25/2023] Open
Abstract
BRCA‐related breast carcinoma can be prevented through prophylactic surgery and an intensive follow‐up regimen. However, BRCA genetic tests cannot be routinely performed, and some BRCA mutations could not be defined as deleterious mutations or normal variants. Therefore, an easy functional assay of BRCA will be useful to evaluate BRCA status. As it has been reported that BRCA functions in the regulation of centrosome number, we focused on centrosome number in cancer tissues. Here, 70 breast cancer specimens with known BRCA status were analyzed using immunofluorescence of γ‐tubulin (a marker of centrosome) foci. The number of foci per cell was higher in cases with BRCA mutation compared to wild‐type cases, that is, 1.9 (95% confidence interval [CI], 1.5‐2.3) vs 0.5 (95% CI, 0.2‐0.8) (P < .001). Specifically, foci numbers per cell in BRCA1 and BRCA2 mutation cases were 1.2 (95% CI, 0.6‐1.8) and 2.2 (95% CI, 1.7‐2.6), respectively, both higher than those in wild‐type cases (P = .042 and P < .0001, respectively). The predictive value of γ‐tubulin foci as determined by area under the curve (AUC = 0.86) for BRCA status was superior to BRCAPRO (AUC = 0.69), Myriad Table (AUC = 0.61), and KOHBRA BRCA risk calculator (AUC = 0.65) pretest values. The use of γ‐tubulin foci to predict BRCA status had sensitivity = 83% (19/23), specificity = 89% (42/47), and positive predictive value = 77% (20/26). Thus, γ‐tubulin immunofluorescence, a functional assessment of BRCA, can be used as a new prospective test of BRCA status.
Collapse
Affiliation(s)
- Gou Watanabe
- Division of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tadashi Nomizu
- Department of Surgery, Hoshi General Hospital, Fukushima, Japan
| | - Akihiko Furuta
- Department of Breast Surgery, Ishinomaki Red Cross Hospital, Ishinomaki, Japan
| | - Kaolu Sato
- Department of Breast Surgery, Ishinomaki Red Cross Hospital, Ishinomaki, Japan
| | - Minoru Miyashita
- Division of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Tada
- Division of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiko Suzuki
- Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Noriaki Ohuchi
- Division of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Ishida
- Division of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Kervarrec T, Samimi M, Gaboriaud P, Gheit T, Beby-Defaux A, Houben R, Schrama D, Fromont G, Tommasino M, Le Corre Y, Hainaut-Wierzbicka E, Aubin F, Bens G, Maillard H, Furudoï A, Michenet P, Touzé A, Guyétant S. Detection of the Merkel cell polyomavirus in the neuroendocrine component of combined Merkel cell carcinoma. Virchows Arch 2018; 472:825-837. [PMID: 29594354 DOI: 10.1007/s00428-018-2342-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin. The main etiological agent is Merkel cell polyomavirus (MCPyV), detected in 80% of cases. About 5% of cases, called combined MCC, feature an admixture of neuroendocrine and non-neuroendocrine tumor cells. Reports of the presence or absence of MCPyV in combined MCC are conflicting, most favoring the absence, which suggests that combined MCC might have independent etiological factors and pathogenesis. These discrepancies might occur with the use of different virus identification assays, with different sensitivities. In this study, we aimed to determine the viral status of combined MCC by a multimodal approach. We histologically reviewed 128 cases of MCC and sub-classified them as "combined" or "conventional." Both groups were compared by clinical data (age, sex, site, American Joint Committee on Cancer [AJCC] stage, immunosuppression, risk of recurrence, and death during follow-up) and immunochemical features (cytokeratin 20 and 7, thyroid transcription factor 1 [TTF1], p53, large T antigen [CM2B4], CD8 infiltrates). After a first calibration step with 12 conventional MCCs and 12 cutaneous squamous cell carcinomas as controls, all eight cases of combined MCC were investigated for MCPyV viral status by combining two independent molecular procedures. Furthermore, on multiplex genotyping assay, the samples were examined for the presence of other polyoma- and papillomaviruses. Combined MCC differed from conventional MCC in earlier AJCC stage, increased risk of recurrence and death, decreased CD8 infiltrates, more frequent TTF1 positivity (5/8), abnormal p53 expression (8/8), and frequent lack of large T antigen expression (7/8). With the molecular procedure, half of the combined MCC cases were positive for MCPyV in the neuroendocrine component. Beta papillomaviruses were detected in 5/8 combined MCC cases and 9/12 conventional MCC cases. In conclusion, the detection of MCPyV DNA in half of the combined MCC cases suggests similar routes of carcinogenesis for combined and conventional MCC.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, 37044, Tours Cedex 09, France.
