1
|
Liu H, Su X, Shang M, Ma L, Bai W, Wang H, Quan L, Li Y, Huang Z, He J, Dun W, Zhang Y. Abnormal dynamic functional networks during pain-free periods: resting-state co-activation pattern analysis in primary dysmenorrhea: Abnormal dynamic functional networks in primary dysmenorrhea. Neuroimage 2025:121009. [PMID: 39793639 DOI: 10.1016/j.neuroimage.2025.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Chronic pain alters the configuration of brain functional networks. Primary dysmenorrhea (PDM) is a form of chronic visceral pain, which has been identified spatial alterations in brain functional networks using static functional connectivity analysis methods. However, the dynamics alterations of brain functional networks during pain-free periovulation phase remain unclear. Using the co-activation pattern (CAP) method, we investigated the dynamic network characteristics of brain functional networks and their relationship with pain-related emotions in a sample of 59 women with PDM and 57 demographically matched healthy controls (HCs) during the pain-free periovulation phase. We observed that patients with PDM showed significant alterations in brain dynamics compared to HCs in the slow-4 (0.027-0.073 Hz) frequency band during the pain-free periovulation phase. Additionally, the fraction of time for CAP state 2 was positively correlated with the Pain Catastrophizing Scale-helplessness score, while the persistence time for CAP state 1 was positively correlated with the McGill Pain Questionnaire score. Our results provide new insights, suggesting that the atypical brain functional network dynamics may serve as a potential biological marker of patients with PDM during the pain-free periovulation phase.
Collapse
Affiliation(s)
- Huiping Liu
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xing Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China.; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Meiling Shang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ling Ma
- Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weixian Bai
- Department of Medical Imaging, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Hui Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Quan
- Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China.; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zigang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China.; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiaxi He
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wanghuan Dun
- Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuchen Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Quan S, Wang C, Huang J, Wang S, Jia T, Liang J, Zhao L, Liu J. Abnormal thalamocortical network dynamics in patients with migraine and its relationship with electroacupuncture treatment response. Brain Imaging Behav 2024; 18:1467-1479. [PMID: 39340626 DOI: 10.1007/s11682-024-00938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Acupuncture is an effective and safe alternative treatment to prevent and treat migraine, but its central analgesic mechanism remains poorly understood. It is believed that the dysfunction of the thalamocortical connectivity network is an important contributor to migraine pathophysiology. This study aimed to investigate the abnormal thalamocortical network dynamics in patients with migraine without aura (MWoA) before and after an 8-week electroacupuncture treatment. A total of 143 patients with MWoA and 100 healthy controls (HC) were included, and resting-state functional magnetic resonance imaging (fMRI) data were acquired. Dynamic functional network connectivity (dFNC) was calculated for each subject. The modulation effect of electroacupuncture on clinical outcomes of migraine, dFNC, and their association were investigated. In our results, dFNC matrices were classified into two clusters (brain states). As compared with the HC, patients with MWoA had a higher proportion of brain states with a strong thalamocortical between-network connection, implying an abnormal balance of the network organization across dFNC brain states. Correlation analysis showed that this abnormality was associated with summarized clinical measurements of migraine. A total of 60 patients were willing to receive an 8-week electroacupuncture treatment, and 24 responders had 50% changes in headache frequency. In electroacupuncture responders, electroacupuncture could change the abnormal thalamocortical connectivities towards a pattern more similar to that of HC. Our findings suggested that electroacupuncture could relieve the symptoms of migraine and has the potential capacity to regulate the abnormal function of the thalamocortical circuits.
