1
|
Agosti V, Munari E. Histopathological evaluation and grading for prostate cancer: current issues and crucial aspects. Asian J Androl 2024; 26:575-581. [PMID: 39254403 DOI: 10.4103/aja202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/05/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT A crucial aspect of prostate cancer grading, especially in low- and intermediate-risk cancer, is the accurate identification of Gleason pattern 4 glands, which includes ill-formed or fused glands. However, there is notable inconsistency among pathologists in recognizing these glands, especially when mixed with pattern 3 glands. This inconsistency has significant implications for patient management and treatment decisions. Conversely, the recognition of glomeruloid and cribriform architecture has shown higher reproducibility. Cribriform architecture, in particular, has been linked to the worst prognosis among pattern 4 subtypes. Intraductal carcinoma of the prostate (IDC-P) is also associated with high-grade cancer and poor prognosis. Accurate identification, classification, and tumor size evaluation by pathologists are vital for determining patient treatment. This review emphasizes the importance of prostate cancer grading, highlighting challenges like distinguishing between pattern 3 and pattern 4 and the prognostic implications of cribriform architecture and intraductal proliferations. It also addresses the inherent grading limitations due to interobserver variability and explores the potential of computational pathology to enhance pathologist accuracy and consistency.
Collapse
Affiliation(s)
- Vittorio Agosti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| |
Collapse
|
2
|
Wei X, Zhao J, Nie L, Shi Y, Zhao F, Shen Y, Chen J, Sun G, Zhang X, Liang J, Hu X, Shen P, Chen N, Zeng H, Liu Z. Assessing the predictive value of intraductal carcinoma of the prostate (IDC-P) in determining abiraterone efficacy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. Prostate 2024. [PMID: 39465570 DOI: 10.1002/pros.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study explored the value of intraductal carcinoma of the prostate (IDC-P) in predicting the efficacy of abiraterone treatment in metastatic hormone-sensitive prostate cancer (mHSPC) patients. METHODS A retrospective study of 925 patients who underwent prostate biopsies to detect IDC-P was conducted, with participants divided into two cohorts. The first cohort of 165 mHSPC patients receiving abiraterone treatment was analyzed to compare therapeutic effectiveness between IDC-P positive and negative cases. Utilizing propensity score matching (PSM) to reduce bias, outcomes such as PSA response, progression-free survival (PSA-PFS), radiographic progression-free survival (rPFS), and overall survival were assessed. Additionally, the second cohort of 760 mHSPC patients compared the efficacy of abiraterone with conventional hormone therapy, focusing on differences between IDC-P positive and negative individuals. RESULTS After PSM, our first cohort included 108 patients with similar baseline characteristics. Among them, 50% (54/108) were diagnosed with IDC-P, with 22.2% (12/54) having IDC-P pattern 1 and 77.8% (42/54) with IDC-P pattern 2. While no notable difference was seen in PSA responses between IDC-P positive and negative patients, IDC-P presence linked to worse clinical outcomes (PSA-PFS: 18.6 months vs. not reached [NR], p = 0.009; rPFS: 23.6 months vs. NR, p = 0.020). Further analysis showed comparable outcomes for IDC-P pattern 1 but significantly worse prognosis for IDC-P pattern 2 (PSA-PFS: 18.6 months vs. NR, p = 0.002; rPFS: 22.4 months vs. NR, p = 0.010). Subgroup analysis revealed IDC-P pattern 2 consistently predicted poorer outcomes across patient subgroups. Remarkably, both IDC-P positive and negative patients gained more from androgen deprivation therapy with abiraterone than conventional treatment, with IDC-P negative patients showing a more significant survival advantage, supported by better hazard ratios (0.47 and 0.66). CONCLUSION This study found that IDC-P, especially pattern 2, predicts poor prognosis in mHSPC patients on abiraterone therapy. Also, abiraterone's advantage over hormone therapy is reduced in cases with IDC-P compared to those without.
Collapse
Affiliation(s)
- Xinyuan Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Martini C, Logan JM, Sorvina A, Prabhakaran S, Ung BSY, Johnson IRD, Hickey SM, Brooks RD, Caruso MC, Klebe S, Karageorgos L, O'Leary JJ, Delahunt B, Samaratunga H, Brooks DA. Distinct patterns of biomarker expression for atypical intraductal proliferations in prostate cancer. Virchows Arch 2024; 485:723-728. [PMID: 37704825 PMCID: PMC11522086 DOI: 10.1007/s00428-023-03643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
High-grade prostatic intraepithelial neoplasia (HGPIN) is a well-characterised precursor lesion in prostate cancer. The term atypical intraductal proliferations (AIP) describes lesions with features that are far too atypical to be considered HGPIN, yet insufficient to be diagnosed as intraductal carcinoma of the prostate (IDCP). Here, a panel of biomarkers was assessed to provide insights into the biological relationship between IDCP, HGPIN, and AIP and their relevance to current clinicopathological recommendations. Tissue samples from 86 patients with prostate cancer were assessed by routine haematoxylin and eosin staining and immunohistochemistry (IHC) with a biomarker panel (Appl1/Sortilin/Syndecan-1) and a PIN4 cocktail (34βE12+P63/P504S). Appl1 strongly labelled atypical secretory cells, effectively visualising intraductal lesions. Sortilin labelling was moderate-to-strong in > 70% of cases, while Syndecan-1 was moderate-to-strong in micropapillary HGPIN/AIP lesions (83% cases) versus flat/tufting HGPIN (≤ 20% cases). Distinct biomarker labelling patterns for atypical intraductal lesions of the prostate were observed, including early atypical changes (flat/tufting HGPIN) and more advanced atypical changes (micropapillary HGPIN/AIP). Furthermore, the biomarker panel may be used as a tool to overcome the diagnostic uncertainty surrounding AIP by supporting a definitive diagnosis of IDCP for such lesions displaying the same biomarker pattern as cribriform IDCP.