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, 31, Avenue Monge, 37200, Tours, France.
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
| | - Mahtab Samimi
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, 31, Avenue Monge, 37200, Tours, France
- Department of Dermatology, Université François Rabelais, Centre Hospitalier Universitaire de Tours, 37044, Tours Cedex 09, France
| | - Pauline Gaboriaud
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, 31, Avenue Monge, 37200, Tours, France
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008, Lyon, France
| | - Agnès Beby-Defaux
- Université de Poitiers, 2RCT "Récepteurs et régulation des cellules tumorales" team, 1 rue Georges Bonnet, 86073, Poitiers, France
- Department of Virology, Université de Poitiers, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021, Poitiers, France
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Gaëlle Fromont
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, 37044, Tours Cedex 09, France
| | - Massimo Tommasino
- Department of Dermatology, Université François Rabelais, Centre Hospitalier Universitaire de Tours, 37044, Tours Cedex 09, France
| | - Yannick Le Corre
- Department of Dermatology, LUNAM Université, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49933, Angers, France
| | - Eva Hainaut-Wierzbicka
- Department of Dermatology, Université de Poitiers, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021, Poitiers, France
| | - Francois Aubin
- Department of Dermatology, Université de Franche Comté, Centre Hospitalier Universitaire de Besançon, EA3181, IFR133, 2 boulevard Fleming, 25030, Besançon, France
| | - Guido Bens
- Department of Dermatology, Centre Hospitalier Régional d'Orléans, 14 avenue de l'Hôpital, CS 86709, 45067, Orléans cedex 2, France
| | - Hervé Maillard
- Department of Dermatology, Centre Hospitalier Régional du Mans, 194 avenue Rubillard, 72037, Le Mans, France
| | - Adeline Furudoï
- Department of Pathology, Université de Bordeaux, Centre Hospitalier Universitaire de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Patrick Michenet
- Department of Pathology, Centre Hospitalier Régional d'Orléans, 14 avenue de l'Hôpital, CS 86709, 45067, Orléans cedex 2, France
| | - Antoine Touzé
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, 31, Avenue Monge, 37200, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, 37044, Tours Cedex 09, France
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, 31, Avenue Monge, 37200, Tours, France
| |
Collapse
|
15
|
Abstract
Osteogenic sarcoma (OS) is the most common malignant bone tumor in children and adolescents. Despite advances in molecular genetic characterization of pediatric and adult tumors, the diagnosis of OS still depends almost entirely on light microscopy. The lack of consistent genetic changes in OS has greatly hindered the development of any diagnostic molecular test. Recently, whole-genome sequencing has shown that ~50% of cases of OS have a translocation involving the TP53 gene with breakpoints confined to the first intron. We developed a 2 color break-apart fluorescent in situ hybridization (FISH) probe for intron 1 of TP53 and applied it to an archived series to assess its diagnostic utility. The study group included 37 cases of OS (including osteoblastic, chondroblastic, and fibroblastic), as well as 53 cases of non-OS pediatric sarcomas (including Ewing sarcoma, rhabdomyosarcoma, undifferentiated small cell sarcoma, CCNB3-BCOR sarcoma, CIC-DUX sarcoma, synovial sarcoma, and malignant peripheral nerve sheath tumor) and 27 cases of benign bone lesions (including osteoblastoma, chondromyxoid fibroma, fibrous dysplasia, and fibro-osseous dysplasia). A rearranged signal was found in 20/37 cases (54%) of OS and in none of the other sarcomas or benign bone lesions, giving the FISH test 100% specificity for a diagnosis of OS. p53 immunostaining was generally not predictive of the results obtained by FISH and could not substitute for this test. This FISH probe offers a simple and specific genetic test to aid in the diagnosis of OS, despite the genetic complexity of this tumor.