Collapse
Affiliation(s)
- Shilan Quan
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Chenxi Wang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Jia Huang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Shujun Wang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Tianzhe Jia
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jixin Liu
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| |
Collapse
|
3
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2024:15500594241264892. [PMID: 39056313 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Lou W, Li X, Jin R, Peng W. Time-varying phase synchronization of resting-state functional magnetic resonance imaging reveals a shift toward self-referential processes during sustained pain. Pain 2024; 165:1493-1504. [PMID: 38193830 DOI: 10.1097/j.pain.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
ABSTRACT Growing evidence has suggested that time-varying functional connectivity between different brain regions might underlie the dynamic experience of pain. This study used a novel, data-driven framework to characterize the dynamic interactions of large-scale brain networks during sustained pain by estimating recurrent patterns of phase-synchronization. Resting-state functional magnetic resonance imaging signals were collected from 50 healthy participants before (once) and after (twice) the onset of sustained pain that was induced by topical application of capsaicin cream. We first decoded the instantaneous phase of neural activity and then applied leading eigenvector dynamic analysis on the time-varying phase-synchronization. We identified 3 recurrent brain states that show distinctive phase-synchronization. The presence of state 1, characterized by phase-synchronization between the default mode network and auditory, visual, and sensorimotor networks, together with transitions towards this brain state, increased during sustained pain. These changes can account for the perceived pain intensity and reported unpleasantness induced by capsaicin application. In contrast, state 3, characterized by phase-synchronization between the cognitive control network and sensory networks, decreased after the onset of sustained pain. These results are indicative of a shift toward internally directed self-referential processes (state 1) and away from externally directed cognitive control processes (state 3) during sustained pain.
Collapse
Affiliation(s)
- Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Richu Jin
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
6
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
Affiliation(s)
- Camille Fauchon
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France.
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France.
| | - Hélène Bastuji
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| | - Roland Peyron
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France
- CHU, centre de la douleur, Saint-Etienne, France
| | - Luis Garcia-Larrea
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| |
Collapse
|
7
|
Smith WR, Valrie CR, Jaja C, Kenney MO. Precision, integrative medicine for pain management in sickle cell disease. FRONTIERS IN PAIN RESEARCH 2023; 4:1279361. [PMID: 38028431 PMCID: PMC10666191 DOI: 10.3389/fpain.2023.1279361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Sickle cell disease (SCD) is a prevalent and complex inherited pain disorder that can manifest as acute vaso-occlusive crises (VOC) and/or chronic pain. Despite their known risks, opioids are often prescribed routinely and indiscriminately in managing SCD pain, because it is so often severe and debilitating. Integrative medicine strategies, particularly non-opioid therapies, hold promise in safe and effective management of SCD pain. However, the lack of evidence-based methods for managing SCD pain hinders the widespread implementation of non-opioid therapies. In this review, we acknowledge that implementing personalized pain treatment strategies in SCD, which is a guideline-recommended strategy, is currently fraught with limitations. The full implementation of pharmacological and biobehavioral pain approaches targeting mechanistic pain pathways faces challenges due to limited knowledge and limited financial and personnel support. We recommend personalized medicine, pharmacogenomics, and integrative medicine as aspirational strategies for improving pain care in SCD. As an organizing model that is a comprehensive framework for classifying pain subphenotypes and mechanisms in SCD, and for guiding selection of specific strategies, we present evidence updating pain research pioneer Richard Melzack's neuromatrix theory of pain. We advocate for using the updated neuromatrix model to subphenotype individuals with SCD, to better select personalized multimodal treatment strategies, and to identify research gaps fruitful for exploration. We present a fairly complete list of currently used pharmacologic and non-pharmacologic SCD pain therapies, classified by their mechanism of action and by their hypothesized targets in the updated neuromatrix model.
Collapse
Affiliation(s)
- Wally R. Smith
- Division of General Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Cecelia R. Valrie
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cheedy Jaja
- College of Nursing, University of South Florida School of Nursing, Tampa, FL, United States
| | - Martha O. Kenney
- Department of Anesthesiology, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Rockholt MM, Kenefati G, Doan LV, Chen ZS, Wang J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand? Front Neurosci 2023; 17:1186418. [PMID: 37389362 PMCID: PMC10301750 DOI: 10.3389/fnins.2023.1186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Machine learning is becoming an increasingly common component of routine data analyses in clinical research. The past decade in pain research has witnessed great advances in human neuroimaging and machine learning. With each finding, the pain research community takes one step closer to uncovering fundamental mechanisms underlying chronic pain and at the same time proposing neurophysiological biomarkers. However, it remains challenging to fully understand chronic pain due to its multidimensional representations within the brain. By utilizing cost-effective and non-invasive imaging techniques such as electroencephalography (EEG) and analyzing the resulting data with advanced analytic methods, we have the opportunity to better understand and identify specific neural mechanisms associated with the processing and perception of chronic pain. This narrative literature review summarizes studies from the last decade describing the utility of EEG as a potential biomarker for chronic pain by synergizing clinical and computational perspectives.
