1
|
Fischer S, Heubner L, May S, Amirkhiz PS, Kuhle J, Benkert P, Ziemssen T, Spieth P, Akgün K. Serum neurofilament light chain as a sensitive biomarker for neuromonitoring during extracorporeal membrane oxygenation. Sci Rep 2024; 14:20956. [PMID: 39251725 PMCID: PMC11384786 DOI: 10.1038/s41598-024-71603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
The use of extracorporeal membrane oxygenation (ECMO) has grown rapidly, driven by the COVID-19 pandemic. Despite its widespread adoption, neurological complications pose a significant risk, impacting both mortality and survivors' quality of life. Detecting these complications is challenging due to sedation and the heterogeneous nature of ECMO-associated neurological injury. Still, consensus of neurologic monitoring during ECMO is lacking since utilization and effectiveness of current neuromonitoring methods are limited. Especially in view of the heterogeneous nature of neurological injury during ECMO support an easily acquirable biomarker tracing neuronal damage independently from the underlying pathomechanism would be favorable. In a single-center prospective study on 34 severe acute respiratory distress syndrome (ARDS) patients undergoing ECMO, we explored the potential of serum neurofilament light chain levels (NfL) as a biomarker for neurological complications and its predictive power towards the overall outcome of ECMO patients. Individuals experiencing neurological complications (41%) demonstrated a notable rise in NfL levels (Tbaseline median 92.95 pg/ml; T24h median 132 pg/ml (IQR 88.6-924 pg/ml), p = 0.008; T7d median 248 pg/ml (IQR 157-1090 pg/ml), p = 0.001). Moreover, under ECMO therapy, these patients exhibited markedly elevated concentrations compared to those without neurological complications (T24h median 70.75 pg/ml (IQR 22.2-290 pg/ml), p = 0.023; T7d median 128 pg/ml (IQR 51.8-244 pg/ml), p = 0.002). There was no significant difference in the NfL dynamics between surviving patients and those who died during or shortly after ECMO therapy. While NfL indicates neuro-axonal damage during intensive care with ECMO therapy, we could not identify any correlation between survival outcome and the levels of NfL, indicating that NfL may not serve as a prognostic marker for survival. Nevertheless, additional studies involving a larger patient cohort are required.
Collapse
Affiliation(s)
- Stefanie Fischer
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Lars Heubner
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Stephanie May
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Puya Shalchi Amirkhiz
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Peter Spieth
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
2
|
Ahmad SA, Kapoor S, Muquit S, Gusdon A, Khanduja S, Ziai W, Everett AD, Whitman G, Cho SM, On Behalf Of Herald Investigators. Brain injury plasma biomarkers in patients on veno-arterial extracorporeal membrane oxygenation: A pilot prospective observational study. Perfusion 2024:2676591241256006. [PMID: 38757156 DOI: 10.1177/02676591241256006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Early diagnosis of acute brain injury (ABI) is critical for patients on veno-arterial extracorporeal membrane oxygenation (V-A ECMO) to guide anticoagulation strategy; however, neurological assessment in ECMO is often limited by patient sedation. METHODS In this pilot study of adults from June 2018 to May 2019, plasma samples of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), and tubulin associated unit (Tau) were collected daily after V-A ECMO cannulation and measured using a multiplex platform. Primary outcomes were occurrence of ABI, assessed clinically, and neurologic outcome, assessed by modified Rankin Scale (mRS). RESULTS Of 20 consented patients (median age = 48.5°years; 55% female), 8 (40%) had ABI and 15 (75%) had unfavorable neurologic outcome at discharge. 10 (50%) patients were centrally cannulated. Median duration on ECMO was 4.5°days (IQR: 2.5-9.5). Peak GFAP, NFL, and Tau levels were higher in patients with ABI vs. without (AUC = 0.77; 0.85; 0.57, respectively) and in patients with unfavorable vs. favorable neurologic outcomes (AUC = 0.64; 0.59; 0.73, respectively). GFAP elevated first, NFL elevated to the highest degree, and Tau showed limited change regardless of ABI. CONCLUSION Further studies are warranted to determine how plasma biomarkers may facilitate early detection of ABIs in V-A ECMO to assist timely clinical decision-making.
Collapse
Affiliation(s)
- Syed Ameen Ahmad
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shrey Kapoor
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siam Muquit
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Shivalika Khanduja
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy Ziai
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen D Everett
- Department of Pediatrics, Blalock-Taussig-Thomas Congenital Heart Center, Johns Hopkins University, Baltimore, MD, USA
| | - Glenn Whitman
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Tabet M, Custer C, Khan IR, Sanford E, Sharma J, Choe R, Singh S, Sirsi D, Olson DM, Morriss MC, Raman L, Busch DR. Neuromonitoring of Pediatric and Adult Extracorporeal Membrane Oxygenation Patients: The Importance of Continuous Bedside Tools in Driving Neuroprotective Clinical Care. ASAIO J 2024; 70:167-176. [PMID: 38051987 DOI: 10.1097/mat.0000000000002107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a form of temporary cardiopulmonary bypass for patients with acute respiratory or cardiac failure refractory to conventional therapy. Its usage has become increasingly widespread and while reported survival after ECMO has increased in the past 25 years, the incidence of neurological injury has not declined, leading to the pressing question of how to improve time-to-detection and diagnosis of neurological injury. The neurological status of patients on ECMO is clinically difficult to evaluate due to multiple factors including illness, sedation, and pharmacological paralysis. Thus, increasing attention has been focused on developing tools and techniques to measure and monitor the brain of ECMO patients to identify dynamic risk factors and monitor patients' neurophysiological state as a function in time. Such tools may guide neuroprotective interventions and thus prevent or mitigate brain injury. Current means to continuously monitor and prevent neurological injury in ECMO patients are rather limited; most techniques provide indirect or postinsult recognition of irreversible brain injury. This review will explore the indications, advantages, and disadvantages of standard-of-care, emerging, and investigational technologies for neurological monitoring on ECMO, focusing on bedside techniques that provide continuous assessment of neurological health.
Collapse
Affiliation(s)
- Margherita Tabet
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
| | - Chasity Custer
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Imad R Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Ethan Sanford
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Jayesh Sharma
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York
| | - Sumit Singh
- Department of Radiology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Deepa Sirsi
- Division of Pediatric Neurology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - DaiWai M Olson
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Craig Morriss
- Department of Radiology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Lakshmi Raman
- Department of Pediatrics, The University of Texas Southwestern medical center
| | - David R Busch
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Pandiyan P, Cvetkovic M, Antonini MV, Shappley RKH, Karmakar SA, Raman L. Clinical Guidelines for Routine Neuromonitoring in Neonatal and Pediatric Patients Supported on Extracorporeal Membrane Oxygenation. ASAIO J 2023; 69:895-900. [PMID: 37603797 DOI: 10.1097/mat.0000000000001896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
DISCLAIMER These guidelines for routine neuromonitoring in neonatal and pediatric patients supported on extracorporeal membrane oxygenation (ECMO) are intended for educational use to build the knowledge of physicians and other health professionals in assessing the conditions and managing the treatment of patients undergoing extracorporeal life support (ECLS)/ECMO and describe what are believed to be useful and safe practice for ECLS and ECMO but these are not necessarily consensus recommendations. The aim of clinical guidelines was to help clinicians to make informed decisions about their patients. However, adherence to a guideline does not guarantee a successful outcome. Healthcare professionals must make their own treatment decisions about care on a case-by-case basis, after consultation with their patients, using their clinical judgment, knowledge, and expertise. These guidelines do not take the place of physicians' and other health professionals' judgment in diagnosing and treatment of patients. These guidelines are not intended to and should not be interpreted as setting a standard of care or being deemed inclusive of all proper methods of care nor exclusive of other methods of care directed at obtaining the same results. The ultimate judgment must be made by the physician and other health professionals and the patient considering all the circumstances presented by the individual patient, and the known variability and biologic behavior of the clinical condition. These guidelines reflect the data at the time the guidelines were prepared; the results of subsequent studies or other information may cause revisions to the recommendations in these guidelines to be prudent to reflect new data, but ELSO is under no obligation to provide updates. In no event will ELSO be liable for any decision made or action taken in reliance upon the information provided through these guidelines.
Collapse
Affiliation(s)
- Poornima Pandiyan
- From the Department of Pediatrics, Division of Medical Critical Care, Boston Children's Hospital, Tufts University School of Medicine, Boston, Massachusetts
| | - Mirjana Cvetkovic
- Cardiac Critical Care Division, Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Velia Antonini
- Anesthesia and Intensive Care Unit, Bufalini Hospital - AUSL della Romagna, Cesena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Rebekah K H Shappley
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Swati A Karmakar
- Department of Pediatrics, Baylor College of Medicine, Neurology and Developmental Neuroscience Section, Texas Children's Hospital, Houston, Texas
| | - Lakshmi Raman
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Deng B, Ying J, Mu D. Subtypes and Mechanistic Advances of Extracorporeal Membrane Oxygenation-Related Acute Brain Injury. Brain Sci 2023; 13:1165. [PMID: 37626521 PMCID: PMC10452596 DOI: 10.3390/brainsci13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a frequently used mechanical cardiopulmonary support for rescuing critically ill patients for whom conventional medical therapies have failed. However, ECMO is associated with several complications, such as acute kidney injury, hemorrhage, thromboembolism, and acute brain injury (ABI). Among these, ABI, particularly intracranial hemorrhage (ICH) and infarction, is recognized as the primary cause of mortality during ECMO support. Furthermore, survivors often suffer significant long-term morbidities, including neurocognitive impairments, motor disturbances, and behavioral problems. This review provides a comprehensive overview of the different subtypes of ECMO-related ABI and the updated advance mechanisms, which could be helpful for the early diagnosis and potential neuromonitoring of ECMO-related ABI.
Collapse
Affiliation(s)
- Bixin Deng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China;
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China;
| |
Collapse
|
6
|
Chahine A, Chenouard A, Joram N, Berthomieu L, Du Pont-Thibodeau G, Leclere B, Liet JM, Maminirina P, Leclair-Visonneau L, Breinig S, Bourgoin P. Continuous Amplitude-Integrated Electroencephalography During Neonatal and Pediatric Extracorporeal Membrane Oxygenation. J Clin Neurophysiol 2023; 40:317-324. [PMID: 34387276 DOI: 10.1097/wnp.0000000000000890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Early prognostication of neurologic outcome in neonates and children supported with extra-corporeal membrane oxygenation (ECMO) is challenging. Amplitude-integrated EEG (aEEG) offers the advantages of continuous monitoring and 24-hours availability at the bedside for intensive care unit providers. The objective of this study was to describe the early electrophysiological background patterns of neonates and children undergoing ECMO and their association with neurologic outcomes. METHODS This was a retrospective review of neonates and children undergoing ECMO and monitored with aEEG. Amplitude-integrated EEG was summarized as an aEEG background score determined within the first 24 hours of ECMO and divided in 3-hour periods. Screening for electrical seizures was performed throughout the full ECMO duration. Neurologic outcome was defined by the Pediatric Cerebral Performance Category score at hospital discharge. RESULTS Seventy-three patients (median age 79 days [8-660], median weight 4.78 kg [3.24-10.02]) were included in the analysis. Thirty-two patients had a favorable neurologic outcome and 41 had an unfavorable neurologic outcome group at hospital discharge. A 24-hour aEEG background score >17 was associated with an unfavorable outcome with a sensitivity of 44%, a specificity of 97%, a positive predictive value of 95%, and a negative predictive value of 57%. In multivariate analysis, 24-hour aEEG background score was associated with unfavorable outcome (hazard ratio, 6.1; p = 0.001; 95% confidence interval, 2.31-16.24). The presence of seizures was not associated with neurologic outcome at hospital discharge. CONCLUSIONS Continuous aEEG provides accurate neurologic prognostication in neonates and children supported with ECMO. Early aEEG monitoring may help intensive care unit providers to guide clinical care and family counseling.