Collapse
|
16
|
Klauck PJ, Bagby SM, Capasso A, Bradshaw-Pierce EL, Selby HM, Spreafico A, Tentler JJ, Tan AC, Kim J, Arcaroli JJ, Purkey A, Messersmith WA, Kuida K, Gail Eckhardt S, Pitts TM. Antitumor activity of the polo-like kinase inhibitor, TAK-960, against preclinical models of colorectal cancer. BMC Cancer 2018; 18:136. [PMID: 29402316 PMCID: PMC5800287 DOI: 10.1186/s12885-018-4036-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) is a serine/threonine kinase that is a key regulator of multiple stages of mitotic progression. Plk1 is upregulated in many tumor types including colorectal cancer (CRC) and portends a poor prognosis. TAK-960 is an ATP-competitive Plk1 inhibitor that has demonstrated efficacy across a broad range of cancer cell lines, including CRC. In this study, we investigated the activity of TAK-960 against a large collection of CRC models including 55 cell lines and 18 patient-derived xenografts. METHODS Fifty-five CRC cell lines and 18 PDX models were exposed to TAK-960 and evaluated for proliferation (IC50) and Tumor Growth Inhibition Index, respectively. Additionally, 2 KRAS wild type and 2 KRAS mutant PDX models were treated with TAK-960 as single agent or in combination with cetuximab or irinotecan. TAK-960 mechanism of action was elucidated through immunoblotting and cell cycle analysis. RESULTS CRC cell lines demonstrated a variable anti-proliferative response to TAK-960 with IC50 values ranging from 0.001 to > 0.75 μmol/L. Anti-proliferative effects were sustained after removal of drug. Following TAK-960 treatment a highly variable accumulation of mitotic (indicating cell cycle arrest) and apoptotic markers was observed. Cell cycle analysis demonstrated that TAK-960 treatment induced G2/M arrest and polyploidy. Six out of the eighteen PDX models responded to single agent TAK-960 therapy (TGII< 20). The addition of TAK-960 to standard of care chemotherapy resulted in largely additive antitumor effects. CONCLUSION TAK-960 is an active anti-proliferative agent against CRC cell lines and PDX models. Collectively, these data suggest that TAK-960 may be of therapeutic benefit alone or in combination with other agents, although future work should focus on the development of predictive biomarkers and hypothesis-driven rational combinations.
