1
|
Shi X, Simms KJ, Ewing TJ, Lin YP, Chen YL, Melvan JN, Siggins RW, Zhang P. The bone marrow endothelial progenitor cell response to septic infection. Front Immunol 2024; 15:1368099. [PMID: 38665923 PMCID: PMC11044677 DOI: 10.3389/fimmu.2024.1368099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Department of Surgery, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Kevin J. Simms
- Department of Integrative Medical Sciences, Department of Surgery, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Thomas J. Ewing
- West Clinical Laboratory, Lakeland Regional Health Medical Center, Lakeland, FL, United States
| | | | - Yi-Ling Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - John N. Melvan
- Memorial Cardiac and Vascular Institute, Memorial Healthcare System, Hollywood, FL, United States
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ping Zhang
- Department of Integrative Medical Sciences, Department of Surgery, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
2
|
Yin XY, Liu Y, Lu ZM, Pang T, Cui HT, Xue XC, Fang GE, Luo TH. LncRNA NEAT-2 regulate the function of endothelial progenitor cells in experimental Sepsis model. Mol Biol Rep 2023; 50:6643-6654. [PMID: 37358763 DOI: 10.1007/s11033-023-08522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Sepsis is a life-threatening disease with a limited effectiveness and the potential mechanism remains unclear. LncRNA NEAT-2 is reported to be involved in the regulation of cardiovascular disease. This study aimed to investigate the function of NEAT-2 in sepsis. METHODS We built sepsis animal model with Male Balb/C mice induced by cecal ligation and puncture (CLP). A total of 54 mice were randomly assigned into eight groups: sham operation group (n = 18), CLP group (n = 18), CLP plus si-control group (n = 3), CLP plus si-NEAT2 group (n = 3), CLP plus mimic control group (n = 3), CLP plus miR-320 group (n = 3), CLP plus normal saline group (n = 3), and normal control group (n = 3). The number of peripheral endothelial progenitor cells (EPCs), the expression level of NEAT-2 and miR-320 were detected during progression of sepsis, as well as the number of peripheral EPCs and level of TNF-α, IL-6, VEGF, ALT, AST and Cr. In addition, the function of EPCs was evaluated after NEAT-2 knockdown and miR-320 overexpression in vitro. RESULTS The number of circulating EPCs increased significantly in sepsis. NEAT-2 expression was significantly increased in the progress of sepsis, accompanied with miR-320 downregulated. NEAT-2 knockdown and miR-320 overexpression attenuated hepatorenal function and increased cytokines in sepsis. Moreover, NEAT-2 knockdown and miR-320 overexpression decreased the proliferation, migration and angiogenesis of endothelial progenitor cells in vitro. CONCLUSIONS LncRNA-NEAT2 regulated the number and function of endothelial progenitor cells via miR-320 in sepsis, which may contribute to the development of novel potential clinical therapy for sepsis.