Collapse
Affiliation(s)
- Adela Chahine
- Pediatric Intensive Care Unit, University Hospital, Toulouse, France
| | - Alexis Chenouard
- Pediatric Intensive Care Unit, University Hospital, Nantes, France
| | - Nicolas Joram
- Pediatric Intensive Care Unit, University Hospital, Nantes, France
| | - Lionel Berthomieu
- Pediatric Intensive Care Unit, University Hospital, Toulouse, France
| | | | - Brice Leclere
- Department of Medical Evaluation and Epidemiology, Nantes University Hospital, Nantes, France
| | - Jean-Michel Liet
- Pediatric Intensive Care Unit, University Hospital, Nantes, France
| | | | | | - Sophie Breinig
- Pediatric Intensive Care Unit, University Hospital, Toulouse, France
| | - Pierre Bourgoin
- Pediatric Intensive Care Unit and Pediatric Cardiac Anesthesia, University Hospital, Nantes, France
| |
Collapse
|
7
|
Kocabiyik B, Gumus E, Abas BI, Anik A, Cevik O. Human wharton-jelly mesenchymal stromal cells reversed apoptosis and prevented multi-organ damage in a newborn model of experimental asphyxia. J OBSTET GYNAECOL 2023; 42:3568-3576. [PMID: 36638075 DOI: 10.1080/01443615.2022.2158318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, the effect of applying wharton jelly mesenchymal stromal cells (WJ-MSC) isolated from the human umbilical cord tissue on the neonatal mouse model caused experimental asphyxia in mice was investigated. WJ-MSC surface markers (CD44, CD90, CD105) were characterised by immunofluorescence staining, and pluripotency genes (Nanog, Oct-4, Sox-2) were characterised by qPCR. Blood, prefrontal cortex, cerebellum, hippocampus, lung, heart, kidney, and liver tissues were analysed twenty days after subcutaneously administered WJ-MSC. WJ-MSC administration significantly decreased serum TNF-α, NSE, GFAP, and IL-6 levels in the asphyxia mice. It was determined that WJ-MSC application in tissues accelerated cell regeneration and decreased oxidative stress. In conclusion, this study showed that multiorgan damage in asphyxia could be prevented by applying WJ-MSC at an early stage. Therefore, WJ-MSC application in infants with neonatal asphyxia in the clinic may be an innovative method in the future.
Collapse
Affiliation(s)
- Bilge Kocabiyik
- Department of Molecular Biotechnology, Graduate School of Health Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Erkan Gumus
- Department of Histology and Embryology, School of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Burcin Irem Abas
- Department of Medicinal Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Ayse Anik
- Division of Neonatology, Department of Pediatrics, School of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Ozge Cevik
- Department of Medicinal Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
8
|
Li R, Lee JK, Govindan RB, Graham EM, Everett AD, Perin J, Vezina G, Tekes A, Chen MW, Northington F, Parkinson C, O’Kane A, McGowan M, Krein C, Al-Shargabi T, Chang T, Massaro AN. Plasma Biomarkers of Evolving Encephalopathy and Brain Injury in Neonates with Hypoxic-Ischemic Encephalopathy. J Pediatr 2023; 252:146-153.e2. [PMID: 35944723 PMCID: PMC9828943 DOI: 10.1016/j.jpeds.2022.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The objective of the study was to evaluate the relationship between a panel of candidate plasma biomarkers and (1) death or severe brain injury on magnetic resonance imaging (MRI) and (2) dysfunctional cerebral pressure autoregulation as a measure of evolving encephalopathy. STUDY DESIGN Neonates with moderate-to-severe hypoxic-ischemic encephalopathy (HIE) at 2 level IV neonatal intensive care units were enrolled into this observational study. Patients were treated with therapeutic hypothermia (TH) and monitored with continuous blood pressure monitoring and near-infrared spectroscopy. Cerebral pressure autoregulation was measured by the hemoglobin volume phase (HVP) index; a higher HVP index indicates poorer autoregulation. Serial blood samples were collected during TH and assayed for Tau, glial fibrillary acidic protein, and neurogranin. MRIs were assessed using National Institutes of Child Health and Human Development scores. The relationships between the candidate biomarkers and (1) death or severe brain injury on MRI (defined as a National Institutes of Child Health and Human Development score of ≥ 2B) and (2) autoregulation were evaluated using bivariate and adjusted logistic regression models. RESULTS Sixty-two patients were included. Elevated Tau levels on days 2-3 of TH were associated with death or severe injury on MRI (aOR: 1.06, 95% CI: 1.03-1.09; aOR: 1.04, 95% CI: 1.01-1.06, respectively). Higher Tau was also associated with poorer autoregulation (higher HVP index) on the same day (P = .022). CONCLUSIONS Elevated plasma levels of Tau are associated with death or severe brain injury by MRI and dysfunctional cerebral autoregulation in neonates with HIE. Larger-scale validation of Tau as a biomarker of brain injury in neonates with HIE is warranted.
Collapse
Affiliation(s)
- Ruoying Li
- Department of Neurology, Children’s National Hospital, Washington, DC
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rathinaswamy B. Govindan
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC;,Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC
| | - Ernest M. Graham
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen D. Everett
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jamie Perin
- Department of Pediatrics, Center for Child and Community Health Research, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gilbert Vezina
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC;,Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
| | - Aylin Tekes
- Department of Radiology, Division of Pediatric Radiology and Pediatric Neuroradiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - May W. Chen
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frances Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Charlamaine Parkinson
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra O’Kane
- Department of Neurology, Children’s National Hospital, Washington, DC
| | - Meaghan McGowan
- Department of Neurology, Children’s National Hospital, Washington, DC
| | - Colleen Krein
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC
| | - Tareq Al-Shargabi
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC
| | - Taeun Chang
- Department of Neurology, Children’s National Hospital, Washington, DC;,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| | - An N. Massaro
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC;,Division of Neonatology, Children’s National Hospital, Washington, DC
| |
Collapse
|
9
|
Luo W, Yang Z, Zhang W, Zhou D, Guo X, Wang S, He F, Wang Y. Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury. Front Mol Neurosci 2022; 14:785938. [PMID: 35145378 PMCID: PMC8821658 DOI: 10.3389/fnmol.2021.785938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. Methods Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein–protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). Results In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. Conclusion Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Zhou
- Periodical Office, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohang Guo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shunshun Wang
- Postpartum Health Care Department, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Feng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
10
|
McGowan MM, O'Kane AC, Vezina G, Chang T, Bendush N, Glass P, Gai J, Bost J, Everett AD, Massaro AN. Serial plasma biomarkers of brain injury in infants with neonatal encephalopathy treated with therapeutic hypothermia. Pediatr Res 2021; 90:1228-1234. [PMID: 33654280 PMCID: PMC8483583 DOI: 10.1038/s41390-021-01405-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal encephalopathy (NE) is a major cause of long-term neurodevelopmental disability in neonates. We evaluated the ability of serially measured biomarkers of brain injury to predict adverse neurological outcomes in this population. METHODS Circulating brain injury biomarkers including BDNF, IL-6, IL-8, IL-10, VEGF, Tau, GFAP, and NRGN were measured at 0, 12, 24, 48, 72, and 96 h of cooling from 103 infants with NE undergoing TH. The biomarkers' individual and combinative ability to predict death or severe brain injury and adverse neurodevelopmental outcomes beyond 1 year of age was assessed. RESULTS Early measurements of inflammatory cytokines IL-6, 8, and 10 within 24 HOL (AUC = 0.826) and late measurements of Tau from 72 to 96 HOL (AUC = 0.883, OR 4.37) were accurate in predicting severe brain injury seen on MRI. Late measurements of Tau were predictive of adverse neurodevelopmental outcomes (AUC = 0.81, OR 2.59). CONCLUSIONS Tau was consistently a predictive marker for brain injury in neonates with NE. However, in the first 24 HOL, IL-6, 8, and 10 in combination were most predictive of death or severe brain injury. The results of this study support the use of a serial biomarker panel to assess brain injury over the time course of disease in NE. IMPACT While recent studies have evaluated candidate brain injury biomarkers, no biomarker is in current clinical use. This study supports the use of a serial biomarker panel for ongoing assessment of brain injury neonates with NE. In combination, IL6, IL8, and IL10 in the first 24 h of cooling were more predictive of brain injury by MRI than each cytokine alone. Individually, Tau was overall most consistently predictive of adverse neurological outcomes, particularly when measured at or after rewarming.
Collapse
Affiliation(s)
| | | | - Gilbert Vezina
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Nicole Bendush
- Psychology and Behavioral Health, Children's National Hospital, Washington, DC, USA
| | - Penny Glass
- The George Washington University School of Medicine, Washington, DC, USA
- Psychology and Behavioral Health, Children's National Hospital, Washington, DC, USA
| | - Jiaxiang Gai
- Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - James Bost
- The George Washington University School of Medicine, Washington, DC, USA
- Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Allen D Everett
- Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - An N Massaro
- The George Washington University School of Medicine, Washington, DC, USA.
- Neonatology, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
11
|
Raghu VK, Horvat CM, Kochanek PM, Fink EL, Clark RSB, Benos PV, Au AK. Neurological Complications Acquired During Pediatric Critical Illness: Exploratory "Mixed Graphical Modeling" Analysis Using Serum Biomarker Levels. Pediatr Crit Care Med 2021; 22:906-914. [PMID: 34054117 PMCID: PMC8490289 DOI: 10.1097/pcc.0000000000002776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Neurologic complications, consisting of the acute development of a neurologic disorder, that is, not present at admission but develops during the course of illness, can be difficult to detect in the PICU due to sedation, neuromuscular blockade, and young age. We evaluated the direct relationships of serum biomarkers and clinical variables to the development of neurologic complications. Analysis was performed using mixed graphical models, a machine learning approach that allows inference of cause-effect associations from continuous and discrete data. DESIGN Secondary analysis of a previous prospective observational study. SETTING PICU, single quaternary-care center. PATIENTS Individuals admitted to the PICU, younger than18 years old, with intravascular access via an indwelling catheter. INTERVENTIONS None. MEASUREMENTS About 101 patients were included in this analysis. Serum (days 1-7) was analyzed for glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and alpha-II spectrin breakdown product 150 utilizing enzyme-linked immunosorbent assays. Serum levels of neuron-specific enolase, myelin basic protein, and S100 calcium binding protein B used in these models were reported previously. Demographic data, use of selected clinical therapies, lengths of stay, and ancillary neurologic testing (head CT, brain MRI, and electroencephalogram) results were recorded. The Mixed Graphical Model-Fast-Causal Inference-Maximum algorithm was applied to the dataset. MAIN RESULTS About 13 of 101 patients developed a neurologic complication during their critical illness. The mixed graphical model identified peak levels of the neuronal biomarker neuron-specific enolase and ubiquitin C-terminal hydrolase-L1, and the astrocyte biomarker glial fibrillary acidic protein to be the direct causal determinants for the development of a neurologic complication; in contrast, clinical variables including age, sex, length of stay, and primary neurologic diagnosis were not direct causal determinants. CONCLUSIONS Graphical models that include biomarkers in addition to clinical data are promising methods to evaluate direct relationships in the development of neurologic complications in critically ill children. Future work is required to validate and refine these models further, to determine if they can be used to predict which patients are at risk for/or with early neurologic complications.