Collapse
Affiliation(s)
- Peter J. Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Erica L. Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Takeda California, San Diego, CA USA
| | - Heather M. Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - John J. Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Jihye Kim
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - John J. Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Keisuke Kuida
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA USA
| | - S. Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
17
|
Histopathological evidence of neoplastic progression of von Meyenburg complex to intrahepatic cholangiocarcinoma. Hum Pathol 2017; 67:217-224. [PMID: 28823571 DOI: 10.1016/j.humpath.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Von Meyenburg complex (VMC) is generally thought to be benign, although its preneoplastic potential for intrahepatic cholangiocarcinoma (iCC) has been a subject of contention. We retrospectively reviewed 86 hepatectomy specimens with a diagnosis of iCC. Morphologically, an association between iCC and VMC was appreciated in 35% of cases that illustrated a gradual neoplastic progression from benign VMC to dysplasia and then to iCC. Among them, 24 cases had VMC lined by epithelial cells with low-grade biliary dysplasia and 13 with high-grade biliary dysplasia. VMC-associated iCCs were smaller in size and well to moderately differentiated, with features of anastomosing glandular architecture, ductal carcinoma in situ-like growth pattern, peritumoral lymphocytic infiltrate, central fibrous scar, and complete pushing border. They often presented as T1 tumors. In contrast, non-VMC-associated iCCs were moderately to poorly differentiated with solid, cribriform or papillary growth patterns. They likely exhibited necrosis, perineural invasion, positive surgical margin, lymphovascular invasion, and high T stage. Additionally, Ki67 and p53 immunostains support the continuing neoplastic evolution from benign VMC to dysplasia and then to iCC. VMC could become neoplastic, serving as an in situ carcinoma lesion to transform to iCC. The underlying molecular alteration and clinical implication of this neoplastic transformation deserves further investigation.
Collapse
|
18
|
Zhu Z, Li L, Ye Z, Fu T, Du Y, Shi A, Wu D, Li K, Zhu Y, Wang C, Fan Z. Prognostic value of routine laboratory variables in prediction of breast cancer recurrence. Sci Rep 2017; 7:8135. [PMID: 28811593 PMCID: PMC5557903 DOI: 10.1038/s41598-017-08240-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022] Open
Abstract
The prognostic value of routine laboratory variables in breast cancer has been largely overlooked. Based on laboratory tests commonly performed in clinical practice, we aimed to develop a new model to predict disease free survival (DFS) after surgical removal of primary breast cancer. In a cohort of 1,596 breast cancer patients, we analyzed the associations of 33 laboratory variables with patient DFS. Based on 3 significant laboratory variables (hemoglobin, alkaline phosphatase, and international normalized ratio), together with important demographic and clinical variables, we developed a prognostic model, achieving the area under the curve of 0.79. We categorized patients into 3 risk groups according to the prognostic index developed from the final model. Compared with the patients in the low-risk group, those in the medium- and high-risk group had a significantly increased risk of recurrence with a hazard ratio (HR) of 1.75 (95% confidence interval [CI] 1.30–2.38) and 4.66 (95% CI 3.54–6.14), respectively. The results from the training set were validated in the testing set. Overall, our prognostic model incorporating readily available routine laboratory tests is powerful in identifying breast cancer patients who are at high risk of recurrence. Further study is warranted to validate its clinical application.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ling Li
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Zhong Ye
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tong Fu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ke Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yifan Zhu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chun Wang
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu, 226000, China.
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
19
|
Zagouri F, Kotoula V, Kouvatseas G, Sotiropoulou M, Koletsa T, Gavressea T, Valavanis C, Trihia H, Bobos M, Lazaridis G, Koutras A, Pentheroudakis G, Skarlos P, Bafaloukos D, Arnogiannaki N, Chrisafi S, Christodoulou C, Papakostas P, Aravantinos G, Kosmidis P, Karanikiotis C, Zografos G, Papadimitriou C, Fountzilas G. Protein expression patterns of cell cycle regulators in operable breast cancer. PLoS One 2017; 12:e0180489. [PMID: 28797035 PMCID: PMC5552326 DOI: 10.1371/journal.pone.0180489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/15/2017] [Indexed: 01/02/2023] Open
Abstract
Background-Aim To evaluate the prognostic role of elaborate molecular clusters encompassing cyclin D1, cyclin E1, p21, p27 and p53 in the context of various breast cancer subtypes. Methods Cyclin E1, cyclin D1, p53, p21 and p27 were evaluated with immunohistochemistry in 1077 formalin-fixed paraffin-embedded tissues from breast cancer patients who had been treated within clinical trials. Jaccard distances were computed for the markers and the resulted matrix was used for conducting unsupervised hierarchical clustering, in order to identify distinct groups correlating with prognosis. Results Luminal B and triple-negative (TNBC) tumors presented with the highest and lowest levels of cyclin D1 expression, respectively. By contrast, TNBC frequently expressed Cyclin E1, whereas ER-positive tumors did not. Absence of Cyclin D1 predicted for worse OS, while absence of Cyclin E1 for poorer DFS. The expression patterns of all examined proteins yielded 3 distinct clusters; (1) Cyclin D1 and/or E1 positive with moderate p21 expression; (2) Cyclin D1 and/or E1, and p27 positive, p53 protein negative; and, (3) Cyclin D1 or E1 positive, p53 positive, p21 and p27 negative or moderately positive. The 5-year DFS rates for clusters 1, 2 and 3 were 70.0%, 79.1%, 67.4% and OS 88.4%, 90.4%, 78.9%, respectively. Conclusions It seems that the expression of cell cycle regulators in the absence of p53 protein is associated with favorable prognosis in operable breast cancer.
