1
|
Sun L, Bing H, Zhang C, Lin L, Lian H, Chu Q, Jin X. Short-Term Preconditioning with Insulin and Glucose Efficiently Protected the Kidney Against Ischemia-Reperfusion Injury via the P-AKT-Bax-Caspase-3 Signaling Pathway in Mice. Drug Des Devel Ther 2024; 18:2461-2474. [PMID: 38915866 PMCID: PMC11195683 DOI: 10.2147/dddt.s465836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Objective Insulin attaches insulin receptor to activate the PI3-kinase/Akt signaling to maintain glucose homeostasis and inhibit apoptosis. This study determined whether preconditioning with insulin and glucose protects the kidney against ischemia-reperfusion injury (IRI). Methods Kidney IRI was performed in C57BL/6 mice by clamping the renal vessels for 30 min, followed by reperfusion for 24 h. A total subcutaneous 0.1 unit of insulin along with 10% glucose in drinking water was treated on the mice for 24 h before kidney IRI. The kidney function and injuries were investigated through the determination of BUN and Cr in blood plasma, as well as the apoptosis and the expression of P-AKT, BAX, and caspase-3 in the kidneys. The role of P-AKT in insulin-treated IRI kidneys was tested using an AKT inhibitor. The effects of the preconditional duration of insulin and glucose on IRI kidneys were investigated by expanding the treatment duration to 1, 3, and 6 days. Results Preconditioning with insulin and glucose protected the kidney against IRI as manifested by a decrease in creatinine and BUN and a reduction of kidney tubular injury. The protection effect was mediated by P-AKT-BAX-caspase-3 signaling pathway resulting in suppression of apoptotic cell death. An AKT inhibitor partially reversed the protective effects of preconditional insulin. The preconditional duration for 1, 3, and 6 days had no differences in improving kidney functions and pathology. Conclusion A short-term preconditioning with insulin and glucose protected the kidney from IRI through the activation of p-AKT and subsequent reduction of BAX-caspase-3-induced apoptosis. The short-term precondition provides a practicable strategy for protecting the kidney against predictable IRI, such as kidney transplant and major surgical operations with high risk of hypotension.
Collapse
Affiliation(s)
- Liwei Sun
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Hailong Bing
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chenxi Zhang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lin Lin
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, People’s Republic of China
| | - Hongkai Lian
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, People’s Republic of China
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaogao Jin
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China
| |
Collapse
|
2
|
Sadhwani A, Asaro LA, Goldberg CS, Ware J, Butcher J, Gaies M, Smith C, Alexander JL, Wypij D, Agus MSD. Impact of tight glycemic control and hypoglycemia after pediatric cardiac surgery on neurodevelopmental outcomes at three years of age: Findings from a randomized clinical trial. BMC Pediatr 2022; 22:531. [PMID: 36071424 PMCID: PMC9450419 DOI: 10.1186/s12887-022-03556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Studies examining the impact of randomization As per standard instruction, city is required for affiliations; however, this information is missing in affiliation 6. Please check if the provided city is correct and amend if necessary. to tight glycemic control (TGC) and resultant hypoglycemia on later neurodevelopmental outcomes have produced mixed results. Our study examined this association in children undergoing cardiac surgery. Methods Participants who were enrolled in the Safe Pediatric Euglycemia after Cardiac Surgery (SPECS) trial returned for neurodevelopmental (ND) follow-up between 30 to 42.5 months of age. ND outcomes were assessed using the Bayley Scales of Infant and Toddler Development, Third Edition. ND scores were compared between the TGC and standard care treatment groups and between patients with moderate to severe and no to mild hypoglycemia. As a secondary analysis, to increase sample size and power, we combined the three-year-old assessments with previously collected assessments done at < 30 months of age to further examine differences between groups longitudinally. Results Among the 269 participants who completed neurodevelopmental evaluation (in-person testing or questionnaires) at three years of age (follow-up rate, 31%), there were no statistically significant differences in ND outcomes according to treatment group or hypoglycemia status. In the combined analysis of all evaluations (from 9 to 42.5 months of age), we found no treatment group differences. However, in these longitudinal analyses, children who experienced moderate to severe hypoglycemia had lower scores on the Bayley-III cognitive and motor domains compared to children with no to mild hypoglycemia. Conclusions For infants undergoing cardiac surgery, there was no impact of tight glycemic control on neurodevelopmental outcomes. Moderate to severe hypoglycemia was associated with worse ND outcomes in longitudinal analyses. Trial registration ClinicalTrials.gov NCT00443599. Registered: November 2016.