Collapse
Affiliation(s)
- Vineet K. Raghu
- Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA
| | - Christopher M. Horvat
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Ericka L. Fink
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Robert S. B. Clark
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Panayiotis V. Benos
- Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh PA
| | - Alicia K. Au
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| |
Collapse
|
12
|
Wilcox C, Choi CW, Cho SM. Brain injury in extracorporeal cardiopulmonary resuscitation: translational to clinical research. JOURNAL OF NEUROCRITICAL CARE 2021. [DOI: 10.18700/jnc.210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The addition of extracorporeal membrane oxygenation (ECMO) to conventional cardiopulmonary resuscitation (CPR), termed extracorporeal cardiopulmonary resuscitation (ECPR), has significantly improved survival in selected patient populations. Despite this advancement, significant neurological impairment persists in approximately half of survivors. ECPR represents a potential advancement for patients who experience refractory cardiac arrest (CA) due to a reversible etiology and do not regain spontaneous circulation. Important risk factors for acute brain injury (ABI) in ECPR include lack of perfusion, reperfusion, and altered cerebral autoregulation. The initial hypoxic-ischemic injury caused by no-flow and low-flow states after CA and during CPR is compounded by reperfusion, hyperoxia during ECMO support, and nonpulsatile blood flow. Additionally, ECPR patients are at risk for Harlequin syndrome with peripheral cannulation, which can lead to preferential perfusion of cerebral vessels with deoxygenated blood. Lastly, the oxygenator membrane is prothrombotic and requires systemic anticoagulation. The two competing phenomena result in thrombus formation, hemolysis, and thrombocytopenia, increasing the risk of ischemic and hemorrhagic ABI. In addition to clinical studies, we assessed available ECPR animal models to identify the mechanisms underlying ABI at the cellular level. Standardized multimodal neurological monitoring may facilitate early detection of and intervention for ABI. With the increasing use of ECPR, it is critical to understand the pathophysiology of ABI, its prevention, and the management strategies for improving the outcomes of ECPR. Translational and clinical research focusing on acute ABI immediately after ECMO cannulation and its short- and long-term neurological outcomes are warranted.
Collapse
|
13
|
Perioperative Glial Fibrillary Acidic Protein Is Associated with Long-Term Neurodevelopment Outcome of Infants with Congenital Heart Disease. CHILDREN-BASEL 2021; 8:children8080655. [PMID: 34438546 PMCID: PMC8391328 DOI: 10.3390/children8080655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Background: Brain injury, impaired brain maturation, and long-term neurodevelopmental disorders are common in infants with congenital heart diseases (CHD). We aimed to assess whether plasma glial fibrillary acidic protein (GFAP) can predict neurodevelopmental anomalies in CHD infants operated on cardiopulmonary bypass (CPB). Methods: We measured plasma GFAP in 38 infants at multiple CPB phases. Cognitive, neuropsychological, and psychopathological functioning were assessed 5.7 ± 2.2 years after surgery. We identified an impaired global neurodevelopmental index (NDI) when at least two domains were abnormal. The relationships between NDI, GFAP, and clinical variables were explored with non-supervised feature selection methods and modeled with a nested non-linear logistic regression. Results: Intelligence quotient scores were within the normal range in 84% of children, whereas 58% showed an abnormal NDI, with the greatest impairments in the psychopathological area. The plasma GFAP peak was 0.95 (0.44–1.57) ng/mL, and it was correlated with age, weight, duration of surgery phases, and CPB minimum temperature. In the regression model, the GFAP peak was associated with an impaired NDI with a possible flexible point toward NDI impairment at 0.49 ng/mL, keeping constant ICU stay, CPB duration, CHD anatomy, weight, and CPB minimum temperature. Conclusion: GFAP is a promising early marker of abnormal long-term neuropsychological development.
Collapse
|
14
|
Shakil S, Masjoan Juncos JX, Mariappan N, Zafar I, Amudhan A, Amudhan A, Aishah D, Siddiqui S, Manzoor S, Santana CM, Rumbeiha WK, Salim S, Ahmad A, Ahmad S. Behavioral and Neuronal Effects of Inhaled Bromine Gas: Oxidative Brain Stem Damage. Int J Mol Sci 2021; 22:6316. [PMID: 34204780 PMCID: PMC8231550 DOI: 10.3390/ijms22126316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.
Collapse
Affiliation(s)
- Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Apoorva Amudhan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Archita Amudhan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Duha Aishah
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Simmone Siddiqui
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Shajer Manzoor
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Cristina M. Santana
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Wilson K. Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77004, USA;
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| |
Collapse
|
15
|
Zyblewski SC, Martin RH, Shipes VB, Hamlin-Smith K, Atz AM, Bradley SM, Kavarana MN, Mahle WT, Everett AD, Graham EM. Intraoperative methylprednisolone and neurodevelopmental outcomes in infants after cardiac surgery. Ann Thorac Surg 2021; 113:2079-2084. [PMID: 33864754 DOI: 10.1016/j.athoracsur.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurodevelopmental impairment is a significant consequence for survivors of surgery for critical congenital heart disease. This study sought to determine if intraoperative methylprednisolone during neonatal cardiac surgery is associated with neurodevelopmental outcomes at 12 months of age and to identify early prognostic variables associated with neurodevelopmental outcomes. METHODS A planned secondary analysis of a two-center, double-blind, randomized, placebo-controlled trial of intraoperative methylprednisolone in neonates undergoing cardiac surgery was performed. A brain injury biomarker was measured perioperatively. Bayley Scales of Infant and Toddler Development-III (BSID-III) were performed at 12 months of age. Two sample t-tests and generalized linear models were used. RESULTS There were 129 participants (n=61 methylprednisolone, n=68 placebo). There were no significant differences in BSID-III scores and brain injury biomarker levels between the two treatment groups. Participants who underwent a palliative (vs. corrective) procedure had lower mean BSID-III cognitive (101+15 vs. 106+14, p=0.03) and motor scores (85+18 vs. 94+16, p<0.01). Longer ventilation time was associated with lower motor scores. Longer cardiac intensive care unit (CICU) stay was associated with lower cognitive, language, and motor scores. Cardiopulmonary bypass time, aortic cross clamp time, and deep hypothermic circulatory arrest were not associated with BSID-III scores. CONCLUSIONS Neurodevelopmental outcomes were not associated with intraoperative methylprednisolone or intraoperative variables. Participants who underwent a neonatal palliative (vs. corrective) procedure had longer CICU stays and worse neurodevelopmental outcomes at 1 year. This work suggests that interventions focused solely on the operative period may not be associated with a long-term neurodevelopmental benefit.
Collapse
Affiliation(s)
- Sinai C Zyblewski
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC.
| | - Reneé H Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Virginia B Shipes
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Kasey Hamlin-Smith
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Andrew M Atz
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Scott M Bradley
- Section of Pediatric Cardiac Surgery, Medical University of South Carolina, Charleston, SC
| | - Minoo N Kavarana
- Section of Pediatric Cardiac Surgery, Medical University of South Carolina, Charleston, SC
| | - William T Mahle
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA
| | - Allen D Everett
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD
| | - Eric M Graham
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
16
|
Chiarini G, Cho SM, Whitman G, Rasulo F, Lorusso R. Brain Injury in Extracorporeal Membrane Oxygenation: A Multidisciplinary Approach. Semin Neurol 2021; 41:422-436. [PMID: 33851392 DOI: 10.1055/s-0041-1726284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) represents an established technique to provide temporary cardiac and/or pulmonary support. ECMO, in veno-venous, veno-arterial or in extracorporeal carbon dioxide removal modality, is associated with a high rate of brain injuries. These complications have been reported in 7 to 15% of adults and 20% of neonates, and are associated with poor survival. Thromboembolic events, loss of cerebral autoregulation, alteration of the blood-brain barrier, and hemorrhage related to anticoagulation represent the main causes of severe brain injury during ECMO. The most frequent forms of acute neurological injuries in ECMO patients are intracranial hemorrhage (2-21%), ischemic stroke (2-10%), seizures (2-6%), and hypoxic-ischemic brain injury; brain death may also occur in this population. Other frequent complications are infarction (1-8%) and cerebral edema (2-10%), as well as neuropsychological and psychiatric sequelae, including posttraumatic stress disorder.
Collapse
Affiliation(s)
- Giovanni Chiarini
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Division of Anesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University, Affiliated Hospital of Brescia, Brescia, Italy
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Glenn Whitman
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank Rasulo
- Division of Anesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University, Affiliated Hospital of Brescia, Brescia, Italy
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
17
|
Sjöbom U, Hellström W, Löfqvist C, Nilsson AK, Holmström G, Pupp IH, Ley D, Blennow K, Zetterberg H, Sävman K, Hellström A. Analysis of Brain Injury Biomarker Neurofilament Light and Neurodevelopmental Outcomes and Retinopathy of Prematurity Among Preterm Infants. JAMA Netw Open 2021; 4:e214138. [PMID: 33797551 PMCID: PMC8019094 DOI: 10.1001/jamanetworkopen.2021.4138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Circulating levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) are important in the course of brain injury in adults, but longitudinal postnatal circulating levels in preterm infants have not been investigated. OBJECTIVES To examine postnatal longitudinal serum levels of NfL and GFAP in preterm infants during the first 15 weeks of life and to explore possible associations between these biomarkers, neonatal morbidities, and neurodevelopmental outcomes at 2 years. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from 3 clinical studies, including 221 infants born before 32 weeks gestational age (GA) from 1999 to 2015; neurodevelopmental outcomes were evaluated in 120 infants. Data were collected at tertiary-level neonatal intensive care units in Gothenburg, Lund, and Uppsala, Sweden. Data analysis was conducted from January to October 2020. EXPOSURE Preterm birth. MAIN OUTCOMES AND MEASURES Serum NfL and GFAP levels, retinopathy of prematurity (ROP), intraventricular hemorrhage, and Bayley Scales of Infant Development II and III at 2 years of age, analyzed by multivariate logistic regression measured by odds ratio (OR), and receiver operating characteristic curve (ROC) analysis. Area under the curve (AUC) was also measured. RESULTS The 221 included infants (108 [48.9%] girls) had a mean (SD) GA at birth of 26.5 (2.1) weeks and a mean (SD) birth weight of 896 (301) grams. NfL levels increased after birth, remaining high during the first 4 weeks of life before declining to continuously low levels by postnatal age 12 weeks (median [range] NfL level at birth: 58.8 [11.5-1371.3] ng/L; 1 wk: 83.5 [14.1-952.2] ng/L; 4 wk: 24.4 [7.0-306.0] ng/L; 12 wk: 9.1 [3.7-57.0] ng/L). In a binary logistic regression model adjusted for GA at birth, birth weight SD score, Apgar status at 5 minutes, and mode of delivery, the NfL AUC at weeks 2 to 4 was independently associated with any ROP (OR, 4.79; 95% CI, 2.17-10.56; P < .001). In an exploratory analysis adjusted for GA at birth and sex, NfL AUC at weeks 2 to 4 was independently associated with unfavorable neurodevelopmental outcomes at 2 years corrected age (OR per 10-unit NfL increase, 1.07; 95% CI, 1.02-1.13; P = .01). Longitudinal GFAP levels were not significantly associated with neonatal morbidity or neurodevelopmental outcome. CONCLUSIONS AND RELEVANCE In this study, high NfL levels during the first weeks of life were associated with ROP and poor neurodevelopmental outcomes at 2 years of age. Associations between NfL and later neurovascular development in infants born prematurely should be investigated further.