Collapse
Affiliation(s)
- Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
9
|
Crawford LS, Meylakh N, Macey PM, Macefield VG, Keay KA, Henderson LA. Stimulus-independent and stimulus-dependent neural networks underpin placebo analgesia responsiveness in humans. Commun Biol 2023; 6:569. [PMID: 37244947 DOI: 10.1038/s42003-023-04951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023] Open
Abstract
The neural circuits that regulate placebo analgesia responsivity are unknown, although engagement of brainstem pain modulatory regions is likely critical. Here we show in 47 participants that differences are present in neural circuit connectivity's in placebo responders versus non-responders. We distinguish stimulus-independent and stimulus-dependent neural networks that display altered connections between the hypothalamus, anterior cingulate cortex and midbrain periaqueductal gray matter. This dual regulatory system underpins an individual's ability to mount placebo analgesia.
Collapse
Affiliation(s)
- Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, VIC, 3800, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Topaz LS, Frid A, Granovsky Y, Zubidat R, Crystal S, Buxbaum C, Bosak N, Hadad R, Domany E, Alon T, Meir Yalon L, Shor M, Khamaisi M, Hochberg I, Yarovinsky N, Volkovich Z, Bennett DL, Yarnitsky D. Electroencephalography functional connectivity-A biomarker for painful polyneuropathy. Eur J Neurol 2023; 30:204-214. [PMID: 36148823 PMCID: PMC10092565 DOI: 10.1111/ene.15575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Advanced analysis of electroencephalography (EEG) data has become an essential tool in brain research. Based solely on resting state EEG signals, a data-driven, predictive and explanatory approach is presented to discriminate painful from non-painful diabetic polyneuropathy (DPN) patients. METHODS Three minutes long, 64 electrode resting-state recordings were obtained from 180 DPN patients. The analysis consisted of a mixture of traditional, explanatory and machine learning analyses. First, the 10 functional bivariate connections best differentiating between painful and non-painful patients in each EEG band were identified and the relevant receiver operating characteristic was calculated. Later, those connections were correlated with selected clinical parameters. RESULTS Predictive analysis indicated that theta and beta bands contain most of the information required for discrimination between painful and non-painful polyneuropathy patients, with area under the receiver operating characteristic curve values of 0.93 for theta and 0.89 for beta bands. Assessing statistical differences between the average magnitude of functional connectivity values and clinical pain parameters revealed that painful DPN patients had significantly higher cortical functional connectivity than non-painful ones (p = 0.008 for theta and p = 0.001 for alpha bands). Moreover, intra-band analysis of individual significant functional connections revealed a positive correlation with average reported pain in the previous 3 months in all frequency bands. CONCLUSIONS Resting state EEG functional connectivity can serve as a highly accurate biomarker for the presence or absence of pain in DPN patients. This highlights the importance of the brain, in addition to the peripheral lesions, in generating the clinical pain picture. This tool can probably be extended to other pain syndromes.