Collapse
Affiliation(s)
- Xiao-Yi Yin
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Hepatobiliary Pancreatic Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tao Pang
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hang-Tian Cui
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xu-Chao Xue
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guo-En Fang
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tian-Hang Luo
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Yang B, Wang X, Liu Z, Lu Z, Fang G, Xue X, Luo T. Endothelial-Related Biomarkers in Evaluation of Vascular Function During Progression of Sepsis After Severe Trauma: New Potential Diagnostic Tools in Sepsis. J Inflamm Res 2023; 16:2773-2782. [PMID: 37435113 PMCID: PMC10332413 DOI: 10.2147/jir.s418697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
Purpose This study aimed to investigate the changes in endothelial-related biomarkers and their relationship with the incidence and prognosis of patients with sepsis after severe trauma. Methods A total of 37 severe trauma patients admitted to our hospital from Jan. to Dec. 2020 were enrolled in our research. All enrolled patients were divided into the sepsis and the non-sepsis groups. Endothelial progenitor cells (EPCs), circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were detected on admission time; 24-48 hours and 48-72 hours after admission respectively. Demographic data, Acute Physiology, Chronic Health Evaluation (APACHE) II, and Sequential Organ Failure Assessment (SOFA) score were calculated every 24 h of admission to assess the severity of organ dysfunction. Receiver operating characteristic (ROC) curves were drawn to compare the areas under the curve (AUC) of endothelial-related biomarkers for the diagnosis of sepsis. Results The incidence rate of sepsis was 45.95% in all patients. The SOFA score in the sepsis group was significantly higher than that in the non-sepsis group (2 points vs 0 points, P<0.01). The number of EPCs, CECs, and EMPs all rose quickly in the early phase after trauma. The number of EPCs was similar in both groups, but the number of CECs and EMPs in the Sepsis Group was much higher than in the non-Sepsis Group (all P<0.01). Logistic regression analysis showed that the occurrence of sepsis was closely related to the expression of 0-24h CECs and 0-24h EMPs. The AUC ROC for CECs in different time periods were 0.815, 0.877, and 0.882, respectively (all P<0.001). The AUC ROC for EMPs in 0-24h was 0.868 (P=0.005). Conclusion The expression of EMPs was higher in early severe trauma, and high levels of EMPs were significantly higher in patients with early sepsis and poor prognosis.
Collapse
Affiliation(s)
- Biao Yang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Xiaoyong Wang
- Department of Gastrointestinal Surgery, People’s Hospital of Haimen City, Nantong, Jiangsu Province, 226100, People’s Republic of China
| | - Zhaorui Liu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhengmao Lu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Guoen Fang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Xuchao Xue
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Tianhang Luo
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
4
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
5
|
Fabi M, Petrovic B, Andreozzi L, Corinaldesi E, Filice E, Biagi C, Rizzello A, Mattesini BE, Bugani S, Lanari M. Circulating Endothelial Cells: A New Possible Marker of Endothelial Damage in Kawasaki Disease, Multisystem Inflammatory Syndrome in Children and Acute SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms231710106. [PMID: 36077506 PMCID: PMC9456219 DOI: 10.3390/ijms231710106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Kawasaki Disease (KD) and Multisystem Inflammatory Syndrome in Children (MIS-C) are pediatric diseases characterized by systemic inflammation and vascular injury, potentially leading to coronary artery lesions (CALs). Data on vascular injury occurring during acute COVID-19 (AC19) in children are still lacking. The aim of our study was to investigate endothelial injury in KD-, MIS-C- and AC19-dosing circulating endothelial cells (CECs). METHODS We conducted a multicenter prospective study. CECs were enumerated by CellSearch technology through the immunomagnetic capture of CD146-positive cells from whole blood. RESULTS We enrolled 9 KD, 20 MIS-C and 10 AC19. During the acute stage, the AC19 and KD patients had higher CECs levels than the MIS-C patients. From the acute to subacute phase, a significant CEC increase was observed in the KD patients, while a mild decrease was detected in the MIS-C patients. Cellular clusters/syncytia were more common in the KD patients. No correlation between CECs and CALs were found in the MIS-C patients. The incidence of CALs in the KD group was too low to investigate this correlation. CONCLUSIONS Our study suggests a possible role of CECs as biomarkers of systemic inflammation and endothelial dysfunction in KD and MIS-C and different mechanisms of vascular injury in these diseases. Further larger studies are needed.