Collapse
Affiliation(s)
- Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- * E-mail: ,
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Triantafyllia Koletsa
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | | | | | - Helen Trihia
- Department of Pathology, Metaxas Cancer Hospital, Piraeus, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Pantelis Skarlos
- Department of Radiotherapy, Metropolitan Hospital, Piraeus, Greece
| | | | - Niki Arnogiannaki
- Department of Surgical Pathology, Agios Savas Anticancer Hospital, Athens, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Paris Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | | | - George Zografos
- Breast Unit, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Kosuge N, Saio M, Matsumoto H, Aoyama H, Matsuzaki A, Yoshimi N. Nuclear features of infiltrating urothelial carcinoma are distinguished from low-grade noninvasive papillary urothelial carcinoma by image analysis. Oncol Lett 2017; 14:2715-2722. [PMID: 28928814 PMCID: PMC5588140 DOI: 10.3892/ol.2017.6474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Recent advances in computer technology have been made and image analysis (IA) has been introduced into pathological fields. The present study aimed to investigate the utility of IA for the evaluation of nuclear features and staining of immunohistochemistry (IHC) for Ki-67, p53 and GATA-binding protein 3 (GATA-3) in urothelial carcinoma tissue samples. A total of 49 cases of urothelial carcinoma tissue samples were obtained by transurethral resection of bladder tumors, which included 11 low-grade papillary urothelial carcinomas (LGPUCs), 1 non-invasive high-grade urothelial carcinoma and 37 infiltrating urothelial carcinomas (IUCs). Whole slide imaging (WSI) and IA were performed in Feulgen reaction and IHC-stained tissue samples. There was a significant difference in the average nuclear density, standard deviation (SD) of nuclear size and SD of nuclear minimum and maximum diameter between LGPUC and IUC, which is equivalent to the diagnostic features of IUC in nuclear variability, and hyperchromatic nuclei. In addition, the present study revealed that the SD of nuclear density was significantly different between the two groups. Regarding IA in IHC-stained tissue samples, Ki-67 was significantly overexpressed in IUC. Furthermore, the GATA-3 expression level in IUC samples with muscle invasion was significantly downregulated compared with that in non-muscle invasive tumors. The results of the present study suggest that IA in combination with WSI may be a beneficial tool for evaluating morphometric characteristics and performing semi-quantitative analysis of IHC.