Collapse
Affiliation(s)
- Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sarita Prabhakaran
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Benjamin S Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Brett Delahunt
- Malaghan Institute for Medical Research, Wellington, New Zealand
| | | | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Muthusamy S, Smith SC. Contemporary Diagnostic Reporting for Prostatic Adenocarcinoma: Morphologic Aspects, Molecular Correlates, and Management Perspectives. Adv Anat Pathol 2024; 31:188-201. [PMID: 38525660 DOI: 10.1097/pap.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The diagnosis and reporting of prostatic adenocarcinoma have evolved from the classic framework promulgated by Dr Donald Gleason in the 1960s into a complex and nuanced system of grading and reporting that nonetheless retains the essence of his remarkable observations. The criteria for the "Gleason patterns" originally proposed have been continually refined by consensuses in the field, and Gleason scores have been stratified into a patient-friendly set of prognostically validated and widely adopted Grade Groups. One product of this successful grading approach has been the opportunity for pathologists to report diagnoses that signal carefully personalized management, placing the surgical pathologist's interpretation at the center of patient care. At one end of the continuum of disease aggressiveness, personalized diagnostic care means to sub-stratify patients with more indolent disease for active surveillance, while at the other end of the continuum, reporting histologic markers signaling aggression allows sub-stratification of clinically significant disease. Whether contemporary reporting parameters represent deeper nuances of more established ones (eg, new criteria and/or quantitation of Gleason patterns 4 and 5) or represent additional features reported alongside grade (intraductal carcinoma, cribriform patterns of carcinoma), assessment and grading have become more complex and demanding. Herein, we explore these newer reporting parameters, highlighting the state of knowledge regarding morphologic, molecular, and management aspects. Emphasis is made on the increasing value and stakes of histopathologists' interpretations and reporting into current clinical risk stratification and treatment guidelines.
Collapse
Affiliation(s)
| | - Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, Division of Urology, VCU School of Medicine, Richmond, VA
- Richmond Veterans Affairs Medical Center, Richmond, VA
- Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
5
|
Naito Y, Kato M, Nagayama J, Sano Y, Matsuo K, Inoue S, Sano T, Ishida S, Matsukawa Y, Tsuzuki T, Akamatsu S. Recent insights on the clinical, pathological, and molecular features of intraductal carcinoma of the prostate. Int J Urol 2024; 31:7-16. [PMID: 37728330 DOI: 10.1111/iju.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Intraductal carcinoma of the prostate, a unique histopathologic entity that is often observed (especially in advanced prostate cancer), is characterized by the proliferation of malignant cells within normal acini or ducts surrounded by a basement membrane. Intraductal carcinoma of the prostate is almost invariably associated with an adjacent high-grade carcinoma and is occasionally observed as an isolated subtype. Intraductal carcinoma of the prostate has been demonstrated to be an independent poor prognostic factor for all stages of cancer, whether localized, de novo metastatic, or castration-resistant. It also has a characteristic genetic profile, including high genomic instability. Recognizing and differentiating it from other pathologies is therefore important in patient management, and morphological diagnostic criteria for intraductal carcinoma of the prostate have been established. This review summarizes and outlines the clinical and pathological features, differential diagnosis, molecular aspects, and management of intraductal carcinoma of the prostate, as described in previous studies. We also present a discussion and future perspectives regarding intraductal carcinoma of the prostate.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Ito T, Takahara T, Taniguchi N, Yamamoto Y, Satou A, Ohashi A, Takahashi E, Sassa N, Tsuzuki T. PTEN loss in intraductal carcinoma of the prostate has low incidence in Japanese patients. Pathol Int 2023; 73:542-548. [PMID: 37608749 DOI: 10.1111/pin.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Clinical and genomic features of prostate cancer (PCa) vary considerably between Asian and Western populations. PTEN loss is the most frequent abnormality in intraductal carcinoma of the prostate (IDC-P) in Western populations. However, its prevalence and significance in Asian populations have not yet been well studied. In the present study, we evaluated PTEN expression in IDC-P in a Japanese population and its association with ERG expression. This study included 45 and 59 patients with PCa with and without IDC-P, respectively, who underwent radical prostatectomy. PTEN loss was observed in 10 patients with PCa with IDC-P (22%) and nine patients with PCa without IDC-P (17%). ERG expression was relatively frequent in patients with PCa with PTEN loss, although a significant difference was not observed. The co-occurrence of PTEN loss and ERG expression was observed in four patients with PCa with IDC-P and one without IDC-P. PTEN loss and ERG expression did not affect progression-free survival, regardless of the presence of IDC-P. The frequency of PTEN loss in IDC-P is lower in Asian patients than in Western patients. Our results indicate that mechanisms underlying IDC-P in Asian populations are different from those of Western populations.