Collapse
Affiliation(s)
- Anjali Sadhwani
- Departments of Psychiatry and Behavioral Sciences, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| | - Lisa A Asaro
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Caren S Goldberg
- Division of Cardiology, C.S. Mott Children's Hospital, Ann Arbor, MI, USA.,Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Janice Ware
- Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, USA
| | - Jennifer Butcher
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.,Division of Pediatric Psychology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Gaies
- Division of Cardiology, C.S. Mott Children's Hospital, Ann Arbor, MI, USA.,Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cynthia Smith
- Division of Cardiology, C.S. Mott Children's Hospital, Ann Arbor, MI, USA
| | - Jamin L Alexander
- Division of Medical Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael S D Agus
- Division of Medical Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Meoli A, Ciavola L, Rahman S, Masetti M, Toschetti T, Morini R, Dal Canto G, Auriti C, Caminiti C, Castagnola E, Conti G, Donà D, Galli L, La Grutta S, Lancella L, Lima M, Lo Vecchio A, Pelizzo G, Petrosillo N, Simonini A, Venturini E, Caramelli F, Gargiulo GD, Sesenna E, Sgarzani R, Vicini C, Zucchelli M, Mosca F, Staiano A, Principi N, Esposito S. Prevention of Surgical Site Infections in Neonates and Children: Non-Pharmacological Measures of Prevention. Antibiotics (Basel) 2022; 11:antibiotics11070863. [PMID: 35884117 PMCID: PMC9311619 DOI: 10.3390/antibiotics11070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
A surgical site infection (SSI) is an infection that occurs in the incision created by an invasive surgical procedure. Although most infections are treatable with antibiotics, SSIs remain a significant cause of morbidity and mortality after surgery and have a significant economic impact on health systems. Preventive measures are essential to decrease the incidence of SSIs and antibiotic abuse, but data in the literature regarding risk factors for SSIs in the pediatric age group are scarce, and current guidelines for the prevention of the risk of developing SSIs are mainly focused on the adult population. This document describes the current knowledge on risk factors for SSIs in neonates and children undergoing surgery and has the purpose of providing guidance to health care professionals for the prevention of SSIs in this population. Our aim is to consider the possible non-pharmacological measures that can be adopted to prevent SSIs. To our knowledge, this is the first study to provide recommendations based on a careful review of the available scientific evidence for the non-pharmacological prevention of SSIs in neonates and children. The specific scenarios developed are intended to guide the healthcare professional in practice to ensure standardized management of the neonatal and pediatric patients, decrease the incidence of SSIs and reduce antibiotic abuse.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Lorenzo Ciavola
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Sofia Rahman
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Marco Masetti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Tommaso Toschetti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Riccardo Morini
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Giulia Dal Canto
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
| | - Cinzia Auriti
- Neonatology and Neonatal Intensive Care Unit, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Caterina Caminiti
- Research and Innovation Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Giannina Gaslini, 16147 Genoa, Italy;
| | - Giorgio Conti
- Pediatric ICU and Trauma Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy;
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, 35100 Padua, Italy;
| | - Luisa Galli
- Infectious Disease Unit, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (E.V.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology IFT, National Research Council, 90146 Palermo, Italy;
| | - Laura Lancella
- Paediatric Infectious Disease Unit, Academic Department of Pediatrics, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Mario Lima
- Pediatric Surgery, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, 80138 Naples, Italy; (A.L.V.); (A.S.)
| | - Gloria Pelizzo
- Pediatric Surgery Department, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy;
| | - Nicola Petrosillo
- Infection Prevention and Control—Infectious Disease Service, Foundation University Hospital Campus Bio-Medico, 00128 Rome, Italy;
| | - Alessandro Simonini
- Pediatric Anesthesia and Intensive Care Unit, Salesi Children’s Hospital, 60123 Ancona, Italy;
| | - Elisabetta Venturini
- Infectious Disease Unit, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (E.V.)