Collapse
Affiliation(s)
- Noritake Kosuge
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa 903-0215, Japan
| | - Masanao Saio
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa 903-0215, Japan.,Department of Pathology, University of The Ryukyus Hospital, Nishihara, Nakagami, Okinawa 903-0215, Japan.,Department of Laboratory Sciences, Gunma University School of Health Sciences, Maebashi, Gunma 371-8514, Japan
| | - Hirofumi Matsumoto
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa 903-0215, Japan.,Department of Pathology, University of The Ryukyus Hospital, Nishihara, Nakagami, Okinawa 903-0215, Japan
| | - Hajime Aoyama
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa 903-0215, Japan
| | - Akiko Matsuzaki
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa 903-0215, Japan
| | - Naoki Yoshimi
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa 903-0215, Japan
| |
Collapse
|
21
|
de Andrade Natal R, Derchain SF, Pavanello M, Paiva GR, Sarian LO, Vassallo J. Expression of unusual immunohistochemical markers in mucinous breast carcinoma. Acta Histochem 2017; 119:327-336. [PMID: 28336164 DOI: 10.1016/j.acthis.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mucinous breast carcinoma is characterized by the production of variable amounts of mucin. Some studies have addressed immunohistochemical characterization of mucinous breast carcinoma using a limited set of antibodies. However, the purpose of the present study was to investigate a larger panel of markers not widely used in daily practice and to determine their pathological implications. METHODS Forty patients diagnosed with mucinous breast carcinoma were enrolled. An immunohistochemical study was performed on whole sections of paraffin embedded tissue, using antibodies for the following markers: estrogen receptor alpha and beta, progesterone receptor, androgen receptor, HER2, EGFR, Ki-67, E-cadherin, β-catenin, p53, chromogranin, synaptophysin, GCDFP15, mammaglobin, and CDX2. RESULTS The pure mucinous type was more prevalent in older patients and more frequently expressed GCDFP15. Capella type B presented more frequently with a high Ki-67 index and neuroendocrine differentiation. Although there was a lower frequency of vascular invasion and lymph node metastases in the pure type, the difference was not statistically significant. No case expressed CDX2 (a marker for gastrointestinal tumors), while 85% of the cases expressed at least one of the two typical breast markers (GCDFP15 and mammaglobin), suggesting that these markers may be reliably used for differential diagnosis. Expression of estrogen receptor beta was related to the presence of mucin cell producing lymph node metastasis, with potential prognostic and predictive value. CONCLUSION our findings support the immunohistochemical homogeneity of mucinous breast carcinomas because only minor differences were found when subgrouping them into Capella types A and B or into types pure and mixed.
Collapse
|
22
|
Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:125-152. [PMID: 28600785 DOI: 10.1007/978-3-319-57127-0_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitosis is one of the most fundamental processes of life by which a mammalian cell divides into two daughter cells. Mitosis has been an attractive target for anticancer therapies since fast proliferation was identified as one of the hallmarks of cancer cells. Despite efforts into developing specific inhibitors for mitotic kinases and kinesins, very few drugs have shown the efficiency of microtubule targeting-agents in cancer cells with paclitaxel being the most successful. A deeper translational research accompanying clinical trials of anti-mitotic drugs will help in identifying potent biomarkers predictive for response. Here, we review the current knowledge of mitosis targeting agents that have been tested so far in the clinics.
Collapse
Affiliation(s)
- Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, Geneva, 1205, Switzerland.