Collapse
Affiliation(s)
- Takanori Ito
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Natsuki Taniguchi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuki Yamamoto
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Naoto Sassa
- Department of Urology, Aichi Medical University Hospital, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
7
|
SARSIK KUMBARACI B, KANAT E, AYKUTLU U, KIZILAY F, ŞEN S. Prostatın benign, prekürsör ve malign epitelyal proliferasyonlarında ERG ile PTEN ekspresyonlarının araştırılması ve bulguların klinikopatolojik korelasyonu. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1209075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Amaç: Prostat kanseri farklı klinik gidişata ve geniş bir tedavi yelpazesine sahip, klinik ve moleküler olarak oldukça heterojen bir kanser türüdür. Özellikle “prostatik intraepitelyal neoplazi” (PİN), “atipik intraduktal proliferasyon” (AİP) ve “intraduktal karsinom” (İDK) benzer morfolojik özelliklere sahip olması açısından ayırıcı tanı zorluğu yaratan tanılar olup, hasta tedavi ve takibi de farklı olan antitelerdir. Çalışmamızda bu lezyonlarda ERG ve PTEN ekspresyon düzeylerini belirlemeyi ve bu biyobelirteçlerin prognostik ve diagnostik değerini araştırmayı amaçladık. Gereç ve Yöntem: EÜTF Tıbbi Patoloji Anabilim Dalında 2011-2012 yılında radikal prostatektomi veya iğne biyopsi materyallerinde “Adenokarsinom” tanısı almış 87 olgu çalışmaya alındı. Histopatolojik olarak AİP, İDK ve PİN içeren alanlar belirlendi. immunohistokimyasal olarak bu alanlarda ERG ve PTEN ekspresyonları değerlendirildi.Bulgular: Olguların 6’sında İDK, 29’unda AİP ve 52’sinde PİN belirlendi. İDK AİP, DG 3 ve üstünde olan tümörlerde daha fazla görüldü. İDK ve AİP in eşlik ettiği prostat karsinomlarının sağ kalım süresi daha kısaydı (p=0.043). İDK ve AİP içeren tümörlerde ERG ve PTEN durumu invaziv komponentle uyum içindeydi. Ayrıca tüm İDK alanlarında ERG pozitifti. PTEN ile heterojen boyanma görülmüş olup, PTEN’in invaziv karsinom ve İDK alanlarında negatifliği daha fazlaydı (p=0,63). ERG pozitifliği ve PTEN negatifliği istatistiksel olarak anlamlı olmamakla birlikte AİP tanısını desteklediği dikkati çekti.Sonuç: Özellikle ayırıcı tanı sorunu yaratan intraduktal lezyonlarda ERG pozitifliği ve PTEN negatifliği klinik öneme sahip prostat karsinomuna eşlik edebileceği için özellikle biyopsilerde gözardı edilmemeli ve hasta tedavi ile takibi buna göre yapılmalıdır.
Collapse
Affiliation(s)
- Banu SARSIK KUMBARACI
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| | - Emre KANAT
- UŞAK ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, ACİL TIP ANABİLİM DALI
| | - Umut AYKUTLU
- Acıbadem Sağlık Grubu, Altunizade Hastanesi, Patoloji Laboratuvarı
| | - Fuat KIZILAY
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, ÜROLOJİ ANABİLİM DALI
| | - Sait ŞEN
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| |
Collapse
|
8
|
Cai Q, Shah RB. Cribriform Lesions of the Prostate Gland. Surg Pathol Clin 2022; 15:591-608. [PMID: 36344177 DOI: 10.1016/j.path.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
"Cribriform lesions of the prostate represent an important and often diagnostically challenging spectrum of prostate pathology. These lesions range from normal anatomical variation, benign proliferative lesions, premalignant, suspicious to frankly malignant and biologically aggressive entities. The concept of cribriform prostate adenocarcinoma (CrP4) and intraductal carcinoma of the prostate (IDC-P), in particular, has evolved significantly in recent years with a growing body of evidence suggesting that the presence of these morphologies is important for clinical decision-making in prostate cancer management. Therefore, accurate recognition and reporting of CrP4 and IDC-P architecture are especially important. This review discusses a contemporary diagnostic approach to cribriform lesions of the prostate with a focus on their key morphologic features, differential diagnosis, underlying molecular alterations, clinical significance, and reporting recommendations."
Collapse
Affiliation(s)
- Qi Cai
- Department of Pathology, 04.449, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rajal B Shah
- Department of Pathology, 04.449, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Moch H. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs-Part B: Prostate and Urinary Tract Tumors. Eur Urol 2022; 82:469-482. [PMID: 35965208 DOI: 10.1016/j.eururo.2022.07.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The 2022 World Health Organization (WHO) classification of the urinary and male genital tumors was recently published by the International Agency for Research on Cancer. This fifth edition of the WHO "Blue Book" offers a comprehensive update on the terminology, epidemiology, pathogenesis, histopathology, diagnostic molecular pathology, and prognostic and predictive progress in genitourinary tumors. In this review, the editors of the fifth series volume on urologic and male genital neoplasms present a summary of the salient changes introduced to the classification of tumors of the prostate and the urinary tract.
Collapse
Affiliation(s)
- George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Eva M Compérat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital St Leonards, Sydney, Australia; Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards, Sydney, Australia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Santosh Menon
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maria R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), Bern Center for Precision Medicine (BCPM), University of Bern and Inselspital, Bern, Switzerland
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, AichiMedicalUniversity Hospital, Nagakut, Japan
| | - Samra Turajlic
- The Francis Crick Institute and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
11
|
Destouni M, Lazaris AC, Tzelepi V. Cribriform Patterned Lesions in the Prostate Gland with Emphasis on Differential Diagnosis and Clinical Significance. Cancers (Basel) 2022; 14:cancers14133041. [PMID: 35804812 PMCID: PMC9264941 DOI: 10.3390/cancers14133041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary A cribriform structure is defined as a continuous proliferation of cells with intermingled lumina. Various entities may have a cribriform morphology within the prostate gland, ranging from normal, to benign, to borderline and even to malignant lesions. This review summarizes the morphologic features of entities that have a cribriform morphology within the prostate gland, with an emphasis on their differential diagnosis, molecular profile and clinical significance. The basic aim is to assist the pathologist with challenging and controversial cases and inform the clinician on the clinical implications of cribriform morphology. Abstract Cribriform glandular formations are characterized by a continuous proliferation of cells with intermingled lumina and can constitute a major or minor part of physiologic (normal central zone glands), benign (clear cell cribriform hyperplasia and basal cell hyperplasia), premalignant (high-grade prostatic intraepithelial neoplasia), borderline (atypical intraductal cribriform proliferation) or clearly malignant (intraductal, acinar, ductal and basal cell carcinoma) lesions. Each displays a different clinical course and variability in clinical management and prognosis. The aim of this review is to summarize the current knowledge regarding the morphological features, differential diagnosis, molecular profile and clinical significance of the cribriform-patterned entities of the prostate gland. Areas of controversy regarding their management, i.e., the grading of Intaductal Carcinoma, will also be discussed. Understanding the distinct nature of each cribriform lesion leads to the correct diagnosis and ensures accuracy in clinical decision-making, prognosis prediction and personalized risk stratification of patients.