| | - Fabio Caramelli
- Pediatric Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Gaetano Domenico Gargiulo
- Department of Cardio-Thoracic and Vascular Medicine, Adult Cardiac Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Enrico Sesenna
- Maxillo-Facial Surgery Unit, Head and Neck Department, University Hospital of Parma, 43126 Parma, Italy;
| | - Rossella Sgarzani
- Servizio di Chirurgia Plastica, Centro Grandi Ustionati, Ospedale M. Bufalini, AUSL Romagna, 47521 Cesena, Italy;
| | - Claudio Vicini
- Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Otolaryngology, Morgagni Piertoni Hospital, 47121 Forli, Italy;
| | - Mino Zucchelli
- Pediatric Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40138 Bologna, Italy;
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Mother, Child and Infant, 20122 Milan, Italy;
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, 80138 Naples, Italy; (A.L.V.); (A.S.)
| | | | - Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.M.); (L.C.); (S.R.); (M.M.); (T.T.); (R.M.); (G.D.C.)
- Correspondence: ; Tel.: +39-0521-903524
| | | |
Collapse
|
4
|
The authors reply. Pediatr Crit Care Med 2017; 18:1191. [PMID: 29206742 PMCID: PMC5764111 DOI: 10.1097/pcc.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Acute Kidney Injury After Pediatric Cardiac Surgery: A Secondary Analysis of the Safe Pediatric Euglycemia After Cardiac Surgery Trial. Pediatr Crit Care Med 2017; 18:638-646. [PMID: 28492399 PMCID: PMC5503840 DOI: 10.1097/pcc.0000000000001185] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To understand the effect of tight glycemic control on cardiac surgery-associated acute kidney injury. DESIGN Secondary analysis of data from the Safe Pediatric Euglycemia after Cardiac Surgery trial of tight glycemic control versus standard care. SETTING Pediatric cardiac ICUs at University of Michigan, C.S. Mott Children's Hospital, and Boston Children's Hospital. PATIENTS Children 0-36 months old undergoing congenital cardiac surgery. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Cardiac surgery-associated acute kidney injury was assigned using the Acute Kidney Injury Network criteria with the modification that a greater than 0.1 mg/dL increase in serum creatinine was required to assign cardiac surgery-associated acute kidney injury. We explored associations between cardiac surgery-associated acute kidney injury and tight glycemic control and clinical outcomes. Of 799 patients studied, cardiac surgery-associated acute kidney injury occurred in 289 patients (36%), most of whom had stage II or III disease (72%). Cardiac surgery-associated acute kidney injury rates were similar between treatment groups (36% vs 36%; p = 0.99). Multivariable modeling showed that patients with cardiac surgery-associated acute kidney injury were younger (p = 0.002), underwent more complex surgery (p = 0.005), and had longer cardiopulmonary bypass times (p = 0.002). Cardiac surgery-associated acute kidney injury was associated with longer mechanical ventilation and ICU and hospital stays and increased mortality. Patients at University of Michigan had higher rates of cardiac surgery-associated acute kidney injury compared with Boston Children's Hospital patients (66% vs 15%; p < 0.001), but University of Michigan patients with cardiac surgery-associated acute kidney injury had shorter time to extubation and ICU and hospital stays compared with Boston Children's Hospital patients. CONCLUSIONS Tight glycemic control did not reduce the cardiac surgery-associated acute kidney injury rate in this trial cohort. We observed significant differences in cardiac surgery-associated acute kidney injury rates between the two study sites, and there was a differential effect of cardiac surgery-associated acute kidney injury on clinical outcomes by site. These findings warrant further investigation to identify causal variation in perioperative practices that affect cardiac surgery-associated acute kidney injury epidemiology.