Collapse
Affiliation(s)
- Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Biljana Petrovic
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence:
| | | | - Emanuele Filice
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Carlotta Biagi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessia Rizzello
- Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | | | - Simone Bugani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Pu Y, Zhao L, Xi Y, Xia Y, Qian Y. The protective effects of Mirtazapine against lipopolysaccharide (LPS)-induced brain vascular hyperpermeability. Bioengineered 2022; 13:3680-3693. [PMID: 35081868 PMCID: PMC8973832 DOI: 10.1080/21655979.2021.2024962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis is mainly characterized by severe inflammation triggered by infection, and sepsis-associated encephalopathy (SAE) is defined as brain damage caused by sepsis. Disruption of the blood-brain barrier (BBB) triggered by injured brain microvascular endothelial cells (BMECs) and damaged tight junction (TJ) structure is closely associated with the pathogenesis of SAE. The present research proposed to evaluate the potential therapeutic effects of Mirtazapine, a central presynaptic α2 receptor antagonist, on LPS-induced BBB disruption. The mice were administered with normal saline and 10 mg/kg Mirtazapine for 8 consecutive days, and from day 6, the experiment group of mice received LPS for 2 days to induce SAE. We found that the increased BBB permeability, elevated concentrations of inflammatory factors in brain tissues, and downregulated zonula occludens -1 (ZO-1) were observed in LPS-stimulated mice, all of which were reversed by 10 mg/kg Mirtazapine. In the in vitro assay, bEnd.3 brain endothelial cells were treated with 1 μM LPS in the absence or presence of Mirtazapine (25, 50 μM). We found that LPS-treated cells had significantly declined transendothelial electrical resistance (TEER), increased monolayer permeability, elevated production of inflammatory factors, and downregulated ZO-1. However, 25 and 50 μM Mirtazapine ameliorated all these LPS- induced aberrations. Mirtazapine also mitigated the decreased level of NF-E2-related factor 2 (Nrf2) in LPS-challenged endothelial cells. The protective effect of Mirtazapine on endothelial permeability against LPS was significantly abolished by the knockdown of Nrf2. Collectively, we concluded that Mirtazapine exerted protective effects on LPS-induced endothelial cells hyperpermeability by upregulating Nrf2.
Collapse
Affiliation(s)
- Yuehong Pu
- Department of Emergency Medicine, Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhao
- Department of Emergency Medicine, Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao Xi
- Department of Emergency Medicine, Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichun Xia
- Department of Emergency Medicine, Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Qian
- Department of Emergency Medicine, Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res 2021; 117:60-73. [PMID: 32215570 PMCID: PMC7810126 DOI: 10.1093/cvr/cvaa070] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT Sepsis accounts for nearly 700 000 deaths in Europe annually and is caused by an overwhelming host response to infection resulting in organ failure. The endothelium is an active contributor to sepsis and as such represents a major target for therapy. During sepsis, endothelial cells amplify the immune response and activate the coagulation system. They are both a target and source of inflammation and serve as a link between local and systemic immune responses. In response to cytokines produced by immune cells, the endothelium expresses adhesion molecules and produces vasoactive compounds, inflammatory cytokines, and chemoattractants, thus switching from an anticoagulant to procoagulant state. These responses contribute to local control of infection, but systemic activation can lead to microvascular thrombosis, capillary permeability, hypotension, tissue hypoxia, and ultimately tissue damage. This review focuses on the role of the endothelium in leucocyte adhesion and transmigration as well as production of reactive oxygen and nitrogen species, microRNAs and cytokines, formation of signalling microparticles, and disseminated intravascular coagulation. We also discuss alterations in endothelial permeability and apoptosis. Finally, we review the diagnostic potential of endothelial markers and endothelial pathways as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Elena V Dolmatova
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Keke Wang
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Rohan Mandavilli
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Z Oikonomakou M, Gkentzi D, Gogos C, Akinosoglou K. Biomarkers in pediatric sepsis: a review of recent literature. Biomark Med 2020; 14:895-917. [PMID: 32808806 DOI: 10.2217/bmm-2020-0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
Sepsis remains the leading cause of death in infants and children worldwide. Prompt diagnosis and monitoring of infection is pivotal to guide therapy and optimize outcomes. No single biomarker has so far been identified to accurately diagnose sepsis, monitor response and predict severity. We aimed to assess existing evidence of available sepsis biomarkers, and their utility in pediatric population. C-reactive protein and procalcitonin remain the most extensively evaluated and used biomarkers. However, biomarkers related to endothelial damage, vasodilation, oxidative stress, cytokines/chemokines and cell bioproducts have also been identified, often with regard to the site of infection and etiologic pathogen; still, with controversial utility. A multi-biomarker model driven by genomic tools could establish a personalized approach in future disease management.