Collapse
Affiliation(s)
- Ulrika Sjöbom
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Holmström
- Unit of Ophthalmology, Department of Neuroscience, University Hospital, Uppsala, Sweden
| | - Ingrid Hansen Pupp
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College of London Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at University College of London, London, United Kingdom
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Kim EH, Jang YE, Ji SH, Lee JH, Cho SA, Kim JT, Yoon H, Kim HS. Changes in Plasma Glial Fibrillary Acidic Protein in Children Receiving Sevoflurane Anesthesia: A Preliminary Randomized Trial. J Clin Med 2021; 10:662. [PMID: 33572213 PMCID: PMC7915437 DOI: 10.3390/jcm10040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated changes in plasma glial fibrillary acidic protein concentration during sevoflurane anesthesia induction in children < 3 years old and determined the effect of co-administering dexmedetomidine. This preliminary randomized trial included 60 pediatric patients who received sevoflurane anesthesia for >3 h. Patients were assigned to dexmedetomidine or control groups at a 1:1 ratio. The primary outcome was changes in plasma glial fibrillary acidic protein concentration of dexmedetomidine and control groups over time. Fifty-five patients were included in the final analysis. The median (interquartile range (IQR)) of the plasma glial fibrillary acidic protein level was 387.7 (298.9-510.8) pg·mL-1 immediately after anesthetic induction, 302.6 (250.9-412.5) pg·mL-1 at 30 min, and 321.9 (233.8-576.2) pg·mL-1 at 180 min after the first sample. These values did not change over time (p = 0.759). However, plasma glial fibrillary acidic protein increased after 180 min of infusion of dexmedetomidine compared with values at 30 min infusion (p = 0.04, mean difference and 95% confidence interval of 221.6 and 2.2 to 441.0 pg·mL-1). In conclusion, three hours of sevoflurane anesthesia in pediatric patients < 3 years old did not provoke neuronal injury assessed by the plasma biomarker. Further studies regarding the effect of prolonged dexmedetomidine infusion on anesthetic neuronal injury are required.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| | - Young-Eun Jang
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| | - Sang-Hwan Ji
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| | - Ji-Hyun Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| | - Sung-Ae Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| | - Jin-Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| | - Hyunyee Yoon
- Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Hee-Soo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (E.-H.K.); (Y.-E.J.); (S.-H.J.); (J.-H.L.); (S.-A.C.); (J.-T.K.)
| |
Collapse
|
19
|
Schleif W, Hamblin F, Everett AD, Graham EM, Cross J, Fernald C, Follett R, Lopes B, Martinez D, Monforte H, Ross-Wilkinson J, Sellers A, Brooks S. Tiny Bodies, Big Needs: Prospective Biobanking of Neonatal Clinical Remnant Samples. Biopreserv Biobank 2021; 19:106-110. [PMID: 33481645 DOI: 10.1089/bio.2020.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repurposing biological samples collected for required diagnostic purposes into suitable biobanking projects is a particularly useful method for enabling research in vulnerable populations. This approach is especially appropriate for the neonate in the neonatal intensive care unit (NICU), where blood volume reductions can quickly increase beyond minimal risk for adverse events, such as iatrogenic anemia, and proxy consent provided by parents or guardians is required. The method described in this study provides a framework to prospectively collect and store blood-derived clinical samples after all clinical and regulatory requirements are fulfilled. The consent approach incorporated a 30-day window to allow parents and guardians ample consideration time with follow-up involvement with NICU embedded study team members. The study enrolled 875 participants over a 3-year period. This established a critically needed biobank to support investigator-initiated research with explicit study aims requiring samples at defined day of life frequencies within the NICU and created a normative control reference bank for case comparisons for premature and full-term neonates with brain injury.
Collapse
Affiliation(s)
- William Schleif
- Program in Pediatric Biospecimen Science, Johns Hopkins All Children's Institute for Clinical and Translational Research, St. Petersburg, Florida, USA.,Johns Hopkins All Children's Pediatric Biorepository, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA.,Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Frances Hamblin
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Allen D Everett
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ernest M Graham
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Cross
- Johns Hopkins All Children's Pediatric Biorepository, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Christy Fernald
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Robert Follett
- Johns Hopkins All Children's Pediatric Biorepository, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Bryan Lopes
- Johns Hopkins All Children's Pediatric Biorepository, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Denise Martinez
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Hector Monforte
- Program in Pediatric Biospecimen Science, Johns Hopkins All Children's Institute for Clinical and Translational Research, St. Petersburg, Florida, USA.,Johns Hopkins All Children's Pediatric Biorepository, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA.,Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Jennifer Ross-Wilkinson
- Johns Hopkins All Children's Pediatric Biorepository, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Austin Sellers
- Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Sandra Brooks
- Johns Hopkins All Children's Maternal, Fetal, and Neonatal Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA.,Division of Neonatology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| |
Collapse
|
20
|
DeKosky ST, Kochanek PM, Valadka AB, Clark RS, Chou SHY, Au AK, Horvat C, Jha RM, Mannix R, Wisniewski SR, Wintermark M, Rowell SE, Welch RD, Lewis L, House S, Tanzi RE, Smith DR, Vittor AY, Denslow ND, Davis MD, Glushakova OY, Hayes RL. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J Neurotrauma 2021; 38:1-43. [PMID: 33115334 PMCID: PMC7757533 DOI: 10.1089/neu.2020.7332] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry H.-Y. Chou
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Division of Pediatric Critical Care, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Mannix
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Susan E. Rowell
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit Receiving Hospital/University Health Center, Detroit, Michigan, USA
| | - Lawrence Lewis
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, McCance Center for Brain Health, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Department of Neurology (Research), Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Darci R. Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, Maryland, USA
| | - Amy Y. Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Nancy D. Denslow
- Departments of Physiological Sciences and Biochemistry and Molecular Biology, University of Florida, Center for Environmental and Human Toxicology, Gainesville, Florida
| | - Michael D. Davis
- Department of Pediatrics, Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
21
|
Dietrick B, Molloy E, Massaro AN, Strickland T, Zhu J, Slevin M, Donoghue V, Sweetman D, Kelly L, O’Dea M, McGowan M, Vezina G, Glass P, Vaidya D, Brooks S, Northington F, Everett AD. Plasma and Cerebrospinal Fluid Candidate Biomarkers of Neonatal Encephalopathy Severity and Neurodevelopmental Outcomes. J Pediatr 2020; 226:71-79.e5. [PMID: 32610169 PMCID: PMC10762645 DOI: 10.1016/j.jpeds.2020.06.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To identify candidate biomarkers in both plasma and cerebrospinal fluid (CSF) that are associated with neonatal encephalopathy severity measured by encephalopathy grade, seizures, brain injury by magnetic resonance imaging (MRI), and neurodevelopmental outcomes at 15-30 months. STUDY DESIGN A retrospective cohort study of plasma (N = 155, day of life 0-1) and CSF (n = 30, day of life 0-7) from neonates with neonatal encephalopathy and healthy neonates born at term (N = 30, ≥36 weeks of gestation) was conducted. We measured central nervous system necrosis (glial fibrillary acidic protein [GFAP], neurogranin [NRGN], tau), inflammatory (interleukin [IL]-6, IL-8, IL-10), and trophic (brain-derived neurotrophic factor [BDNF], vascular endothelial growth factor) proteins. Clinical outcomes were Sarnat scores of encephalopathy, seizures, MRI scores, and Bayley Scales of Infant and Toddler Development III at 15-30 months. RESULTS Plasma NRGN, tau, IL-6, IL-8, and IL-10 were greater, whereas BDNF and vascular endothelial growth factor were lower in patients with neonatal encephalopathy vs controls. In plasma, tau, GFAP, and NRGN were directly and BDNF inversely associated with encephalopathy grade. IL-6 was inversely related to seizures. Tau was directly related to MRI abnormalities. Tau was inversely associated with Bayley Scales of Infant and Toddler Development III cognitive and motor outcomes. In CSF, NRGN was inversely associated with cognitive, motor, and language measures. GFAP, IL-6, and IL-10 were inversely related to cognitive and motor outcomes. IL-8 was inversely related to motor outcomes. CSF candidate biomarkers showed no significant relationships with encephalopathy grade, seizures, or MRI abnormalities. CONCLUSIONS Plasma candidate biomarkers predicted encephalopathy severity, seizures, MRI abnormalities, and neurodevelopmental outcomes at 15-30 months.
Collapse
Affiliation(s)
- Barbara Dietrick
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eleanor Molloy
- Paediatrics, Trinity College, the University of Dublin & Coombe Women and Infants University Hospital, Dublin, Ireland
| | | | - Tammy Strickland
- Paediatrics, Trinity College, the University of Dublin & Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Jie Zhu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | - Lynne Kelly
- Paediatrics, Trinity College, the University of Dublin & Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Mary O’Dea
- Paediatrics, Trinity College, the University of Dublin & Coombe Women and Infants University Hospital, Dublin, Ireland
| | | | | | - Penny Glass
- Children’s National Health Systems, Washington, D.C
| | - Dhananjay Vaidya
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandra Brooks
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Frances Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Allen D. Everett
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Abstract
Neurologic injury is a known and feared complication of extracorporeal membrane oxygenation (ECMO). Neurologic biomarkers may have a role in assisting in early identification of such. Axonal biomarker tau has not been investigated in the pediatric ECMO population. The objective of this study is to evaluate plasma levels of tau in pediatric patients supported with ECMO. Eighteen patients requiring ECMO support in a quaternary pediatric intensive care unit at a university-affiliated children's hospital from October 2015 to February 2017 were enrolled. Patients undergoing extracorporeal cardiopulmonary resuscitation or recent history of bypass were excluded. Plasma tau was measured using enzyme-linked immunosorbent assay. Neuroimaging was reviewed for acute neurologic injury, and tau levels were analyzed to assess for correlation. Tau was significantly higher in ECMO patients than in control subjects. Sixty-one percent of subjects had evidence of acute brain injury on neuroimaging, but tau level did not correlate with injury. Subjects with multifocal injury all experienced infarction and had significantly higher tau levels on ECMO day 3 than patients with isolated injury. In addition, peak tau levels of neuro-injured subjects were compared with controls and noninjured ECMO subjects using receiver operating curve analysis. This study demonstrates preliminary evidence of axonal injury in pediatric ECMO patients.
Collapse
|
23
|
Neurological Monitoring and Complications of Pediatric Extracorporeal Membrane Oxygenation Support. Pediatr Neurol 2020; 108:31-39. [PMID: 32299748 PMCID: PMC7698354 DOI: 10.1016/j.pediatrneurol.2020.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Extracorporeal membrane oxygenation is extracorporeal life support for life-threatening cardiopulmonary failure. Since its introduction, the use of extracorporeal membrane oxygenation has expanded to patients with more complex comorbidities without change in patient mortality rates. Although many patients survive, significant neurological complications like seizures, ischemic strokes, and intracranial hemorrhage can occur during extracorporeal membrane oxygenation care. The risks of these complications often add to the complexity of decision-making surrounding extracorporeal membrane oxygenation support. In this review, we discuss the pathophysiology and incidence of neurological complications in children supported on extracorporeal membrane oxygenation, factors influencing the incidence of these complications, commonly used neurological monitoring modalities, and outcomes for this complex patient population. We discuss the current literature on the use of electroencephalography for both seizure detection and monitoring of background electroencephalographic changes, in addition to the use of less commonly used imaging modalities like transcranial Doppler. We summarize the knowledge gaps and the lack of clinical consensus guidelines for managing these potentially life-changing neurological complications. Finally, we discuss future work to further understand the pathophysiology of extracorporeal membrane oxygenation-related neurological complications.