Collapse
|
6
|
Agus MSD, Wypij D, Hirshberg EL, Srinivasan V, Faustino EV, Luckett PM, Alexander JL, Asaro LA, Curley MAQ, Steil GM, Nadkarni VM. Tight Glycemic Control in Critically Ill Children. N Engl J Med 2017; 376:729-741. [PMID: 28118549 PMCID: PMC5444653 DOI: 10.1056/nejmoa1612348] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND In multicenter studies, tight glycemic control targeting a normal blood glucose level has not been shown to improve outcomes in critically ill adults or children after cardiac surgery. Studies involving critically ill children who have not undergone cardiac surgery are lacking. METHODS In a 35-center trial, we randomly assigned critically ill children with confirmed hyperglycemia (excluding patients who had undergone cardiac surgery) to one of two ranges of glycemic control: 80 to 110 mg per deciliter (4.4 to 6.1 mmol per liter; lower-target group) or 150 to 180 mg per deciliter (8.3 to 10.0 mmol per liter; higher-target group). Clinicians were guided by continuous glucose monitoring and explicit methods for insulin adjustment. The primary outcome was the number of intensive care unit (ICU)-free days to day 28. RESULTS The trial was stopped early, on the recommendation of the data and safety monitoring board, owing to a low likelihood of benefit and evidence of the possibility of harm. Of 713 patients, 360 were randomly assigned to the lower-target group and 353 to the higher-target group. In the intention-to-treat analysis, the median number of ICU-free days did not differ significantly between the lower-target group and the higher-target group (19.4 days [interquartile range {IQR}, 0 to 24.2] and 19.4 days [IQR, 6.7 to 23.9], respectively; P=0.58). In per-protocol analyses, the median time-weighted average glucose level was significantly lower in the lower-target group (109 mg per deciliter [IQR, 102 to 118]; 6.1 mmol per liter [IQR, 5.7 to 6.6]) than in the higher-target group (123 mg per deciliter [IQR, 108 to 142]; 6.8 mmol per liter [IQR, 6.0 to 7.9]; P<0.001). Patients in the lower-target group also had higher rates of health care-associated infections than those in the higher-target group (12 of 349 patients [3.4%] vs. 4 of 349 [1.1%], P=0.04), as well as higher rates of severe hypoglycemia, defined as a blood glucose level below 40 mg per deciliter (2.2 mmol per liter) (18 patients [5.2%] vs. 7 [2.0%], P=0.03). No significant differences were observed in mortality, severity of organ dysfunction, or the number of ventilator-free days. CONCLUSIONS Critically ill children with hyperglycemia did not benefit from tight glycemic control targeted to a blood glucose level of 80 to 110 mg per deciliter, as compared with a level of 150 to 180 mg per deciliter. (Funded by the National Heart, Lung, and Blood Institute and others; HALF-PINT ClinicalTrials.gov number, NCT01565941 .).
Collapse
Affiliation(s)
- Michael S D Agus
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - David Wypij
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Eliotte L Hirshberg
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Vijay Srinivasan
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - E Vincent Faustino
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Peter M Luckett
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Jamin L Alexander
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Lisa A Asaro
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Martha A Q Curley
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Garry M Steil
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| | - Vinay M Nadkarni
- From the Division of Medicine Critical Care (M.S.D.A., J.L.A., G.M.S.) and the Department of Cardiology (D.W., L.A.A.), Boston Children's Hospital and Harvard Medical School, Boston; the Division of Pediatric Critical Care, University of Utah Medical School, Primary Children's Hospital, Salt Lake City, and Intermountain Medical Center, Murray - both in Utah (E.L.H.); Children's Hospital of Philadelphia (V.S., V.M.N.) and the Perelman School of Medicine (V.S., M.A.Q.C., V.M.N.) and the School of Nursing (M.A.Q.C.), University of Pennsylvania - all in Philadelphia; Yale School of Medicine, New Haven, CT (E.V.F.); and Children's Medical Center Dallas and the University of Texas Southwestern Medical School, Dallas (P.M.L.)
| |
Collapse
|
7
|
Sadhwani A, Asaro LA, Goldberg C, Ware J, Butcher J, Gaies M, Smith C, Alexander JL, Wypij D, Agus MSD. Impact of Tight Glycemic Control on Neurodevelopmental Outcomes at 1 Year of Age for Children with Congenital Heart Disease: A Randomized Controlled Trial. J Pediatr 2016; 174:193-198.e2. [PMID: 27112038 PMCID: PMC4925287 DOI: 10.1016/j.jpeds.2016.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/03/2016] [Accepted: 03/21/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To assess the association of postoperative tight glycemic control and hypoglycemia in children undergoing cardiac surgery with neurodevelopmental outcomes at 1 year of age. STUDY DESIGN A 2-center, prospective, randomized trial of postoperative tight glycemic control vs standard care was conducted in 980 children undergoing cardiac surgery. Neurodevelopmental outcomes were assessed at nine to 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), the Adaptive Behavior Assessment System, Second Edition, the Ages and Stages Questionnaire, Third Edition, and the Brief Infant Toddler Social-Emotional Assessment. RESULTS Neurodevelopmental follow-up was performed on 237 patients with a mean age of 13 months. No significant treatment group differences were found in the Bayley-III and Adaptive Behavior Assessment System, Second Edition composite scores or percentage at risk based on the Ages and Stages Questionnaire, Third Edition and the Brief Infant Toddler Social-Emotional Assessment. Patients who experienced moderate to severe hypoglycemia (n = 8) had lower Bayley-III composite scores compared with patients with no to mild hypoglycemia, even after controlling for factors known to be associated with poorer neurodevelopmental outcomes. CONCLUSION For infants undergoing cardiac surgery, tight glycemic control did not impact neurodevelopmental outcomes compared with standard care. These data suggest a possible association between moderate to severe hypoglycemia and poorer neurodevelopmental outcomes at 1 year of age. TRIAL REGISTRATION ClinicalTrials.gov: NCT00443599.