| |
Collapse
|
23
|
Ooms AHAG, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Ma Y, Zong Z, Mungall AJ, Moore RA, Marra MA, Huff V, Dome JS, Chi YY, Tian J, Geller JI, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Walz AL, van den Heuvel-Eibrink MM, de Krijger RR, Ross N, Gastier-Foster JM, Perlman EJ. Significance of TP53 Mutation in Wilms Tumors with Diffuse Anaplasia: A Report from the Children's Oncology Group. Clin Cancer Res 2016; 22:5582-5591. [PMID: 27702824 PMCID: PMC5290091 DOI: 10.1158/1078-0432.ccr-16-0985] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/17/2016] [Accepted: 08/14/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE To investigate the role and significance of TP53 mutation in diffusely anaplastic Wilms tumors (DAWTs). EXPERIMENTAL DESIGN All DAWTs registered on National Wilms Tumor Study-5 (n = 118) with available samples were analyzed for TP53 mutations and copy loss. Integrative genomic analysis was performed on 39 selected DAWTs. RESULTS Following analysis of a single random sample, 57 DAWTs (48%) demonstrated TP53 mutations, 13 (11%) copy loss without mutation, and 48 (41%) lacked both [defined as TP53-wild-type (wt)]. Patients with stage III/IV TP53-wt DAWTs (but not those with stage I/II disease) had significantly lower relapse and death rates than those with TP53 abnormalities. In-depth analysis of a subset of 39 DAWTs showed seven (18%) to be TP53-wt: These demonstrated gene expression evidence of an active p53 pathway. Retrospective pathology review of TP53-wt DAWT revealed no or very low volume of anaplasia in six of seven tumors. When samples from TP53-wt tumors known to contain anaplasia histologically were available, abnormal p53 protein accumulation was observed by immunohistochemistry. CONCLUSIONS These data support the key role of TP53 loss in the development of anaplasia in WT, and support its significant clinical impact in patients with residual anaplastic tumor following surgery. These data also suggest that most DAWTs will show evidence of TP53 mutation when samples selected for the presence of anaplasia are analyzed. This suggests that modifications of the current criteria to also consider volume of anaplasia and documentation of TP53 aberrations may better reflect the risk of relapse and death and enable optimization of therapeutic stratification. Clin Cancer Res; 22(22); 5582-91. ©2016 AACR.
Collapse
Affiliation(s)
- Ariadne H A G Ooms
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
- Princess Maxima Centre for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Pathan BV, Sint Franciscus Gasthuis, Rotterdam, the Netherlands
| | - Samantha Gadd
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | | | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - Chih Hao Hsu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - Chunhua Yan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - Ying Hu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, Canada
| | - Zusheng Zong
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey S Dome
- Division of Pediatric Hematology/Oncology, Children's National Medical Center, Washington, DC
| | - Yueh-Yun Chi
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Jing Tian
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - James I Geller
- Division of Pediatric Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David A Wheeler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Oliver A Hampton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Amy L Walz
- Division of Hematology-Oncology and Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern Memorial Hospital, Chicago, Illinois
| | | | - Ronald R de Krijger
- Princess Maxima Centre for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Reinier de Graaf Hospital, Delft, the Netherlands
| | - Nicole Ross
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, Ohio
| | - Elizabeth J Perlman
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
24
|
Murnyák B, Hortobágyi T. Immunohistochemical correlates of TP53 somatic mutations in cancer. Oncotarget 2016; 7:64910-64920. [PMID: 27626311 PMCID: PMC5323125 DOI: 10.18632/oncotarget.11912] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Despite controversy on the correlation between p53 accumulation and TP53 mutational status, immunohistochemical (IHC) detection of overexpressed protein has long been used as a surrogate method for mutation analysis. The aim of our study was to characterise the IHC expression features of TP53 somatic mutations and define their occurrence in human cancers. A large-scale database analysis was conducted in the IARC TP53 Database (R17); 7878 mutations with IHC features were retrieved representing 60 distinct tumour sites. The majority of the alterations were immunopositive (p <0.001). Sex was known for 4897 mutations showing a female dominance (57.2%) and females carrying negative mutations were significantly younger. TP53 mutations were divided into three IHC groups according to mutation frequency and IHC positivity. Each group had female dominance. Among the IHC groups, significant correlations were observed with age at diagnosis in breast, bladder, liver, haematopoietic system and head & neck cancers. An increased likelihood of false negative IHC associated with rare nonsense mutations was observed in certain tumour sites. Our study demonstrates that p53 immunopositivity largely correlates with TP53 mutational status but expression is absent in certain mutation types.Besides, describing the complex IHC expression of TP53 somatic mutations, our results reveal some caveats for the diagnostic practice.