Collapse
Affiliation(s)
- Maria Destouni
- Department of Cytopathology, Hippokrateion General Hospital of Athens, 11527 Athens, Greece;
| | - Andreas C. Lazaris
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence:
| |
Collapse
|
12
|
Intraductal Carcinoma of the Prostate: Extreme Nuclear Size Is Not a Diagnostic Parameter. Am J Surg Pathol 2022; 46:1314-1315. [PMID: 35475792 DOI: 10.1097/pas.0000000000001910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
14
|
Surintrspanont J, Zhou M. Prostate Pathology: What is New in the 2022 WHO Classification of Urinary and Male Genital Tumors? Pathologica 2022; 115:41-56. [PMID: 36645399 DOI: 10.32074/1591-951x-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/17/2023] Open
Abstract
In 2022, after a six-year interval, the International Agency for Research on Cancer (IARC) has published the 5th edition of the WHO Classification of Urinary and Male Genital Tumors, which provides a comprehensive update on tumor classification of the genitourinary system. This review article focuses on prostate carcinoma and underscores changes in the prostate chapter as well as those made across the entire series of the 5th edition of WHO Blue Books. Although no major alterations were made to this chapter, some of the most notable updates include restructure of contents and introduction of a new format; standardization of mitotic counts, genomic nomenclatures, and units of length; refined definition for the terms "variant", "subtype", and "histologic pattern"; reclassification of prostatic intraepithelial neoplasia (PIN)-like adenocarcinoma as a subtype of prostatic acinar adenocarcinoma; and recognition of treatment-related neuroendocrine prostatic carcinoma as a distinct tumor type. Evolving and unsettled issues related to grading of intraductal carcinoma of the prostate and reporting of tertiary Gleason pattern, the definition and prognostic significance of cribriform growth pattern, and molecular pathology of prostate cancer will also be covered in this review.
Collapse
Affiliation(s)
- Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
15
|
Abstract
Intraductal carcinoma of the prostate gland (IDCP) is characterized by an expansile, architecturally, and cytologically atypical proliferation of prostatic epithelial cells within preexisting prostatic ducts and acini. There has been a wider recognition of IDCP by practicing pathologists since its recognition as a separate category in the World Health Organization (WHO) 2016 classification of tumours of the prostate gland. However, there is also a lack of clarity regarding the diagnosis and reporting of IDCP, which has been compounded by divergent expert recommendations regarding the grading of invasive prostate cancers associated with an intraductal component. The International Society of Urological Pathologists (ISUP) recommends that the IDCP component should be incorporated into the Gleason score, while the Genitourinary Pathology Society (GUPS) recommends excluding it when grading prostate cancer. This review seeks to clarify some of these issues and outline a pragmatic approach to reporting IDCP, particularly in needle biopsies. Diagnostic issues and terminology for lesions falling short of IDCP but exceeding that of high-grade prostatic intraepithelial neoplasia are discussed. The management of patients whose prostate biopsies show only IDCP without an associated invasive component is controversial. Some experts recommend radical therapy, while others recommend prompt repeat biopsy. An alternative clinicopathologic approach that takes into consideration the extent, histomorphology, and location (with respect to a radiologic abnormality) of IDCP, as well as radiologic features, is outlined.
Collapse
Affiliation(s)
- Murali Varma
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
16
|
Lawrence MG, Porter LH, Clouston D, Murphy DG, Frydenberg M, Taylor RA, Risbridger GP. Knowing what's growing: Why ductal and intraductal prostate cancer matter. Sci Transl Med 2021; 12:12/533/eaaz0152. [PMID: 32132214 DOI: 10.1126/scitranslmed.aaz0152] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer is a common malignancy, but only some tumors are lethal. Accurately identifying these tumors will improve clinical practice and instruct research. Aggressive cancers often have distinctive pathologies, including intraductal carcinoma of the prostate (IDC-P) and ductal adenocarcinoma. Here, we review the importance of these pathologies because they are often overlooked, especially in genomics and preclinical testing. Pathology, genomics, and patient-derived models show that IDC-P and ductal adenocarcinoma accompany multiple markers of poor prognosis. Consequently, "knowing what is growing" will help translate preclinical research to pinpoint and treat high-risk prostate cancer in the clinic.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia.,Epworth HealthCare, Melbourne, VIC 3000, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Australian Urology Associates, Melbourne, VIC 3000, Australia.,Department of Urology, Cabrini Health, Malvern, VIC 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Epstein JI, Amin MB, Fine SW, Algaba F, Aron M, Baydar DE, Beltran AL, Brimo F, Cheville JC, Colecchia M, Comperat E, da Cunha IW, Delprado W, DeMarzo AM, Giannico GA, Gordetsky JB, Guo CC, Hansel DE, Hirsch MS, Huang J, Humphrey PA, Jimenez RE, Khani F, Kong Q, Kryvenko ON, Kunju LP, Lal P, Latour M, Lotan T, Maclean F, Magi-Galluzzi C, Mehra R, Menon S, Miyamoto H, Montironi R, Netto GJ, Nguyen JK, Osunkoya AO, Parwani A, Robinson BD, Rubin MA, Shah RB, So JS, Takahashi H, Tavora F, Tretiakova MS, True L, Wobker SE, Yang XJ, Zhou M, Zynger DL, Trpkov K. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med 2021; 145:461-493. [PMID: 32589068 DOI: 10.5858/arpa.2020-0015-ra] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.— To update grading recommendations. DATA SOURCES.— Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.— Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.