Collapse
|
24
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|
25
|
Parsons M, Greenberg J, Parikh C, Brown J, Parker D, Zhu J, Vricella L, Everett AD. Post-operative acute kidney injury is associated with a biomarker of acute brain injury after paediatric cardiac surgery. Cardiol Young 2020; 30:505-510. [PMID: 32223775 DOI: 10.1017/s1047951120000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Children with CHD who undergo cardiopulmonary bypass are at an increased risk of acute kidney injury. This study evaluated the association of end-organ specific injury plasma biomarkers for brain: glial fibrillary acidic protein and heart: Galectin 3, soluble suppression of tumorgenicity 2, and N-terminal pro b-type natriuretic peptide with acute kidney injury in children undergoing cardiopulmonary bypass. MATERIALS AND METHODS We enrolled consecutive children undergoing cardiac surgery with cardiopulmonary bypass. Blood samples were collected pre-bypass in the operating room and in the immediate post-operative period. Acute kidney injury was defined as a rise of serum creatinine ≥50% from pre-operative baseline within 7 days after surgery. RESULTS Overall, 162 children (mean age 4.05 years, sd 5.28 years) were enrolled. Post-operative acute kidney injury developed in 55 (34%) children. Post-operative plasma glial fibrillary acidic protein levels were significantly higher in patients with acute kidney injury (median 0.154 (inter-quartile range 0.059-0.31) ng/ml) compared to those without acute kidney injury (median 0.056 (inter-quartile range 0.001-0.125) ng/ml) (p = 0.043). After adjustment for age, weight, and The Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery category, each natural log increase in post-operative glial fibrillary acidic protein was significantly associated with a higher risk for subsequent acute kidney injury (adjusted odds ratio glial fibrillary acidic protein 1.25; 95% confidence interval 1.01-1.59). Pre/post-operative levels of galectin 3, soluble suppression of tumorgenicity 2, and N-terminal pro b-type natriuretic peptide did not significantly differ between patients with and without acute kidney injury. CONCLUSIONS Higher plasma glial fibrillary acidic protein levels measured in the immediate post-operative period were independently associated with subsequent acute kidney injury in children after cardiopulmonary bypass. Elevated glial fibrillary acidic protein likely reflects intraoperative brain injury which may occur in the context of acute kidney injury-associated end-organ dysfunction.
Collapse
Affiliation(s)
- Michael Parsons
- Department of Pediatrics, The Helen B. Taussig Congenital Heart Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Greenberg
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Chirag Parikh
- Department of Pediatrics, The Helen B. Taussig Congenital Heart Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremiah Brown
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Devin Parker
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Jie Zhu
- Department of Pediatrics, The Helen B. Taussig Congenital Heart Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luca Vricella
- Department of Pediatric Cardiac Surgery, University of Chicago School of Medicine, Chicago, IL, USA
| | - Allen D Everett
- Department of Pediatrics, The Helen B. Taussig Congenital Heart Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Kwak J, Majewski MB, Jellish WS. Extracorporeal Membrane Oxygenation: The New Jack-of-All-Trades? J Cardiothorac Vasc Anesth 2020; 34:192-207. [DOI: 10.1053/j.jvca.2019.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 11/11/2022]
|
27
|
Agarwal S, Morris N, Der-Nigoghossian C, May T, Brodie D. The Influence of Therapeutics on Prognostication After Cardiac Arrest. Curr Treat Options Neurol 2019; 21:60. [PMID: 31768661 DOI: 10.1007/s11940-019-0602-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight the influence of therapeutic maneuvers on neuro-prognostication measures administered to comatose survivors of cardiac arrest. We focus on the effect of sedation regimens in the setting of targeted temperature management (TTM), one of the principle interventions known to improve neurological recovery after cardiac arrest. Further, we discuss the critical need for novel markers, as well as refinement of existing markers, among patients receiving extracorporeal membrane oxygenation (ECMO) in the setting of failed conventional resuscitation, known as extracorporeal cardiopulmonary resuscitation (ECPR). RECENT FINDINGS Automated pupillometry may have some advantage over standard pupillary examination for prognostication following TTM, sedation, or the use of ECMO after cardiac arrest. New serum biomarkers such as Neurofilament light chain have shown good predictive abilities and need further validation in these populations. There is a high-level uncertainty in brain death declaration protocols particularly related to apnea testing and appropriate ancillary tests in patients receiving ECMO. Both sedation and TTM alone and in combination have been shown to affect prognostic markers to varying degrees. The optimal approach to analog-sedation is unknown, and requires further study. Moreover, validation of known prognostic markers, as well as brain death declaration processes in patients receiving ECMO is warranted. Data on the effects of TTM, sedation, and ECMO on biomarkers (e.g., neuron-specific enolase) and electrophysiology measures (e.g., somatosensory-evoked potentials) is sparse. The best approach may be one customized to the individual patient, a precision-medicine approach.
Collapse
Affiliation(s)
- Sachin Agarwal
- Division of Neurocritical Care and Hospitalist Neurology, Department of Neurology, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA.
| | - Nicholas Morris
- Department of Neurology, Program in Trauma, University of Maryland Medical Center, Baltimore, MD, USA
| | - Caroline Der-Nigoghossian
- Clinical Pharmacy, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| | - Teresa May
- Division of Pulmonary and Critical Care Medicine, Maine Medical Center, Portland, ME, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Biomarkers improve prediction of 30-day unplanned readmission or mortality after paediatric congenital heart surgery. Cardiol Young 2019; 29:1051-1056. [PMID: 31290383 PMCID: PMC6711799 DOI: 10.1017/s1047951119001471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate the association between novel pre- and post-operative biomarker levels and 30-day unplanned readmission or mortality after paediatric congenital heart surgery. METHODS Children aged 18 years or younger undergoing congenital heart surgery (n = 162) at Johns Hopkins Hospital from 2010 to 2014 were enrolled in the prospective cohort. Collected novel pre- and post-operative biomarkers include soluble suppression of tumorgenicity 2, galectin-3, N-terminal prohormone of brain natriuretic peptide, and glial fibrillary acidic protein. A model based on clinical variables from the Society of Thoracic Surgery database was developed and evaluated against two augmented models. RESULTS Unplanned readmission or mortality within 30 days of cardiac surgery occurred among 21 (13%) children. The clinical model augmented with pre-operative biomarkers demonstrated a statistically significant improvement over the clinical model alone with a receiver-operating characteristics curve of 0.754 (95% confidence interval: 0.65-0.86) compared to 0.617 (95% confidence interval: 0.47-0.76; p-value: 0.012). The clinical model augmented with pre- and post-operative biomarkers demonstrated a significant improvement over the clinical model alone, with a receiver-operating characteristics curve of 0.802 (95% confidence interval: 0.72-0.89; p-value: 0.003). CONCLUSIONS Novel biomarkers add significant predictive value when assessing the likelihood of unplanned readmission or mortality after paediatric congenital heart surgery. Further exploration of the utility of these novel biomarkers during the pre- or post-operative period to identify early risk of mortality or readmission will aid in determining the clinical utility and application of these biomarkers into routine risk assessment.
Collapse
|
29
|
Lu L, Armstrong EA, Yager JY, Unsworth LD. Sustained Release of Dexamethasone from Sulfobutyl Ether β-cyclodextrin Modified Self-Assembling Peptide Nanoscaffolds in a Perinatal Rat Model of Hypoxia-Ischemia. Adv Healthc Mater 2019; 8:e1900083. [PMID: 30977596 DOI: 10.1002/adhm.201900083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Indexed: 11/10/2022]
Abstract
Inflammation plays a critical role in the development of hypoxia-ischemia (HI) induced newborn brain damage. A localized, sustained delivery of dexamethasone (Dex) through an intracerebral injection could reduce the inflammatory response in the injured perinatal brain while avoiding unnecessary side effects. Herein, investigated using anionic sulfobutyl ether β-cyclodextrin (SBE-β-CD) to load Dex in the (RADA)4 nanofiber networks as a means of reducing the inflammatory response to HI injury is investigated. The ionic interaction between SBE-β-CD and (RADA)4 dramatically affects nanofiber formation and the stability of the nanoscaffold is highly dependent on the SBE-β-CD/(RADA)4 ratio. It is observed that the Dex release rate is affected by the concentration of SBE-β-CD and (RADA)4 peptide. A higher concentration of SBE-β-CD or (RADA)4 results in a higher drug encapsulation efficiency and slower release rate of Dex. This phenomenon may be related to the structure of fiber bundles. Animal studies show that nanoscaffold loaded with Dex inhibits both microglia activation and glial scar formation compared to controls (Dex alone or nanoscaffold alone) within 2 days of injury. It is thought that this is a step toward building a multifaceted nanoscaffold that can be used to treat HI events in perinates.
Collapse
Affiliation(s)
- Lei Lu
- School of Life Science and EngineeringSouthwest Jiaotong University Chengdu Sichuan 611756 China
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Edward A. Armstrong
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Jerome Y. Yager
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
30
|
Vlisides PE, Kunkler B, Thompson A, Zierau M, Lobo R, Strasser MO, Cantley MJ, McKinney A, Everett AD, Mashour GA, Picton P. Cerebrovascular Disease and Perioperative Neurologic Vulnerability: A Prospective Cohort Study. Front Neurol 2019; 10:560. [PMID: 31231299 PMCID: PMC6558425 DOI: 10.3389/fneur.2019.00560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Stroke is a devastating perioperative complication without effective methods for prevention or diagnosis. The objective of this study was to analyze evidence-based strategies for detecting cerebrovascular vulnerability and injury in a high-risk cohort of non-cardiac surgery patients. Methods: This was a single-center, prospective cohort study. Fifty patients undergoing non-cardiac surgery were recruited −25 with known cerebrovascular disease and 25 matched controls. Neurologic vulnerability was measured with intraoperative cerebral oximetry as the primary outcome. Perioperative neurocognitive testing and serum biomarker analysis (S-100β, neuron specific enolase, glial fibrillary acid protein, and matrix metalloproteinase-9) were measured as secondary outcomes. Results: Cerebral desaturation events (an oximetry decrease ≥20% from baseline or <50% absolute value for ≥3 min) occurred in 7/24 (29%) cerebrovascular disease patients and 2/24 (8.3%) controls (relative risk 3.5, 95% CI 0.81–15.2; P = 0.094). Cognitive function trends were similar in both groups, though overall scores (range: 1,500–7,197) were ~1 standard deviation lower in cerebrovascular patients across the entire perioperative period (−1,049 [95% CI −1,662, −436], P < 0.001). No significant serum biomarker differences were found between groups over time. One control patient experienced intraoperative hypoxic-ischemic injury, but no robust biomarker or oximetry changes were observed. Conclusions: Cerebrovascular disease patients did not demonstrate dramatic differences in cerebral oximetry, cognitive trajectory, or molecular biomarkers compared to controls. Moreover, a catastrophic hypoxic-ischemic event was neither predicted nor detected by any strategy tested. These findings support the need for novel research into cerebrovascular risk and vulnerability.