Collapse
Affiliation(s)
| | - Despoina Gkentzi
- Department of Pediatrics, University Hospital of Patras, Rio 26504, Greece
| | - Charalambos Gogos
- Department of Internal Medicine & Infectious Diseases, University Hospital of Patras, Rio 26504, Greece
| | - Karolina Akinosoglou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Patras, Rio 26504, Greece
| |
Collapse
|
9
|
El-Aswad BEDW, Sonbol AA, Moharm IM, El-Refai SA, Seleem HEDM, Soliman SS. Circulating endothelial cells in severe Plasmodium falciparum infection. Parasitol Int 2019; 72:101926. [PMID: 31100355 DOI: 10.1016/j.parint.2019.101926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium falciparum infection is associated with diffuse vascular dys-regulation. Levels of blood circulating endothelial cells (CECs; CD146+CD45-) are a marker of vascular injury. This study aimed to measure blood CECs by flow cytometery in patients with acute malaria infection before and after treatment and to evaluate the prognostic value of that measurement for that disease. The subjects were allocated into: Group I: uncomplicated malaria (UM, n = 32), Group II: severe malaria (SM, n = 12), Group III: the treated UM (TUM, n = 32), Group IV: the treated SM (TSM, n = 12) and Group V: healthy controls (HC, n = 25). Before treatment, SM patients showed the highest mean number of CECs (30,658.3 ± 2658.2/5 × 106 peripheral blood mononuclear cells (PBMCs)), followed by UM patients (19,481.56 ± 866.83/5x106PBMCs) and both groups were significantly higher than HC (2034 ± 300.59/5x106PBMCs, P < .001). The level of CECs decreased significantly in both infected groups after treatment; in TUM it became 5602.18 ± 509.72/5 × 106PBMCs and in TSM it reached 8457.5 ± 452.4/5 × 106 PBMCs (both values P < .001 in comparison with SM). By receiver operating characteristic curve analysis, the best cut-off count for CECs which enables prediction of the occurrence of severe malaria infection was 27,150/5 × 106 PBMCs or more, with 100% sensitivity, 100% specificity, and 100% accuracy. CECs had a significant positive correlation with parasitemia index and serum creatinine and a significant negative correlation with hemoglobin concentration in patients with acute malaria. In conclusion, the level of CECs could be used as a biomarker denoting endothelium damage during acute P. falciparum infection, and it correlated with infection severity and predicted its prognosis.
Collapse
Affiliation(s)
- Bahaa El-Deen W El-Aswad
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt.
| | - Ahmed A Sonbol
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Ismail M Moharm
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Samar A El-Refai
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Hosam El-Din M Seleem
- Department of Tropical medicine, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Shiamaa S Soliman
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| |
Collapse
|
10
|
Patry C, Stamm D, Betzen C, Tönshoff B, Yard BA, Beck GC, Rafat N. CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. JOURNAL OF INFLAMMATION-LONDON 2018; 15:10. [PMID: 29796010 PMCID: PMC5956812 DOI: 10.1186/s12950-018-0186-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/07/2018] [Indexed: 12/26/2022]
Abstract
Background Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Methods Peripheral blood mononuclear cells from septic patients (n = 30), ICU control patients (n = 11) and healthy volunteers (n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and − 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. Results EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Conclusions Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis. Electronic supplementary material The online version of this article (10.1186/s12950-018-0186-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Patry
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.,2Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Daniela Stamm
- 3Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christian Betzen
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Burkhard Tönshoff
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Benito A Yard
- 4Department of Medicine V, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Grietje Ch Beck
- Department of Anaesthesiology and Critical Care Medicine, HELIOS Dr. Horst Schmidt Kliniken, Wiesbaden, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| | - Neysan Rafat
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.,6Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
| |
Collapse
|
11
|