Collapse
Affiliation(s)
- Jonathan I Epstein
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada.,Urology (Epstein), David Geffen School of Medicine at UCLA, Los Angeles, California (Huang).,and Oncology (Epstein), The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis (Amin)
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Fine)
| | - Ferran Algaba
- Department of Pathology, Fundacio Puigvert, Barcelona, Spain (Algaba)
| | - Manju Aron
- Department of Pathology, University of Southern California, Los Angeles (Aron)
| | - Dilek E Baydar
- Department of Pathology, Faculty of Medicine, Koç University, İstanbul, Turkey (Baydar)
| | - Antonio Lopez Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal (Beltran)
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, Quebec, Canada (Brimo)
| | - John C Cheville
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (Colecchia)
| | - Eva Comperat
- Department of Pathology, Hôpital Tenon, Sorbonne University, Paris, France (Comperat)
| | | | | | - Angelo M DeMarzo
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Donna E Hansel
- Department of Pathology, Oregon Health and Science University, Portland (Hansel)
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Hirsch)
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California (Huang)
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut (Humphrey)
| | - Rafael E Jimenez
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong, China (Kong).,Kong is currently located at Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (Kryvenko)
| | - L Priya Kunju
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Priti Lal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Lal)
| | - Mathieu Latour
- Department of Pathology, CHUM, Université de Montréal, Montréal, Quebec, Canada (Latour)
| | - Tamara Lotan
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Fiona Maclean
- Douglass Hanly Moir Pathology, Faculty of Medicine and Health Sciences Macquarie University, North Ryde, Australia (Maclean)
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Santosh Menon
- Department of Surgical Pathology, Tata Memorial Hospital, Parel, Mumbai, India (Menon)
| | - Hiroshi Miyamoto
- Departments of Pathology and Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, New York (Miyamoto)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy (Montironi)
| | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Nguyen)
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Osunkoya)
| | - Anil Parwani
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland (Rubin)
| | - Rajal B Shah
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Shah)
| | - Jeffrey S So
- Institute of Pathology, St Luke's Medical Center, Quezon City and Global City, Philippines (So)
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan (Takahashi)
| | - Fabio Tavora
- Argos Laboratory, Federal University of Ceara, Fortaleza, Brazil (Tavora)
| | - Maria S Tretiakova
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Lawrence True
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Sara E Wobker
- Departments of Pathology and Laboratory Medicine and Urology, University of North Carolina, Chapel Hill (Wobker)
| | - Ximing J Yang
- Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| | - Ming Zhou
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts (Zhou)
| | - Debra L Zynger
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Kiril Trpkov
- and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada (Trpkov)
| |
Collapse
|
18
|
Zong Y, Montironi R, Massari F, Jiang Z, Lopez-Beltran A, Wheeler TM, Scarpelli M, Santoni M, Cimadamore A, Cheng L. Intraductal Carcinoma of the Prostate: Pathogenesis and Molecular Perspectives. Eur Urol Focus 2020; 7:955-963. [PMID: 33132109 DOI: 10.1016/j.euf.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022]
Abstract
Intraductal carcinoma of the prostate (IDC-P), a clinicopathological entity characterized by malignant prostatic epithelial cells growing within ducts and/or acini, has a distinct architectural pattern, cytological features, and biological behavior. Whereas most IDC-P tumors could be derived from adjacent high-grade invasive cancer via retrograde spreading of cancer cells along benign ducts and acini, a small subset of IDC-P may arise from the transformation and intraductal proliferation of precancerous cells induced by various oncogenic events. These isolated IDC-P tumors possess a distinct mutational profile and may function as a carcinoma in situ lesion with de novo intraductal outgrowth of malignant cells. Further molecular characterization of these two types of IDC-P and better understanding of the mechanisms underlying IDC-P formation and progression could be translated into valuable biomarkers for differential diagnosis and actionable targets for therapeutic interventions. PATIENT SUMMARY: Intraductal carcinoma of the prostate is an aggressive type of prostate cancer associated with high risk for local recurrence and distant metastasis. In this review, we discussed pathogenesis, biomarkers, differential diagnoses, and therapeutic strategies for this tumor.
Collapse
Affiliation(s)
- Yang Zong
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Massari
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Thomas M Wheeler
- Department of Pathology and Laboratory Medicine, Baylor St. Luke's Medical Center, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
19
|
Varma M, Epstein JI. Head to head: should the intraductal component of invasive prostate cancer be graded? Histopathology 2020; 78:231-239. [PMID: 32692448 DOI: 10.1111/his.14216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
The reporting of intraductal carcinoma of the prostate (IDCP) is controversial, with conflicting recommendations having recently been published by the International Society of Urological Pathology (ISUP) and the Genitourinary Pathology Society (GUPS). Both recommend that isolated (pure) IDCP should not be graded. However, the ISUP recommends incorporating the IDCP component of invasive prostate cancer in the Gleason score, whereas the GUPS recommends reporting IDCP as a comment, independently of the Gleason score. The arguments for and against incorporating the IDCP component of invasive prostate cancer in the Gleason score are discussed in detail.
Collapse
Affiliation(s)
- Murali Varma
- Cardiff University, Cardiff, UK.,University Hospital of Wales, Cardiff, UK
| | | |
Collapse
|
20
|
Grosset AA, Dallaire F, Nguyen T, Birlea M, Wong J, Daoust F, Roy N, Kougioumoutzakis A, Azzi F, Aubertin K, Kadoury S, Latour M, Albadine R, Prendeville S, Boutros P, Fraser M, Bristow RG, van der Kwast T, Orain M, Brisson H, Benzerdjeb N, Hovington H, Bergeron A, Fradet Y, Têtu B, Saad F, Leblond F, Trudel D. Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case-control study with multicohort validation. PLoS Med 2020; 17:e1003281. [PMID: 32797086 PMCID: PMC7428053 DOI: 10.1371/journal.pmed.1003281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories. METHODS AND FINDINGS We used RμS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l'Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec-Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%-69%), and pT3a (22%-49%) was more frequent than pT3b (9%-12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets. CONCLUSIONS In this study, we developed classification models for the analysis of RμS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RμS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P.