Collapse
Affiliation(s)
- Leah Shafran Topaz
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Alex Frid
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Rabab Zubidat
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Shoshana Crystal
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Chen Buxbaum
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Noam Bosak
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Rafi Hadad
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Erel Domany
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Tayir Alon
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Lian Meir Yalon
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Merav Shor
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Mogher Khamaisi
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel.,Endocrinology, Diabetes, and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel
| | - Irit Hochberg
- Endocrinology, Diabetes, and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Zeev Volkovich
- Department of Software Engineering, ORT Braude College, Karmiel, Israel
| | - David L Bennett
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Yarnitsky
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
11
|
Adaptive changes in sensorimotor processing in patients with acute low back pain. Sci Rep 2022; 12:21741. [PMID: 36526879 PMCID: PMC9758154 DOI: 10.1038/s41598-022-26174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In low back pain (LBP), primary care and secondary prevention of recurrent and persistent LBP are not always successful. Enhanced understanding of neural mechanisms of sensorimotor processing and pain modulation in patients with acute LBP is mandatory. This explorative fMRI study investigated sensorimotor processing due to mechanosensory stimulation of the lumbar spine. We studied 19 adult patients with acute LBP (< 4 weeks of an acute episode) and 23 healthy controls. On a numeric rating scale, patients reported moderate mean pain intensity of 4.5 out of 10, while LBP-associated disability indicated mild mean disability. The event-related fMRI analysis yielded no between-group differences. However, the computation of functional connectivity resulted in adaptive changes in networks involved in sensorimotor processing in the patient group: Connectivity strength was decreased in the salience and cerebellar networks but increased in the limbic and parahippocampal networks. Timewise, these results indicate that early connectivity changes might reflect adaptive physiological processes in an episode of acute LBP. These findings raise intriguing questions regarding their role in pain persistence and recurrences of LBP, particularly concerning the multiple consequences of acute LBP pain. Advanced understanding of neural mechanisms of processing non-painful mechanosensations in LBP may also improve therapeutic approaches.
Collapse
|
12
|
Effat KG. Chronic craniomandibular pain after craniotomy: A long-term clinical study. Cranio 2022:1-8. [PMID: 36503374 DOI: 10.1080/08869634.2022.2154930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Chronic craniomandibular/cervical pain and temporomandibular disorders have not been studied in patients who had a craniotomy several years previously. The aim of the current clinical work was to address these issues. METHODS A total group of 150 ambulant patients who had a previous craniotomy was subclassified according to whether or not the temporalis muscle was manipulated. RESULTS The average incidence of multiple subsite regional head and neck pain was 69.3% a number of years after a craniotomy. Evidence of internal derangement of the temporomandibular joint was significantly higher in the group that required manipulation of the temporalis muscle during the procedure. CONCLUSION The pattern of chronic craniomandibular/cervical pain experienced years after a craniotomy supports the brain neuromatrix theory of pain.
Collapse
Affiliation(s)
- Kamal G Effat
- Department of Otolaryngology, El- Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
13
|
Vamvakas A, Lawn T, Veronese M, Williams SCR, Tsougos I, Howard MA. Neurotransmitter receptor densities are associated with changes in regional Cerebral blood flow during clinical ongoing pain. Hum Brain Mapp 2022; 43:5235-5249. [PMID: 35796178 PMCID: PMC9812236 DOI: 10.1002/hbm.25999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/07/2022] [Accepted: 06/19/2022] [Indexed: 01/15/2023] Open
Abstract
Arterial spin labelling (ASL) plays an increasingly important role in neuroimaging pain research but does not provide molecular insights regarding how regional cerebral blood flow (rCBF) relates to underlying neurotransmission. Here, we integrate ASL with positron emission tomography (PET) and brain transcriptome data to investigate the molecular substrates of rCBF underlying clinically relevant pain states. Two data sets, representing acute and chronic ongoing pain respectively, were utilised to quantify changes in rCBF; one examining pre-surgical versus post-surgical pain, and the second comparing patients with painful hand Osteoarthritis to a group of matched controls. We implemented a whole-brain spatial correlation analysis to explore associations between change in rCBF (ΔCBF) and neurotransmitter receptor distributions derived from normative PET templates. Additionally, we utilised transcriptomic data from the Allen Brain Atlas to inform distributions of receptor expression. Both datasets presented significant correlations of ΔCBF with the μ-opioid and dopamine-D2 receptor expressions, which play fundamental roles in brain activity associated with pain experiences. ΔCBF also correlated with the gene expression distributions of several receptors involved in pain processing. Overall, this is the first study illustrating the molecular basis of ongoing pain ASL indices and emphasises the potential of rCBF as a biomarker in pain research.