Collapse
Affiliation(s)
- Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bryan Kunkler
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Aleda Thompson
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mackenzie Zierau
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Remy Lobo
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mary O Strasser
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael J Cantley
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Amy McKinney
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Allen D Everett
- Pediatric Proteome Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Paul Picton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Fletcher-Sandersjöö A, Lindblad C, Thelin EP, Bartek J, Sallisalmi M, Elmi-Terander A, Svensson M, Bellander BM, Broman LM. Serial S100B Sampling Detects Intracranial Lesion Development in Patients on Extracorporeal Membrane Oxygenation. Front Neurol 2019; 10:512. [PMID: 31156541 PMCID: PMC6532588 DOI: 10.3389/fneur.2019.00512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction: Intracranial lesion development is a recognized complication in adults treated with extracorporeal membrane oxygenation (ECMO) and is associated with increased mortality. As neurological assessment during ECMO treatment remains challenging, protein biomarkers of cerebral injury could provide an opportunity to detect intracranial lesion development at an early stage. The aim of this study was to determine if serially sampled S100B could be used to detect intracranial lesion development during ECMO treatment. Methods: We conducted an observational cohort study of all patients treated with ECMO at ECMO Center Karolinska (Karolinska University Hospital, Stockholm, Sweden) between January and August 2018, excluding patients who did not undergo a computerized tomography scan (CT) during treatment. S100B was prospectively collected at hospital admission and then once daily. The primary end-point was any type of CT verified intracranial lesion. Receiver operating characteristics (ROC) curves and Cox proportional hazards models were employed. Results: Twenty-nine patients were included, of which 15 (52%) developed an intracranial lesion and exhibited higher levels of S100B overall. S100B had a robust association with intracranial lesion development, especially during the first 200 hours following admission. The best area-under-curve (AUC) to predict intracranial lesion development was 40 and 140 hours following ECMO initiation, were a S100B level of 0.69μg/L had an AUC of 0.81 (0.628-0.997). S100B levels were markedly increased following the development of intracranial hemorrhage. Conclusions: Serial serum S100B samples in ECMO patients were both significantly elevated and had an increasing trajectory in patients developing intracranial lesions. Larger prospective trials are warranted to validate these findings and to ascertain their clinical utility.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marko Sallisalmi
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Silberman AP, Cheung EW. Neurodevelopmental Outcomes After Neonatal and Pediatric ECMO. CURRENT PEDIATRICS REPORTS 2019. [DOI: 10.1007/s40124-019-00194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Dong Y, Wang J, Du KX, Jia TM, Zhu CL, Zhang Y, Xu FL. MicroRNA-135a participates in the development of astrocytes derived from bacterial meningitis by downregulating HIF-1α. Am J Physiol Cell Physiol 2019; 316:C711-C721. [PMID: 30726113 DOI: 10.1152/ajpcell.00440.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence has highlighted the potential of microRNAs (miRs) as biomarkers in various human diseases. However, the roles of miRs in bacterial meningitis (BM), a severe infectious condition, still remain unclear. Thus, the present study aimed to investigate the effects of miR-135a on proliferation and apoptosis of astrocytes in BM. Neonatal rats were injected with Streptococcus pneumoniae to establish the BM model. The expression of miR-135a and hypoxia-inducible factor 1α (HIF-1α) in the BM rat models were characterized, followed by determination of their interaction. Using gain- and loss-of-function approaches, the effects of miR-135a on proliferation, apoptosis, and expression of glial fibrillary acidic protein (GFAP), in addition to apoptosis-related factors in astrocytes were examined accordingly. The regulatory effect of HIF-1α was also determined along with the overexpression or knockdown of HIF-1α. The results obtained indicated that miR-135a was poorly expressed, whereas HIF-1α was highly expressed in the BM rat models. In addition, restored expression levels of miR-135a were determined to promote proliferation while inhibiting the apoptosis of astrocytes, along with downregulated Bax and Bad, as well as upregulated Bcl-2, Bcl-XL, and GFAP. As a target gene of miR-135a, HIF-1α expression was determined to be diminished by miR-135a. The upregulation of HIF-1α reversed the miR-135a-induced proliferation of astrocytes. Taken together, the key findings of the current study present evidence suggesting that miR-135a can downregulate HIF-1α and play a contributory role in the development of astrocytes derived from BM, providing a novel theoretical perspective for BM treatment approaches.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,Henan Provincial Key Laboratory of Child Brain Injury , Zhengzhou , China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Kai-Xian Du
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Tian-Ming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Chang-Lian Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,Henan Provincial Key Laboratory of Child Brain Injury , Zhengzhou , China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yan Zhang
- Clinical Laboratory, Henan Red Cross Blood Center , Zhengzhou , China
| | - Fa-Lin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
34
|
Graham EM, Martin RH, Atz AM, Hamlin-Smith K, Kavarana MN, Bradley SM, Alsoufi B, Mahle WT, Everett AD. Association of intraoperative circulating-brain injury biomarker and neurodevelopmental outcomes at 1 year among neonates who have undergone cardiac surgery. J Thorac Cardiovasc Surg 2019; 157:1996-2002. [PMID: 30797587 DOI: 10.1016/j.jtcvs.2019.01.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/19/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neurodevelopmental disability is the most significant complication for survivors of infant surgery for congenital heart disease. In this study we sought to determine if perioperative circulating brain injury biomarker levels are associated with neurodevelopmental outcomes at 12 months. METHODS A secondary analysis of a randomized controlled trial of neonates who underwent cardiac surgery was performed. Glial fibrillary acidic protein (GFAP) was measured: (1) before skin incision; (2) immediately after bypass; (3) 4 and (4) 24 hours postoperatively. Linear regression models were used to determine an association with the highest levels of GFAP and Bayley Scales of Infant and Toddler Development third edition (BSID) composite scores. RESULTS There were 97 subjects who had cardiac surgery at a mean age of 9 ± 6 days and completed a BSID at 12.5 ± 0.6 months of age. Median (25th-75th percentile) levels of GFAP were 0.01 (0.01-0.02), 0.85 (0.40-1.55), 0.07 (0.05-0.11), and 0.03 (0.02-0.04) ng/mL at the 4 time points, respectively. In univariate analysis GFAP was negatively associated with cognitive, language, and motor composite scores. GFAP levels immediately after bypass differed between institutions; 1.57 (0.92-2.48) versus 0.77 (0.36-1.21) ng/mL (P = .01). After adjusting for center and potential confounders, GFAP was independently associated with BSID motor score (P = .04). CONCLUSIONS Higher GFAP levels at the time of neonatal cardiac operations were independently associated with decreased BSID motor scores at 12 months. GFAP might serve as a diagnostic means to acutely identify perioperative brain-specific injury and serve as a benchmark of therapeutic efficacy for investigational treatments, discriminate center-specific effects, and provide early prognostic information for intervention.
Collapse
Affiliation(s)
- Eric M Graham
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC.
| | - Renee' H Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Andrew M Atz
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Kasey Hamlin-Smith
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Minoo N Kavarana
- Department of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Scott M Bradley
- Department of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Bahaaldin Alsoufi
- Department of Cardiothoracic Surgery, Children's Healthcare of Atlanta and Emory University, Atlanta, Ga
| | - William T Mahle
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, Ga
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| |
Collapse
|
35
|
Jeong SC, Kim HJ, Shin YS, Han JW, Lim JY, Son HS. Influence of cannula positioning on brain injury during extracorporeal membrane oxygenation. J Thorac Dis 2019; 10:6184-6191. [PMID: 30622790 DOI: 10.21037/jtd.2018.10.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In veno-arterial extracorporeal membrane oxygenation (V-A ECMO), a patient is cannulated using either an atrio-aortic technique (central type ECMO; cECMO) or a femoro-femoral technique (peripheral type ECMO; pECMO). The direction of the pump flow at the aortic arch is anterograde from the ascending aorta in cECMO and retrograde from the descending aorta in pECMO. Hemodynamic differences from the position of the cannulas may influence the brain differently. To evaluate the effect of ECMO cannula positioning on the brain, hemodynamic data and plasma biomarkers were collected. Methods Eight pigs were randomly divided into the cECMO group (n=4) or pECMO group (n=4). ECMO was administered for 6 hours at a pump flow rate based on the mean flow of the ascending aorta. Mean arterial pressure (MAP), mean arterial flow (MAF), energy equivalent pressure (EEP), and surplus hemodynamic energy (SHE) were measured in the brachiocephalic artery every 30 minutes. During ECMO treatment, plasma was collected for analysis of interleukin-6 (IL-6), S100B, glial fibrillary acidic protein (GFAP), and neuron-specific enolase. The data were analyzed using the Mann-Whitney U tests, and repeated measures ANOVAs; significance was set at P<0.05. Results MAP and EEP at 1 and at 3 hours, MAF at all measured times, and SHE at 1 hour and 6 hours were significantly higher in the pECMO group. There was no significant difference in the levels of brain injury biomarkers between cECMO and pECMO groups. Conclusions The hemodynamic data showed that pECMO was superior to cECMO. Based on the biomarker data, neither pECMO nor cECMO for 6 hours caused evidence of brain injury.
Collapse
Affiliation(s)
- Seong Cheol Jeong
- Department of Thoracic and Cardiovascular Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Gyeonggi-do, Korea
| | - Hee Jung Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Yeon Soo Shin
- Korea Artificial Organ Center, Korea University, Seoul, Korea
| | - Jung Wook Han
- Department of Thoracic and Cardiovascular Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Gyeonggi-do, Korea
| | - Ju Yong Lim
- Department of Thoracic and Cardiovascular Surgery, Korea University Medical Center, Seoul, Korea
| | - Ho Sung Son
- Korea Artificial Organ Center, Korea University, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Korea University Medical Center, Seoul, Korea
| |
Collapse
|
36
|
Lo Coco V, Lorusso R, Raffa GM, Malvindi PG, Pilato M, Martucci G, Arcadipane A, Zieliński K, Suwalski P, Kowalewski M. Clinical complications during veno-arterial extracorporeal membrane oxigenation in post-cardiotomy and non post-cardiotomy shock: still the achille's heel. J Thorac Dis 2018; 10:6993-7004. [PMID: 30746245 DOI: 10.21037/jtd.2018.11.103] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is life-saving for potentially reversible heart failure and respiratory injuries not responsive to conventional therapies. Technological innovations have produced over the years significant improvements in ECMO devices (pump, cannula design and oxygenator) and have allowed a better risk/benefit profile. Alongside with recognized advantages in the treatment of very sick patients, ECMO remains an invasive procedure for mechanical circulatory support (MCS) and it is associated with complications that strongly influence the prognosis. Current review was designed to provide a comprehensive outline on ECMO complications, analyzing risk factors and strategies of management, focusing on adult population undergoing veno-arterial ECMO (VA-ECMO) therapy.
Collapse
Affiliation(s)
- Valeria Lo Coco
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Giuseppe M Raffa
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | | | - Michele Pilato
- Department of the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Gennaro Martucci
- Department of Anaesthesia and Intensive Care, IRCCS-ISMETT, Palermo, Italy
| | - Antonio Arcadipane
- Department of Anaesthesia and Intensive Care, IRCCS-ISMETT, Palermo, Italy
| | | | - Piotr Suwalski
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior in Warsaw, Poland.,Clinical Department of Cardiac Surgery, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mariusz Kowalewski
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior in Warsaw, Poland.,Cardiothoracic Research Centre, Innovative Medical Forum, Bydgoszcz, Poland
| |
Collapse
|
37
|
Patil UP, Mally PV, Wachtel EV. Serum biomarkers of neuronal injury in newborns evaluated for selective head cooling: a comparative pilot study. J Perinat Med 2018; 46:942-947. [PMID: 30070096 DOI: 10.1515/jpm-2017-0354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022]
Abstract
Background Evaluation of newborns for hypoxic ischemic encephalopathy (HIE) includes laboratory and clinical parameters, as well as amplitude integrated electroencephalogram (aEEG). Based on qualifying criteria, selective head cooling (SHC) is initiated for infants with evidence of moderate to severe HIE. However, some newborns may not qualify for hypothermia therapy based on normal aEEG. Objective To compare levels of serum glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-1 (UCHL-1) protein and phosphorylated axonal neurofilament heavy chain (pNF-H), in newborns who met initial screening criteria for HIE but did not qualify for head cooling, to the levels in healthy newborns. Study design Newborns ≥36 weeks of gestational age at risk for HIE, who were evaluated but did not qualify for SHC from July 2013 through June 2014 at NYU Langone Medical Center and Bellevue Hospital center were enrolled. A control group included healthy newborns from the newborn nursery (NBN). Serum samples were collected between 24 and 48 h of life from both groups. Results There was no significant difference in the serum levels of GFAP, UCHL-1 protein and pNF-H between the two groups of infants. Conclusion Newborns at risk for HIE who met the initial criteria for head cooling but who were excluded based on normal aEEG did not show significant elevation of biomarkers of brain injury compared to healthy newborns. These findings may help to validate using aEEG as an additional evaluation criteria in cooling.