Collapse
Affiliation(s)
- Andrée-Anne Grosset
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Frédérick Dallaire
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Tien Nguyen
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Mirela Birlea
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Jahg Wong
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - François Daoust
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Noémi Roy
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - André Kougioumoutzakis
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Feryel Azzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Kelly Aubertin
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Samuel Kadoury
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Mathieu Latour
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Roula Albadine
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Susan Prendeville
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Paul Boutros
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Urology, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michael Fraser
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rob G. Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Michèle Orain
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Hervé Brisson
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Nazim Benzerdjeb
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Hélène Hovington
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Alain Bergeron
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Université Laval, Quebec City, Quebec, Canada
| | - Yves Fradet
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Université Laval, Quebec City, Quebec, Canada
| | - Bernard Têtu
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Frédéric Leblond
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Grypari IM, Logotheti S, Lazaris AC, Kallidonis P, Fokaefs E, Melachrinou M, Zolota V, Tzelepi V. Isolated Intraductal Carcinoma of the Prostate in Prostatectomy Specimens: Report of 2 Cases and Review of the Literature. Int J Surg Pathol 2020; 28:918-924. [PMID: 32456482 DOI: 10.1177/1066896920920357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intraductal carcinoma of the prostate (IDCp) is a distinct neoplastic entity, and although recognized for some time, it was included for the first time in the histologic classification of prostate cancer in the 2016 publication of World Health Organization. IDCp represents an intraductal or intra-acinar proliferation of malignant cells, with preservation of the basal cell layer. Even though IDCp is usually accompanied by a high-grade invasive component, low-grade invasive carcinoma can rarely be seen adjacent to the lesion. Even rarer is the incidence of isolated IDCp in needle biopsies, while a few such cases have been reported in prostatectomy specimens. We report 2 cases with isolated IDCp without any invasive component. A review of the literature is performed including the diagnostic challenges of IDCp and its morphologic mimics, immunohistochemical markers, molecular aspects, and prognostic implications. Even though it is not yet clear whether IDCp represents an intraductal spread of invasive cancer or a precursor of invasive carcinoma, the existence of isolated IDCp reinforces the idea that, at least in some of the cases, IDCp is a precancerous lesion. Further molecular studies need to be performed in order to clarify its pathogenesis.
Collapse
|
22
|
Shah RB, Shore KT, Yoon J, Mendrinos S, McKenney JK, Tian W. PTEN loss in prostatic adenocarcinoma correlates with specific adverse histologic features (intraductal carcinoma, cribriform Gleason pattern 4 and stromogenic carcinoma). Prostate 2019; 79:1267-1273. [PMID: 31111513 DOI: 10.1002/pros.23831] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The loss of PTEN tumor suppressor gene is one of the most common somatic genetic aberrations in prostate cancer (PCa) and is frequently associated with high-risk disease. Deletion or mutation of at least one PTEN allele has been reported to occur in 20% to 40% of localized PCa and up to 60% of metastases. The goal of this study was to determine if somatic alteration detected by PTEN immunohistochemical loss of expression is associated with specific histologic features. METHODS Two hundred sixty prostate core needle biopsies with PCa were assessed for PTEN loss using an analytically validated immunohistochemical assay. Blinded to PTEN status, each tumor was assessed for the Grade Group (GG) and the presence or absence of nine epithelial features. Presence of stromogenic PCa was also assessed and defined as grade 3 reactive tumor stroma as previously described: the presence of carcinoma associated stromal response with epithelial to stroma ratio of greater than 50% reactive stroma. RESULTS Eight-eight (34%) cases exhibited PTEN loss while 172 (66%) had intact PTEN. PTEN loss was significantly (P < 0.05) associated with increasing GG, poorly formed glands (74% of total cases with loss vs 49% of intact), and three well-validated unfavorable pathological features: intraductal carcinoma of the prostate (IDC-P) (69% of total cases with loss vs 12% of intact), cribriform Gleason pattern 4 (38% of total cases with loss vs 10% of intact) and stromogenic PCa (23% of total cases with loss vs 6% of intact). IDC-P had the highest relative risk (4.993, 95% confidence interval, 3.451-7.223, P < 0.001) for PTEN loss. At least one of these three unfavorable pathological features were present in 67% of PCa exhibiting PTEN loss, while only 11% of PCa exhibited PTEN loss when none of these three unfavorable pathological features were present. CONCLUSIONS PCa with PTEN loss demonstrates a strong correlation with known unfavorable histologic features, particularly IDC-P. This is the first study showing the association of PTEN loss with stromogenic PCa.