Collapse
Affiliation(s)
- Alexandros Vamvakas
- Medical Physics Department, Medical SchoolUniversity of ThessalyLarisaGreece
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Ioannis Tsougos
- Medical Physics Department, Medical SchoolUniversity of ThessalyLarisaGreece
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
14
|
Anderson AR, Monroe TB, Dietrich MS, Bruehl SP, Iversen WL, Cowan RL, Failla MD. Increased pain unpleasantness and pain-related fMRI activation in the periaqueductal gray in Alzheimer's disease. FRONTIERS IN PAIN RESEARCH 2022; 3:914473. [PMID: 36387417 PMCID: PMC9650512 DOI: 10.3389/fpain.2022.914473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background Pain continues to be underrecognized and undertreated in people with Alzheimer's disease (AD). The periaqueductal gray (PAG) is essential to pain processing and modulation yet is damaged by AD. While evidence exists of altered neural processing of pain in AD, there has not been a focused investigation of the PAG during pain in people with AD. Purpose To investigate the role of the PAG in sensory and affective pain processing for people living with AD. Methods Participants from a larger study completed pain psychophysics assessments and then a perceptually-matched heat pain task (warmth, mild, and moderate pain) during a functional MRI scan. In this cross-sectional study, we examined blood oxygenation level-dependent (BOLD) responses in the PAG and other pain-related regions in participants with AD (n = 18) and cognitively intact older adults (age- and sex-matched, n = 18). Associations of BOLD percent signal change and psychophysics were also examined. Results There were significant main effects of AD status on the temperature needed to reach each perception of warmth or pain, where people with AD reached higher temperatures. Furthermore, participants with AD rated mild and moderate pain as more unpleasant than controls. PAG BOLD activation was greater in AD relative to controls during warmth and mild pain percepts. No significant differences were found for moderate pain or in other regions of interest. Greater PAG activation during mild pain was associated with higher affective/unpleasantness ratings of mild pain in participants with AD but not in controls. Conclusion Results suggest a role for the PAG in altered pain responses in people with AD. The PAG is the primary source of endogenous opioid pain inhibition in the neuroaxis, thus, altered PAG function in AD suggests possible changes in descending pain inhibitory circuits. People with AD may have a greater risk of suffering from pain compared to cognitively intact older adults.
Collapse
Affiliation(s)
- Alison R. Anderson
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
- School of Nursing, Vanderbilt University, Nashville, TN, United States
| | - Todd B. Monroe
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
- School of Nursing, Vanderbilt University, Nashville, TN, United States
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mary S. Dietrich
- School of Nursing, Vanderbilt University, Nashville, TN, United States
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen P. Bruehl
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - W. Larkin Iversen
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
| | - Ronald L. Cowan
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Departments of Psychiatry and Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michelle D. Failla
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
15
|
Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. A Hidden Markov Model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun Biol 2022; 5:1000. [PMID: 36131088 PMCID: PMC9492713 DOI: 10.1038/s42003-022-03967-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.
Collapse
Affiliation(s)
- Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Jiwon Oh
- Div of Neurology, Dept of Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Anuj Bhatia
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Anesthesia and Pain Medicine, Toronto Western Hospital, and University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
16
|
Middle cingulate cortex function contributes to response to non-steroidal anti-inflammatory drug in cervical spondylosis patients: a preliminary resting-state fMRI study. Neuroradiology 2022; 64:1401-1410. [DOI: 10.1007/s00234-022-02964-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
|
17
|
Terry EL, Tanner JJ, Cardoso JS, Sibille KT, Lai S, Deshpande H, Deutsch G, Price CC, Staud R, Goodin BR, Redden DT, Fillingim RB. Associations between pain catastrophizing and resting-state functional brain connectivity: Ethnic/race group differences in persons with chronic knee pain. J Neurosci Res 2022; 100:1047-1062. [PMID: 35187703 PMCID: PMC8940639 DOI: 10.1002/jnr.25018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023]
Abstract
Chronic pain is a significant public health problem, and the prevalence and societal impact continues to worsen annually. Multiple cognitive and emotional factors are known to modulate pain, including pain catastrophizing, which contributes to pain facilitation and is associated with altered resting-state functional connectivity in pain-related cortical and subcortical circuitry. Pain and catastrophizing levels are reported to be higher in non-Hispanic black (NHB) compared with non-Hispanic White (NHW) individuals. The current study, a substudy of a larger ongoing observational cohort investigation, investigated the pathways by which ethnicity/race influences the relationship between pain catastrophizing, clinical pain, and resting-state functional connectivity between anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (dlPFC), insula, and primary somatosensory cortex (S1). Participants included 136 (66 NHBs and 70 NHWs) community-dwelling adults with knee osteoarthritis. Participants completed the Coping Strategies Questionnaire-Revised Pain Catastrophizing subscale and Western Ontario and McMaster Universities Osteoarthritis Index. Magnetic resonance imaging data were obtained, and resting-state functional connectivity was analyzed. Relative to NHW, the NHB participants were younger, reported lower income, were less likely to be married, and self-reported greater clinical pain and pain catastrophizing (ps < 0.05). Ethnicity/race moderated the mediation effects of catastrophizing on the relationship between clinical pain and resting-state functional connectivity between the ACC, dlPFC, insula, and S1. These results indicate the NHB and NHW groups demonstrated different relationships between pain, catastrophizing, and functional connectivity. These results provide evidence for a potentially important role of ethnicity/race in the interrelationships among pain, catastrophizing, and resting-state functional connectivity.