Collapse
Affiliation(s)
- Balázs Murnyák
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Muranen TA, Blomqvist C, Dörk T, Jakubowska A, Heikkilä P, Fagerholm R, Greco D, Aittomäki K, Bojesen SE, Shah M, Dunning AM, Rhenius V, Hall P, Czene K, Brand JS, Darabi H, Chang-Claude J, Rudolph A, Nordestgaard BG, Couch FJ, Hart SN, Figueroa J, García-Closas M, Fasching PA, Beckmann MW, Li J, Liu J, Andrulis IL, Winqvist R, Pylkäs K, Mannermaa A, Kataja V, Lindblom A, Margolin S, Lubinski J, Dubrowinskaja N, Bolla MK, Dennis J, Michailidou K, Wang Q, Easton DF, Pharoah PDP, Schmidt MK, Nevanlinna H. Patient survival and tumor characteristics associated with CHEK2:p.I157T - findings from the Breast Cancer Association Consortium. Breast Cancer Res 2016; 18:98. [PMID: 27716369 PMCID: PMC5048645 DOI: 10.1186/s13058-016-0758-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/15/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND P.I157T is a CHEK2 missense mutation associated with a modest increase in breast cancer risk. Previously, another CHEK2 mutation, the protein truncating c.1100delC has been associated with poor prognosis of breast cancer patients. Here, we have investigated patient survival and characteristics of breast tumors of germ line p.I157T carriers. METHODS We included in the analyses 26,801 European female breast cancer patients from 15 studies participating in the Breast Cancer Association Consortium. We analyzed the association between p.I157T and the clinico-pathological breast cancer characteristics by comparing the p.I157T carrier tumors to non-carrier and c.1100delC carrier tumors. Similarly, we investigated the p.I157T associated risk of early death, breast cancer-associated death, distant metastasis, locoregional relapse and second breast cancer using Cox proportional hazards models. Additionally, we explored the p.I157T-associated genomic gene expression profile using data from breast tumors of 183 Finnish female breast cancer patients (ten p.I157T carriers) (GEO: GSE24450). Differential gene expression analysis was performed using a moderated t test. Functional enrichment was investigated using the DAVID functional annotation tool and gene set enrichment analysis (GSEA). The tumors were classified into molecular subtypes according to the St Gallen 2013 criteria and the PAM50 gene expression signature. RESULTS P.I157T was not associated with increased risk of early death, breast cancer-associated death or distant metastasis relapse, and there was a significant difference in prognosis associated with the two CHEK2 mutations, p.I157T and c.1100delC. Furthermore, p.I157T was associated with lobular histological type and clinico-pathological markers of good prognosis, such as ER and PR expression, low TP53 expression and low grade. Gene expression analysis suggested luminal A to be the most common subtype for p.I157T carriers and CDH1 (cadherin 1) target genes to be significantly enriched among genes, whose expression differed between p.I157T and non-carrier tumors. CONCLUSIONS Our analyses suggest that there are fundamental differences in breast tumors of CHEK2:p.I157T and c.1100delC carriers. The poor prognosis associated with c.1100delC cannot be generalized to other CHEK2 mutations.
Collapse
Affiliation(s)
- Taru A. Muranen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, P.O. Box 700, 00029 HUS Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, P.O. Box 700, 00029 HUS Helsinki, Finland
| | - Dario Greco
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stig E. Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Judith S. Brand
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Børge G. Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic, Rochester, MN USA
| | - Steven N. Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA USA
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Arto Mannermaa
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kataja
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Central Finland Hospital District, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Annika Lindblom
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, P.O. Box 700, 00029 HUS Helsinki, Finland
| |
Collapse
|
26
|
Weng Ng WT, Shin JS, Roberts TL, Wang B, Lee CS. Molecular interactions of polo-like kinase 1 in human cancers. J Clin Pathol 2016; 69:557-62. [PMID: 26941182 DOI: 10.1136/jclinpath-2016-203656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms.
Collapse
Affiliation(s)
- Wayne Tiong Weng Ng
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Tara Laurine Roberts
- Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia Cancer Pathology, Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|