Collapse
Affiliation(s)
- Rajal B Shah
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Karen T Shore
- Weiss School of Natural Sciences, Rice University, Houston, Texas
| | - Jiyoon Yoon
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Savvas Mendrinos
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Wei Tian
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| |
Collapse
|
23
|
Shah RB, Nguyen JK, Przybycin CG, Reynolds JP, Cox R, Myles J, Klein E, McKenney JK. Atypical intraductal proliferation detected in prostate needle biopsy is a marker of unsampled intraductal carcinoma and other adverse pathological features: a prospective clinicopathological study of 62 cases with emphasis on pathological outcomes. Histopathology 2019; 75:346-353. [DOI: 10.1111/his.13878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Rajal B Shah
- Robert J. Tomsich Pathology and Laboratory Medicine Institute ClevelandOHUSA
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute ClevelandOHUSA
| | | | - Jordan P Reynolds
- Robert J. Tomsich Pathology and Laboratory Medicine Institute ClevelandOHUSA
| | - Roni Cox
- Robert J. Tomsich Pathology and Laboratory Medicine Institute ClevelandOHUSA
| | - Jonathan Myles
- Robert J. Tomsich Pathology and Laboratory Medicine Institute ClevelandOHUSA
| | - Eric Klein
- Glickman Urological and Kidney Institute The Cleveland Clinic Cleveland OH USA
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute ClevelandOHUSA
- Glickman Urological and Kidney Institute The Cleveland Clinic Cleveland OH USA
| |
Collapse
|
24
|
Algaba F. [Grading of prostate cancer. For a more precise prognosis]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2019; 53:19-26. [PMID: 31932005 DOI: 10.1016/j.patol.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 10/26/2022]
Abstract
The simplification of the Gleason grading system, together with the reclassification of some of its patterns, has improved correlation with the clinical reality of prostate cancer, whilst maintaining the basic principles established fifty years ago. The subsequent grouping of the patterns into five degrees has allowed a more rational unification and enhanced the physician/patient communication. However, a greater precision in the assessment of the prognosis for each patient is still necessary and, to this end, elements that allow greater discrimination are continually being sought. The purpose of this brief review is to discuss the value and possible future incorporation in international recommendations of the percentage of pattern 4, the quantification of the cribriform pattern, the detection of intraductal carcinoma, the regrouping of some 'scores' and the possible stratification of the grade group 1.
Collapse
Affiliation(s)
- Ferran Algaba
- Sección de Patología, Fundación Puigvert, Barcelona, España.
| |
Collapse
|
25
|
Intraductal carcinoma of the prostate: a critical re-appraisal. Virchows Arch 2019; 474:525-534. [PMID: 30825003 PMCID: PMC6505500 DOI: 10.1007/s00428-019-02544-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/11/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Intraductal carcinoma of the prostate gland (IDCP), which is now categorised as a distinct entity by WHO 2016, includes two biologically distinct diseases. IDCP associated with invasive carcinoma (IDCP-inv) generally represents a growth pattern of invasive prostatic adenocarcinoma while the rarely encountered pure IDCP is a precursor of prostate cancer. This review highlights issues that require further discussion and clarification. The diagnostic criterion “nuclear size at least 6 times normal” is ambiguous as “size” could refer to either nuclear area or diameter. If area, then this criterion could be re-defined as nuclear diameter at least three times normal as it is difficult to visually compare area of nuclei. It is also unclear whether IDCP could also include tumours with ductal morphology. There is no consensus whether pure IDCP in needle biopsies should be managed with re-biopsy or radical therapy. A pragmatic approach would be to recommend radical therapy only for extensive pure IDCP that is morphologically unequivocal for high-grade prostate cancer. Active surveillance is not appropriate when low-grade invasive cancer is associated with IDCP, as such patients usually have unsampled high-grade prostatic adenocarcinoma. It is generally recommended that IDCP component of IDCP-inv should be included in tumour extent but not grade. However, there are good arguments in favour of grading IDCP associated with invasive cancer. All historical as well as contemporary Gleason outcome data are based on morphology and would have included an associated IDCP component in the tumour grade. WHO 2016 recommends that IDCP should not be graded, but it is unclear whether this applies to both pure IDCP and IDCP-inv.
Collapse
|
26
|
Iczkowski KA. Large-Gland Proliferations of the Prostate. Surg Pathol Clin 2018; 11:687-712. [PMID: 30447836 DOI: 10.1016/j.path.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Large-gland proliferations of the prostate have gained considerable attention in the past decade. The differential diagnosis is quite broad but can be refined using histologic criteria and, sometimes, immunostains. Pathologists have come to realize that cribriform and intraductal as well as ductal carcinomas are particularly aggressive patterns, and should name them in diagnostic reporting when present.
Collapse
Affiliation(s)
- Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Udager AM, Tomlins SA. Molecular Biomarkers in the Clinical Management of Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030601. [PMID: 29311125 PMCID: PMC6211380 DOI: 10.1101/cshperspect.a030601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer, one of the most common noncutaneous malignancies in men, is a heterogeneous disease with variable clinical outcome. Although the majority of patients harbor indolent tumors that are essentially cured by local therapy, subsets of patients present with aggressive disease or recur/progress after primary treatment. With this in mind, modern clinical approaches to prostate cancer emphasize the need to reduce overdiagnosis and overtreatment via personalized medicine. Advances in our understanding of prostate cancer pathogenesis, coupled with recent technologic innovations, have facilitated the development and validation of numerous molecular biomarkers, representing a range of macromolecules assayed from a variety of patient sample types, to help guide the clinical management of prostate cancer, including early detection, diagnosis, prognostication, and targeted therapeutic selection. Herein, we review the current state of the art regarding prostate cancer molecular biomarkers, emphasizing those with demonstrated utility in clinical practice.
Collapse
Affiliation(s)
- Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5948
- Comprehensive Cancer Center, Michigan Medicine, Ann Arbor, Michigan 48109-0944
- Michigan Center for Translational Pathology, Ann Arbor, Michigan 48109-5940
| |
Collapse
|
28
|
Lee TK, Ro JY. Spectrum of Cribriform Proliferations of the Prostate: From Benign to Malignant. Arch Pathol Lab Med 2018; 142:938-946. [DOI: 10.5858/arpa.2018-0005-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
The presence of cribriform glands/ducts in the prostate can pose a diagnostic challenge. Cribriform glands/ducts include a spectrum of lesions, from benign to malignant, with vastly different clinical, prognostic, and treatment implications.
Objective.—
To highlight the diagnostic features of several entities with a common theme of cribriform architecture. We emphasize the importance of distinguishing among benign entities such as cribriform changes and premalignant to malignant entities such as high-grade prostatic intraepithelial neoplasia, atypical intraductal cribriform proliferation, intraductal carcinoma of the prostate, and invasive adenocarcinoma (acinar and ductal types). The diagnostic criteria, differential diagnosis, and clinical implications of these cribriform lesions are discussed.