VCAM-1 expression is upregulated by CD34+/CD133+-stem cells derived from septic patients. PLoS One 2018; 13:e0195064. [PMID: 29601599 PMCID: PMC5877884 DOI: 10.1371/journal.pone.0195064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/15/2018] [Indexed: 12/29/2022] Open
Abstract
CD34+/CD133+- cells are a bone marrow derived stem cell population, which presumably contain vascular progenitor cells and are associated with improved vascular repair. In this study, we investigated whether the adhesion molecules ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), E-selectin und L-selectin, which are involved in homing of vascular stem cells, are upregulated by CD34+/CD133+-stem cells from septic patients and would be associated with improved clinical outcome. Peripheral blood mononuclear cells from intensive care unit (ICU) patients with (n = 30) and without sepsis (n = 10), and healthy volunteers (n = 15) were isolated using Ficoll density gradient centrifugation. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin was detected on CD34+/CD133+-stem cells by flow cytometry. The severity of disease was assessed by the Simplified Acute Physiology Score (SAPS) II. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined by Enzyme-linked immunosorbent assay. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin by CD34+/CD133+-stem cells was significantly upregulated in septic patients, and correlated with sepsis severity. Furthermore, high expression of VCAM-1 by CD34+/CD133+-stem cells revealed a positive association with mortalitiy (p<0.05). Furthermore, significantly higher serum concentrations of VEGF and Ang-2 were found in septic patients, however none showed a strong association with survival. Our data suggest, that VCAM-1 upregulation on CD34+/CD133+-stem cells could play a crucial role in their homing in the course of sepsis. An increase in sepsis severity resulted in both and increase in CD34+/CD133+-stem cells and VCAM-1-expression by those cells, which might reflect an increase in need for vascular repair.
Collapse
|
12
|
Skrzypczyk P, Pańczyk-Tomaszewska M. Methods to evaluate arterial structure and function in children - State-of-the art knowledge. Adv Med Sci 2017; 62:280-294. [PMID: 28501727 DOI: 10.1016/j.advms.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND With increasing rates of hypertension, obesity, and diabetes in the pediatric population, wide available, and reproducible methods are necessary to evaluate arterial structure and function in children and adolescents. METHODS MEDLINE/Pubmed was searched for articles published in years 2012-2017 on methodology of, current knowledge on, and limitations of the most commonly used methods to evaluate central, proximal and coronary arteries, as well as endothelial function in pediatric patients. RESULTS Among 1528 records screened (including 1475 records from years 2012 to 2017) 139 papers were found suitable for the review. Following methods were discussed in this review article: ultrasound measurements of the intima-media thickness, coronary calcium scoring using computed tomography, arterial stiffness measurements (pulse wave velocity and pulse wave analysis, carotid artery distensibility, pulse pressure, and ambulatory arterial stiffness index), ankle-brachial index, and methods to evaluate vascular endothelial function (flow-mediated vasodilation, peripheral arterial tonometry, Doppler laser flowmetry, and cellular and soluble markers of endothelial dysfunction). CONCLUSIONS Ultrasonographic measurement of carotid intima-media thickness and measurement of pulse wave velocity (by oscillometry or applanation tonometry) are highly reproducible methods applicable for both research and clinical practice with proved applicability for children aged ≥6 years or with height ≥120cm. Evaluation of ambulatory arterial stiffness index by ambulatory blood pressure monitoring is another promising option in pediatric high-risk patients. Clearly, further studies are necessary to evaluate usefulness of these and other methods for the detection of subclinical arterial damage in children.
Collapse
|
13
|
Yi L, Huang X, Guo F, Zhou Z, Chang M, Tang J, Huan J. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway. Front Cell Infect Microbiol 2016; 6:133. [PMID: 27807512 PMCID: PMC5069405 DOI: 10.3389/fcimb.2016.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis.
Collapse
Affiliation(s)
- Lei Yi
- Department of Orthopedics, Shanghai Fengxian Central Hospital, Branch of The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jiajun Tang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|