Collapse
Affiliation(s)
- Anjali Sadhwani
- Cardiac Neurodevelopmental Program, Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA.
| | - Lisa A. Asaro
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Caren Goldberg
- Division of Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI,Department of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI
| | - Janice Ware
- Cardiac Neurodevelopmental Program, Boston Children's Hospital and Harvard Medical School, Boston, MA,Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Jennifer Butcher
- Department of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI,Division of Pediatric Psychology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI
| | - Michael Gaies
- Division of Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI,Department of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI
| | - Cynthia Smith
- Division of Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI,Department of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, MI
| | - Jamin L. Alexander
- Division of Medicine Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Michael S. D. Agus
- Division of Medicine Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Agus MSD, Asaro LA, Steil GM, Alexander JL, Silverman M, Wypij D, Gaies MG. Tight glycemic control after pediatric cardiac surgery in high-risk patient populations: a secondary analysis of the safe pediatric euglycemia after cardiac surgery trial. Circulation 2014; 129:2297-304. [PMID: 24671945 DOI: 10.1161/circulationaha.113.008124] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Our previous randomized, clinical trial showed that postoperative tight glycemic control (TGC) for children undergoing cardiac surgery did not reduce the rate of health care-associated infections compared with standard care (STD). Heterogeneity of treatment effect may exist within this population. METHODS AND RESULTS We performed a post hoc exploratory analysis of 980 children from birth to 36 months of age at the time of cardiac surgery who were randomized to postoperative TGC or STD in the intensive care unit. Significant interactions were observed between treatment group and both neonate (age ≤30 days; P=0.03) and intraoperative glucocorticoid exposure (P=0.03) on the risk of infection. The rate and incidence of infections in subjects ≤60 days old were significantly increased in the TGC compared with the STD group (rate: 13.5 versus 3.7 infections per 1000 cardiac intensive care unit days, P=0.01; incidence: 13% versus 4%, P=0.02), whereas infections among those >60 days of age were significantly reduced in the TGC compared with the STD group (rate: 5.0 versus 14.1 infections per 1000 cardiac intensive care unit days, P=0.02; incidence: 2% versus 5%, P=0.03); the interaction of treatment group by age subgroup was highly significant (P=0.001). Multivariable logistic regression controlling for the main effects revealed that previous cardiac surgery, chromosomal anomaly, and delayed sternal closure were independently associated with increased risk of infection. CONCLUSIONS This exploratory analysis demonstrated that TGC may lower the risk of infection in children >60 days of age at the time of cardiac surgery compared with children receiving STD. Meta-analyses of past and ongoing clinical trials are necessary to confirm these findings before clinical practice is altered. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00443599.
Collapse
Affiliation(s)
- Michael S D Agus
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.).
| | - Lisa A Asaro
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.)
| | - Garry M Steil
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.)
| | - Jamin L Alexander
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.)
| | - Melanie Silverman
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.)
| | - David Wypij
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.)
| | - Michael G Gaies
- From the Division of Medicine Critical Care (M.S.D.A., G.M.S., J.L.A., M.S.) and Department of Cardiology (L.A.A., D.W.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA (D.W.); and Division of Pediatric Cardiology, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor (M.G.G.)