Data Sources.—
Literature review of pertinent publications in PubMed up to calendar year 2017. Photomicrographs obtained from cases at the University of California at Irvine and authors' collections.
Conclusions.—
Although relatively uncommon compared with small acinar lesions (microacinar carcinoma and small gland carcinoma mimickers), large cribriform lesions are increasingly recognized and have become clinically and pathologically important. The spectrum of cribriform lesions includes benign, premalignant, and malignant lesions, and differentiating them can often be subtle and difficult. Intraductal carcinoma of the prostate in particular is independently associated with worse prognosis, and its presence in isolation should prompt definitive treatment. Patients with atypical intraductal cribriform proliferation, intraductal carcinoma of the prostate, or even focal cribriform pattern of invasive adenocarcinoma in biopsies would not be ideal candidates for active surveillance because of the high risk of adverse pathologic findings associated with these entities.
Collapse
Affiliation(s)
| | - Jae Y. Ro
- From the Department of Pathology and Urology, University of California Irvine, Orange (Dr Lee); and the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weil Cornell Medical College, Houston, Texas (Dr Ro)
| |
Collapse
|
29
|
Chen X, Ding B, Zhang P, Geng S, Xu J, Han B. Intraductal carcinoma of the prostate: What we know and what we do not know. Pathol Res Pract 2018; 214:612-618. [DOI: 10.1016/j.prp.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/11/2023]
|
30
|
Montironi R, Zhou M, Magi-Galluzzi C, Epstein JI. Features and Prognostic Significance of Intraductal Carcinoma of the Prostate. Eur Urol Oncol 2018; 1:21-28. [DOI: 10.1016/j.euo.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
|
31
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Abstract
Data from the past 6 years have shown that the presence of any amount of cribriform (or more comprehensively, large acinar cribriform to papillary) pattern of invasive prostate cancer is associated with adverse pathologic features and leads to uniquely adverse outcomes. Sixteen papers and numerous abstracts have reached these conclusions concordantly. Not only does this justify removal of all cribriform cancer from Gleason grade 3, it shows that cribriform cancer has pathologic, outcome, and molecular features distinct from noncribriform Gleason grade 4. Suggestions for accommodating the presence of cribriform cancer into the 2014 Grade Group scheme are proposed.
Collapse
|
33
|
Zhou M. High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod Pathol 2018; 31:S71-79. [PMID: 29297491 DOI: 10.1038/modpathol.2017.138] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023]
Abstract
Many prostate lesions have 'large gland' morphology with gland size similar to or larger than benign glands, complex glandular architecture including papillary, cribriform, and solid, and significant cytological atypia in glandular epithelium with nucleomegaly, prominent nucleoli, or anisonucleosis. The most common and clinically important lesions with 'large gland' morphology include high-grade prostatic intraepithelial neoplasia (HGPIN), PIN-like carcinoma, ductal adenocarcinoma, and intraductal carcinoma. These lesions have diverse clinical significance and management implications. HGPIN refers to proliferation of glandular epithelium that displays severe cytological atypia within the confines of prostatic ducts and acini. A HGPIN diagnosis in biopsies connotes ~25% risk of detection of cancer in repeat biopsies. It has been accepted as the main precursor lesion to invasive carcinoma. PIN-like carcinoma is a variant of acinar carcinoma that is morphologically reminiscent of HGPIN and is composed of large cancer glands lined with pseudostratified epithelium. Its clinical outcome is similar to that of usual acinar carcinomas and is graded as Gleason score 3+3=6. Ductal adenocarcinoma comprises large glands lined with tall columnar and pseudostratified epithelium. It is more aggressive than acinar carcinomas and is associated with higher stage disease and greater risk of PSA recurrence and mortality. Intraductal carcinoma is an intraglandular/ductal neoplastic proliferation of glandular epithelial cells that results in marked expansion of glandular architecture and nuclear atypia that often exceeds that in invasive carcinomas. In majority of cases, it is thought to represent retrograde extension of invasive carcinoma into pre-existing ducts and acini. Rarely it may represent a peculiar form of carcinoma with predilection for intraductal location. It is considered an adverse pathological feature and is seen almost always in high-grade and volume carcinoma and harbingers worse clinical outcomes. This article reviews 'new' information on the clinical and pathological features of HGPIN, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma, and focuses morphological features that aid the differential diagnosis.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
34
|
Shah RB. Reply to ‘Low-grade intraductal carcinoma of the prostate: an idea whose time has not yet come’: evidence-based medicine suggests that the time is now. Histopathology 2017; 71:839-840. [DOI: 10.1111/his.13302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajal B Shah
- Division of Pathology; Miraca Life Sciences; Irving TX USA
- Department of Pathology; Baylor College of Medicine; Houston TX USA
| |
Collapse
|
35
|
Varma M. Low-grade intraductal carcinoma of the prostate: an idea whose time has not yet come. Histopathology 2017; 71:837-839. [DOI: 10.1111/his.13300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Murali Varma
- Department of Cellular Pathology; University Hospital of Wales; Cardiff UK
| |
Collapse
|
36
|
Shah RB, Yoon J, Liu G, Tian W. Atypical intraductal proliferation and intraductal carcinoma of the prostate on core needle biopsy: a comparative clinicopathological and molecular study with a proposal to expand the morphological spectrum of intraductal carcinoma. Histopathology 2017; 71:693-702. [DOI: 10.1111/his.13273] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Rajal B Shah
- Division of Pathology; Miraca Life Sciences; Irving TX USA
- Department of Pathology; Baylor College of Medicine; Houston TX USA
| | - Jiyoon Yoon
- Division of Pathology; Miraca Life Sciences; Irving TX USA
| | - Gang Liu
- University of Toledo; Toledo OH USA
| | - Wei Tian
- Division of Pathology; Miraca Life Sciences; Irving TX USA
| |
Collapse
|