Collapse
Affiliation(s)
- Uday P Patil
- Department of Pediatrics, Division of Neonatology, Icahn School of Medicine at Mount Sinai and Elmhurst Hospital Center, 79-01 Broadway, A7-34, Elmhurst, NY 11373, USA, Tel.: +718-334-5788, Fax: +718-334-1253
| | - Pradeep V Mally
- Department of Pediatrics, Division of Neonatology, New York University School of Medicine, New York, NY, USA
| | - Elena V Wachtel
- Department of Pediatrics, Division of Neonatology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Boyle K, Felling R, Yiu A, Battarjee W, Schwartz JM, Salorio C, Bembea MM. Neurologic Outcomes After Extracorporeal Membrane Oxygenation: A Systematic Review. Pediatr Crit Care Med 2018; 19:760-766. [PMID: 29894448 PMCID: PMC6086744 DOI: 10.1097/pcc.0000000000001612] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The goal of this systematic review of the literature was to summarize neurologic outcomes following neonatal and pediatric extracorporeal membrane oxygenation. DATA SOURCES We conducted electronic searches of PubMed, Scopus, Web of Science, CINAHL, Cochrane, and EMBASE. STUDY SELECTION Inclusion criteria included publication dates 2000-2016, patient ages 0-18 years, and use of standardized measures to evaluate outcomes after extracorporeal membrane oxygenation. DATA EXTRACTION We identified 3,497 unique citations; 60 full-text articles were included in the final review. DATA SYNTHESIS Studies evaluated patients with congenital diaphragmatic hernia (7), cardiac disease (8), cardiac arrest (13), and mixed populations (32). Follow-up was conducted at hospital discharge in 10 studies (17%) and at a median of 26 months (interquartile range, 8-61 mo) after extracorporeal membrane oxygenation in 50 studies (83%). We found 55 outcome measures that assessed overall health and function (4), global cognitive ability (7), development (4), motor function (5), adaptive function (2), behavior/mood (6), hearing (2), quality of life (2), school achievement (5), speech and language (6), learning and memory (4), and attention and executive function (8). Overall, 10% to as many as 50% of children scored more than 2 SDS below the population mean on cognitive testing. Behavior problems were identified in 16-46% of children tested, and severe motor impairment was reported in 12% of children. Quality of life of former extracorporeal membrane oxygenation patients evaluated at school age or adolescence ranged from similar to healthy peers, to 31-53% having scores more than 1 SD below the population mean. CONCLUSIONS This systematic review of the literature suggests that children who have undergone extracorporeal membrane oxygenation suffer from a wide range of disabilities. A meta-analysis was not feasible due to heterogeneity in pathologies, outcome measures, and age at follow-up, underscoring the importance of developing and employing a core set of outcomes measures in future extracorporeal membrane oxygenation studies.
Collapse
Affiliation(s)
- Katharine Boyle
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan Felling
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alvin Yiu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wejdan Battarjee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jamie McElrath Schwartz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cynthia Salorio
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melania M. Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
39
|
Fletcher-Sandersjöö A, Thelin EP, Bartek J, Broman M, Sallisalmi M, Elmi-Terander A, Bellander BM. Incidence, Outcome, and Predictors of Intracranial Hemorrhage in Adult Patients on Extracorporeal Membrane Oxygenation: A Systematic and Narrative Review. Front Neurol 2018; 9:548. [PMID: 30034364 PMCID: PMC6043665 DOI: 10.3389/fneur.2018.00548] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Intracranial hemorrhage (ICH) is a common complication in adults treated with extracorporeal membrane oxygenation (ECMO). Objectives: The aim of this study was to conduct a systematic review of the literature on the incidence, outcome and predictors of ECMO-associated ICH in adult patients, supplemented by a narrative review of its pathophysiology, management and future perspectives. Methods: MEDLINE, EMBASE, Cochrane Database of Systematic Reviews and www.clinicaltrials.gov were systematically searched. Studies that reported incidence, outcome or predictors of ECMO-associated ICH in adults (≥18 years) were eligible for inclusion. Results: Twenty five articles were included in the systematic review. The incidence of ECMO-associated ICH varied between 1.8 and 21 %. Mortality rates in ICH-cohorts varied between 32 and 100 %, with a relative risk of mortality of 1.27–4.43 compared to non-ICH cohorts. An increased risk of ICH was associated with ECMO-duration, antithrombotic therapy, altered intrinsic coagulation, renal failure, need of blood products, rapid hypercapnia at ECMO initiation, and even pre-ECMO morbidity. Conclusions: ICH is a common complication in adults treated with ECMO and associated with increased mortality. Treating an ICH during ECMO represents a balance between pro- and anticoagulatory demands. Neurosurgical treatment is associated with severe morbidity, but has been successful in selected cases. Future studies should aim at investigating the validity and feasibility of non-invasive monitoring in early detection of ECMO-associated ICH.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Broman
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marko Sallisalmi
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Aczél T, Kun J, Szőke É, Rauch T, Junttila S, Gyenesei A, Bölcskei K, Helyes Z. Transcriptional Alterations in the Trigeminal Ganglia, Nucleus and Peripheral Blood Mononuclear Cells in a Rat Orofacial Pain Model. Front Mol Neurosci 2018; 11:219. [PMID: 29997476 PMCID: PMC6028693 DOI: 10.3389/fnmol.2018.00219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Orofacial pain and headache disorders are among the most debilitating pain conditions. While the pathophysiological basis of these disorders may be diverse, it is generally accepted that a common mechanism behind the arising pain is the sensitization of extra- and intracranial trigeminal primary afferents. In the present study we investigated gene expression changes in the trigeminal ganglia (TRG), trigeminal nucleus caudalis (TNC) and peripheral blood mononuclear cells (PBMC) evoked by Complete Freund's Adjuvant (CFA)-induced orofacial inflammation in rats, as a model of trigeminal sensitization. Microarray analysis revealed 512 differentially expressed genes between the ipsi- and contralateral TRG samples 7 days after CFA injection. Time-dependent expression changes of G-protein coupled receptor 39 (Gpr39), kisspeptin-1 receptor (Kiss1r), kisspeptin (Kiss1), as well as synaptic plasticity-associated Lkaaear1 (Lkr) and Neurod2 mRNA were described on the basis of qPCR results. The greatest alterations were observed on day 3 ipsilaterally, when orofacial mechanical allodynia reached its maximum. This corresponded well with patterns of neuronal (Fosb), microglia (Iba1), and astrocyte (Gfap) activation markers in both TRG and TNC, and interestingly also in PBMCs. This is the first description of up- and downregulated genes both in primary and secondary sensory neurones of the trigeminovascular system that might play important roles in neuroinflammatory activation mechanisms. We are the first to show transcriptomic alterations in the PBMCs that are similar to the neuronal changes. These results open new perspectives and initiate further investigations in the research of trigeminal pain disorders.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Tibor Rauch
- Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Sini Junttila
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Attila Gyenesei
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
41
|
Ju Z, Ma J, Wang C, Yu J, Qiao Y, Hei F. Effects of pumpless extracorporeal lung assist on hemodynamics, gas exchange and inflammatory cascade response during experimental lung injury. Exp Ther Med 2018; 15:1950-1958. [PMID: 29434789 PMCID: PMC5776660 DOI: 10.3892/etm.2017.5656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/14/2017] [Indexed: 11/12/2022] Open
Abstract
Pumpless extracorporeal lung assist (pECLA) has been reported to efficiently remove the systemic CO2 production and provide mild to moderate oxygenation, thereby allowing for ventilator settings and modes prioritizing oxygenation and lung protection. However, an adequate bypass flow, the capacity to provide respiratory support and the effect on the inflammatory cascade response and tissue perfusion require further study to be determined. After induction of acute lung injury (ALI) by oleic acid injection, pECLA was implemented in 12 anaesthetized and mechanically ventilated dogs for 48 h. Improved oxygenation [partial oxygen pressure (PaO2) and oxygen saturation (SaO2) was measured by arterial blood gas analysis, and increased by 29 and 18%, respectively] and CO2 elimination (partial CO2 pressure decreased by 43.35%) were obtained after pECLA implementation. A maximum arterio-venous shunt flow of up to 25% of the foundational CO resulted in stable hemodynamics. The pECLA procedure did not elicit any further increase in the concentration of tumor necrosis factor-α, interleukin (IL)-6, IL-8 and endothelin-1 compared with that in the group subjected to oleic acid injection only. In addition, the pECLA procedure had no effect on lactate levels and urine production. In conclusion, pECLA is an efficient and promising strategy for providing a mild to moderate oxygenation and adequate decarboxylation, while avoiding excessive inflammatory cascade response and tissue hypoperfusion in an experimental ALI model.
Collapse
Affiliation(s)
- Zhihai Ju
- Extracorporeal Circulation Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jinhui Ma
- Extracorporeal Circulation Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Chen Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Jie Yu
- Extracorporeal Circulation Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Yeru Qiao
- Extracorporeal Circulation Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Feilong Hei
- Extracorporeal Circulation Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| |
Collapse
|
42
|
Impaired cerebral autoregulation and elevation in plasma glial fibrillary acidic protein level during cardiopulmonary bypass surgery for CHD. Cardiol Young 2018; 28:55-65. [PMID: 28835309 PMCID: PMC5955612 DOI: 10.1017/s1047951117001573] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cerebrovascular reactivity monitoring has been used to identify the lower limit of pressure autoregulation in adult patients with brain injury. We hypothesise that impaired cerebrovascular reactivity and time spent below the lower limit of autoregulation during cardiopulmonary bypass will result in hypoperfusion injuries to the brain detectable by elevation in serum glial fibrillary acidic protein level. METHODS We designed a multicentre observational pilot study combining concurrent cerebrovascular reactivity and biomarker monitoring during cardiopulmonary bypass. All children undergoing bypass for CHD were eligible. Autoregulation was monitored with the haemoglobin volume index, a moving correlation coefficient between the mean arterial blood pressure and the near-infrared spectroscopy-based trend of cerebral blood volume. Both haemoglobin volume index and glial fibrillary acidic protein data were analysed by phases of bypass. Each patient's autoregulation curve was analysed to identify the lower limit of autoregulation and optimal arterial blood pressure. RESULTS A total of 57 children had autoregulation and biomarker data for all phases of bypass. The mean baseline haemoglobin volume index was 0.084. Haemoglobin volume index increased with lowering of pressure with 82% demonstrating a lower limit of autoregulation (41±9 mmHg), whereas 100% demonstrated optimal blood pressure (48±11 mmHg). There was a significant association between an individual's peak autoregulation and biomarker values (p=0.01). CONCLUSIONS Individual, dynamic non-invasive cerebrovascular reactivity monitoring demonstrated transient periods of impairment related to possible silent brain injury. The association between an impaired autoregulation burden and elevation in the serum brain biomarker may identify brain perfusion risk that could result in injury.