| | | |
Collapse
|
9
|
Forbes NC, Anders N. Does tight glycemic control improve outcomes in pediatric patients undergoing surgery and/or those with critical illness? Int J Gen Med 2013; 7:1-11. [PMID: 24353435 PMCID: PMC3862589 DOI: 10.2147/ijgm.s55649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This literature review examines the current evidence regarding the potential usefulness of tight glycemic control in pediatric surgical patients. In adults, fluctuations in glucose levels and/or prolonged hyperglycemia have been shown to be associated with poor outcomes with respect to morbidity and mortality. This review begins by summarizing the findings of key papers in adult patients and continues by investigating whether or not similar results have been seen in pediatric patients by performing a comprehensive literature review using Medline (OVID). A database search using the OVID interface and including the search terms (exp glucose) AND (exp surgery) AND (exp Paediatric/pediatric) AND (exp Hypoglycaemia/hypoglycemia) AND (exp Hyperglycaemia/hyperglycemia) yielded a total of 150+ papers, of which 24 fulfilled our criteria. We isolated papers utilizing pediatric patients who were hospitalized due to illness and/or surgery. Our review highlights several difficulties encountered in addressing this potentially useful clinical intervention. An absence of scientifically robust and randomized trials and the existence of several small-powered trials yielding conflicting results mean we cannot recommend tight glycemic control in these patients. Differences in study design and disagreements concerning the crucial stage of surgery where hyperglycemia becomes important are compounded by an over-reliance on the discretion of clinicians in the absence of well described treatment protocols. Closer inspection of key papers in adult patients identified fundamental discrepancies between exact definitions of both hyperglycemia and hypoglycemia. This lack of consensus, along with a fear of inducing iatrogenic hypoglycemia in pediatric patients, has resulted in professional bodies advising against this form of intervention. In conclusion, we cannot recommend use of tight glycemic control in pediatric surgical patients due to unclear glucose definitions, unclear thresholds for treatment, and the unknown long-term effects of iatrogenic hypoglycemia on the developing body and brain.
Collapse
Affiliation(s)
- Neil Christopher Forbes
- Department of Anaesthesia, Royal Manchester Children's Hospital, Greater Manchester, England
| | - Nicola Anders
- Department of Anaesthesia, Royal Manchester Children's Hospital, Greater Manchester, England
| |
Collapse
|
10
|
Agus MSD, Steil GM, Wypij D, Costello JM, Laussen PC, Langer M, Alexander JL, Scoppettuolo LA, Pigula FA, Charpie JR, Ohye RG, Gaies MG. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med 2012; 367:1208-19. [PMID: 22957521 PMCID: PMC3501680 DOI: 10.1056/nejmoa1206044] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In some studies, tight glycemic control with insulin improved outcomes in adults undergoing cardiac surgery, but these benefits are unproven in critically ill children at risk for hyperinsulinemic hypoglycemia. We tested the hypothesis that tight glycemic control reduces morbidity after pediatric cardiac surgery. METHODS In this two-center, prospective, randomized trial, we enrolled 980 children, 0 to 36 months of age, undergoing surgery with cardiopulmonary bypass. Patients were randomly assigned to either tight glycemic control (with the use of an insulin-dosing algorithm targeting a blood glucose level of 80 to 110 mg per deciliter [4.4 to 6.1 mmol per liter]) or standard care in the cardiac intensive care unit (ICU). Continuous glucose monitoring was used to guide the frequency of blood glucose measurement and to detect impending hypoglycemia. The primary outcome was the rate of health care-associated infections in the cardiac ICU. Secondary outcomes included mortality, length of stay, organ failure, and hypoglycemia. RESULTS A total of 444 of the 490 children assigned to tight glycemic control (91%) received insulin versus 9 of 490 children assigned to standard care (2%). Although normoglycemia was achieved earlier with tight glycemic control than with standard care (6 hours vs. 16 hours, P<0.001) and was maintained for a greater proportion of the critical illness period (50% vs. 33%, P<0.001), tight glycemic control was not associated with a significantly decreased rate of health care-associated infections (8.6 vs. 9.9 per 1000 patient-days, P=0.67). Secondary outcomes did not differ significantly between groups, and tight glycemic control did not benefit high-risk subgroups. Only 3% of the patients assigned to tight glycemic control had severe hypoglycemia (blood glucose <40 mg per deciliter [2.2 mmol per liter]). CONCLUSIONS Tight glycemic control can be achieved with a low hypoglycemia rate after cardiac surgery in children, but it does not significantly change the infection rate, mortality, length of stay, or measures of organ failure, as compared with standard care. (Funded by the National Heart, Lung, and Blood Institute and others; SPECS ClinicalTrials.gov number, NCT00443599.).
Collapse
Affiliation(s)
- Michael S D Agus
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|