Collapse
|
43
|
Raiten JM, Ko H, Gutsche JT. Eliminating Neurologic Complications of Extracorporeal Membrane Oxygenation—A Multifaceted Challenge. J Cardiothorac Vasc Anesth 2017; 31:1847-1848. [DOI: 10.1053/j.jvca.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 11/11/2022]
|
44
|
Xie A, Lo P, Yan TD, Forrest P. Neurologic Complications of Extracorporeal Membrane Oxygenation: A Review. J Cardiothorac Vasc Anesth 2017. [DOI: 10.1053/j.jvca.2017.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Vedovelli L, Padalino M, D'Aronco S, Stellin G, Ori C, Carnielli VP, Simonato M, Cogo P. Glial fibrillary acidic protein plasma levels are correlated with degree of hypothermia during cardiopulmonary bypass in congenital heart disease surgery. Interact Cardiovasc Thorac Surg 2017; 24:436-442. [PMID: 28040762 DOI: 10.1093/icvts/ivw395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/26/2016] [Indexed: 02/04/2023] Open
Abstract
Objectives Improved congenital heart defect (CHD) operations have reduced operative mortality to 3%. The major concern is now long-term neurological outcomes. We measured plasma glial fibrillary acidic protein (GFAP), an early marker of brain injury, during different phases of cardiopulmonary bypass (CPB), to correlate the increase of GFAP to clinical parameters or specific operative phases. Methods We performed a prospective, single-centre, observational study in children undergoing cardiac operations. We studied 69 children with CHD and biventricular heart physiology: 26 had tetralogy of Fallot; 17 transposition of the great arteries; and 26 ventricular/atrial septal defects with or without associated arch defects. GFAP levels were measured by ELISA at different stages of CPB. We recorded clinical and surgical parameters and applied multivariable and logistic regressions to assess which parameters were independent predictors of variations in plasma GFAP. Results GFAP increased during CPB and peaked at the end of rewarming. Multivariable regression showed degree of hypothermia as the only significant independent predictor of GFAP increase, adjusted for age, prematurity, type of CHD, cyanosis, aortic cross-clamp time, haemodilution, neurological risk time interval and rewarming rate. Temperature nadir and neurological risk time interval were significant independent predictors of a GFAP value > 0.46 ng/ml. Conclusions Hypothermia degree during CPB is correlated with GFAP plasma increase in children with biventricular heart defects undergoing surgical repair. Rewarming is the most critical CPB phase for GFAP increase. The implication of high plasma GFAP is still under evaluation. Follow-up studies are ongoing to assess the reliability of GFAP as a marker of brain injury and/or as a predictor of neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Luca Vedovelli
- Critical Care Biology and PCare Laboratories, Pediatric Research Institute "Citta' della Speranza", Padova, Italy
| | - Massimo Padalino
- Pediatric Cardiovascular Surgery Unit, Padova University Hospital, "V. Gallucci" Center, Padova, Italy
| | - Sara D'Aronco
- Department of Women's and Children's Health, Padova University Hospital, Padova, Italy
| | - Giovanni Stellin
- Pediatric Cardiovascular Surgery Unit, Padova University Hospital, "V. Gallucci" Center, Padova, Italy
| | - Carlo Ori
- Department of Medicine DIMED, Padova University Hospital, Anesthesia and Resuscitation Institute, Padova, Italy
| | - Virgilio P Carnielli
- Department of Clinical Sciences, Division of Neonatology, Polytechnic University of Marche and Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Manuela Simonato
- Critical Care Biology and PCare Laboratories, Pediatric Research Institute "Citta' della Speranza", Padova, Italy
| | - Paola Cogo
- Department of Clinical and Experimental Medical Sciences, University of Udine, Udine, Italy
| |
Collapse
|
46
|
Rilinger JF, Smith CM, deRegnier RAO, Goldstein JL, Mills MG, Reynolds M, Backer CL, Burrowes DM, Mehta P, Piantino J, Wainwright MS. Transcranial Doppler Identification of Neurologic Injury during Pediatric Extracorporeal Membrane Oxygenation Therapy. J Stroke Cerebrovasc Dis 2017; 26:2336-2345. [PMID: 28583819 DOI: 10.1016/j.jstrokecerebrovasdis.2017.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/07/2017] [Accepted: 05/17/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We used transcranial Doppler to examine changes in cerebral blood flow velocity in children treated with extracorporeal membrane oxygenation. We examined the association between those changes and radiologic, electroencephalographic, and clinical evidence of neurologic injury. METHODS This was a retrospective review and prospective observational study of patients 18 years old and younger at a single university children's hospital. Transcranial Doppler studies were obtained every other day during the first 7 days of extracorporeal membrane oxygenation, and 1 additional study following decannulation, in conjunction with serial neurologic examinations, brain imaging, and 6- to 12-month follow-up. RESULTS The study included 27 patients, the majority (26) receiving veno-arterial extracorporeal membrane oxygenation. Transcranial Doppler velocities during extracorporeal membrane oxygenation were significantly lower than published values for age-matched healthy and critically ill children across different cerebral arteries. Neonates younger than 10 days had higher velocities than expected. Blood flow velocity increased after extracorporeal membrane oxygenation decannulation and was comparable with age-matched critically ill children. There was no significant association between velocity measurements of individual arteries and acute neurologic injury as defined by either abnormal neurologic examination, seizures during admission, or poor pediatric cerebral performance category. However, case analysis identified several patients with regional and global increases in velocities that corresponded to neurologic injury including stroke and seizures. CONCLUSIONS Cerebral blood flow velocities during extracorporeal membrane oxygenation deviate from age-specific normal values in all major cerebral vessels and across different age groups. Global or regional elevations and asymmetries in flow velocity may suggest impending neurologic injury.
Collapse
Affiliation(s)
- Jay F Rilinger
- Department of Pediatrics, Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Craig M Smith
- Department of Pediatrics, Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Raye Ann O deRegnier
- Division of Neonatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joshua L Goldstein
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michele G Mills
- Department of Pediatrics, Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marleta Reynolds
- Divisions of General Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carl L Backer
- Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Delilah M Burrowes
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Priya Mehta
- Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Juan Piantino
- Section in Child Neurology, Oregon Health and Science University, Portland, Oregon
| | - Mark S Wainwright
- Department of Pediatrics, Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
47
|
Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy. eNeuro 2017; 4:eN-NWR-0253-16. [PMID: 28101531 PMCID: PMC5223053 DOI: 10.1523/eneuro.0253-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
Clinical management of neonatal hypoxic-ischemic encephalopathy (HIE) suffers from the lack of reliable surrogate marker tests. Proteomic analysis may identify such biomarkers in blood, but there has been no proof-of-principle evidence to support this approach. Here we performed in-gel trypsin digestion of plasma proteins from four groups of 10-d-old mice [untouched and 24 h after low-dose lipopolysaccharide (LPS) exposure, hypoxia-ischemia (HI), or LPS/HI injury; n = 3 in each group) followed by liquid chromatography-tandem mass spectrometry and bioinformatics analysis to search for HI- and LPS/HI-associated brain injury biomarkers. This analysis suggested the induction of plasma osteopontin (OPN) by HI and LPS/HI, but not by sham and injury-free LPS exposure. Immunoblot confirmed post-HI induction of OPN protein in brain and blood, whereas Opn mRNA was induced in brain but not in blood. This disparity suggests brain-derived plasma OPN after HI injury. Similarly, immunostaining showed the expression of OPN by Iba1+ microglia/macrophages in HI-injured brains. Further, intracerebroventricular injection of LPS activated microglia and up-regulated plasma OPN protein. Importantly, the induction of plasma OPN after HI was greater than that of matrix metalloproteinase 9 or glial fibrillary acid protein. Plasma OPN levels at 48 h post-HI also parallel the severity of brain damage at 7-d recovery. Together, these results suggest that OPN may be a prognostic blood biomarker in HIE through monitoring brain microglial activation.
Collapse
|
48
|
Abstract
Neonates with critical CHD have evidence, by imaging, of preoperative brain injury, although the timing is unknown. We used circulating postnatal serum glial fibrillary acidic protein as a measure of acute perinatal brain injury in neonates with CHD. Glial fibrillary acidic protein was measured on admission and daily for the first 4 days of life in case and control groups; we included two control groups in this study - non-brain-injured newborns and brain-injured newborns. Comparisons were performed using the Kruskal-Wallis test with Dunn's multiple comparisons, Student's t-test, and χ2 test of independence where appropriate. In aggregate, there were no significant differences in overall glial fibrillary acidic protein levels between CHD patients (n=56) and negative controls (n=23) at any time point. By day 4 of life, 7/56 (12.5%) CHD versus 0/23 (0%) normal controls had detectable glial fibrillary acidic protein levels. Although not statistically significant, the 5/10 (50%) left heart obstruction group versus 1/17 (6%) conoventricular, 0/13 (0%) right heart, and 1/6 (17%) septal defect patients trended towards elevated levels of glial fibrillary acidic protein at day 4 of life. Overall, glial fibrillary acidic protein reflected no evidence for significant peripartum brain injury in neonates with CHD, but there was a trend for elevation by postnatal day 4 in neonates with left heart obstruction. This pilot study suggests that methods such as monitoring glial fibrillary acidic protein levels may provide new tools to optimise preoperative care and neuroprotection in high-risk neonates with specific types of CHD.
Collapse
|
49
|
Magruder JT, Hibino N, Collica S, Zhang H, Harness HL, Heitmiller ES, Jacobs ML, Cameron DE, Vricella LA, Everett AD. Association of nadir oxygen delivery on cardiopulmonary bypass with serum glial fibrillary acid protein levels in paediatric heart surgery patients. Interact Cardiovasc Thorac Surg 2016; 23:531-7. [PMID: 27316657 DOI: 10.1093/icvts/ivw194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Protecting the brain during cardiac surgery is a major challenge. We evaluated associations between nadir oxygen delivery (DO2) during paediatric cardiac surgery and a biomarker of brain injury, glial fibrillary acidic protein (GFAP). METHODS Blood samples were obtained during a prospective, single-centre observational study of children undergoing congenital heart surgery with cardiopulmonary bypass (CPB) (2010-2011). Remnant blood samples, collected serially prior to cannulation for bypass and until incision closure, were analysed for GFAP levels. Perfusion records were reviewed to calculate nadir DO2. Linear regression analysis was used to assess the association between nadir DO2 and GFAP levels. RESULTS A total of 116 consecutive children were included, with the median age of 0.75 years (interquartile range: 0.42-8.00) and the median weight of 8.3 kg (5.8-20.0). Single-ventricle anatomy was present in 19 patients (16.4%). Deep hypothermic circulatory arrest (DHCA) was used in 14 patients (12.1%). On univariable analysis, nadir DO2 was significantly associated with GFAP values measured during rewarming on CPB (P = 0.005) and after CPB decannulation (P = 0.02). On multivariable analysis controlling for CPB time, DHCA and procedure risk category, a significant negative relationship remained between nadir DO2 and post-CPB GFAP (P = 0.03). CONCLUSIONS Lower nadir DO2 is associated with increased GFAP levels, suggesting that diminished DO2 during paediatric heart surgery may be contributing to neurological injury. The DO2-GFAP relationship may provide a useful measure for the implementation of neuroprotective strategies in paediatric heart surgery, including goal-directed perfusion.
Collapse
Affiliation(s)
- J Trent Magruder
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Collica
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huaitao Zhang
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Lynn Harness
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eugenie S Heitmiller
- Division of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marshall L Jacobs
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Duke E Cameron
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luca A Vricella
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen D Everett
- Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Tetramethylpyrazine Nitrone Improves Neurobehavioral Functions and Confers Neuroprotection on Rats with Traumatic Brain Injury. Neurochem Res 2016; 41:2948-2957. [DOI: 10.1007/s11064-016-2013-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
|