Collapse
Affiliation(s)
- Ellen L. Terry
- College of Nursing, Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida, USA
| | - Jared J. Tanner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Josue S. Cardoso
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida, USA
| | - Kimberly T. Sibille
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, USA
| | - Song Lai
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
- CTSI Human Imaging Core, University of Florida, Gainesville, Florida, USA
| | - Hrishikesh Deshpande
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Georg Deutsch
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Burel R. Goodin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David T. Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Multi-Region Local Field Potential Signatures in Response to the Formalin-induced Inflammatory Stimulus in Male Rats. Brain Res 2022; 1778:147779. [PMID: 35007546 DOI: 10.1016/j.brainres.2022.147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Pain can be ignited by noxious chemical (e.g., acid), mechanical (e.g., pressure), and thermal (e.g., heat) stimuli and generated by the activation of sensory neurons and their axonal terminals called nociceptors in the periphery. Nociceptive information transmitted from the periphery is projected to the central nervous system (thalamus, somatosensory cortex, insular, anterior cingulate cortex, amygdala, periaqueductal grey, prefrontal cortex, etc.) to generate a unified experience of pain. Local field potential (LFP) recording is one of the neurophysiological tools to investigate the combined neuronal activity, ranging from several hundred micrometers to a few millimeters (radius), located around the embedded electrode. The advantage of recording LFP is that it provides stable simultaneous activities in various brain regions in response to external stimuli. In this study, differential LFP activities from the contralateral anterior cingulate cortex (ACC), ventral tegmental area (VTA), and bilateral amygdala in response to peripheral noxious formalin injection were recorded in anesthetized male rats. The results indicated increased power of delta, theta, alpha, beta, and gamma bands in the ACC and amygdala but no change of gamma-band in the right amygdala. Within the VTA, intensities of the delta, theta, and beta bands were only enhanced significantly after formalin injection. It was found that the connectivity (i.t. the coherence) among these brain regions reduced significantly under the formalin-induced nociception, which suggests a significant interruption within the brain. With further study, it will sort out the key combination of structures that will serve as the signature for pain state.
Collapse
|
19
|
Zhang P, Jiang Y, Liu G, Han J, Wang J, Ma L, Hu W, Zhang J. Altered brain functional network dynamics in classic trigeminal neuralgia: a resting-state functional magnetic resonance imaging study. J Headache Pain 2021; 22:147. [PMID: 34895135 PMCID: PMC8903588 DOI: 10.1186/s10194-021-01354-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background Accumulating studies have indicated a wide range of brain alterations with respect to the structure and function of classic trigeminal neuralgia (CTN). Given the dynamic nature of pain experience, the exploration of temporal fluctuations in interregional activity covariance may enhance the understanding of pain processes in the brain. The present study aimed to characterize the temporal features of functional connectivity (FC) states as well as topological alteration in CTN. Methods Resting-state functional magnetic resonance imaging and three-dimensional T1-weighted images were obtained from 41 CTN patients and 43 matched healthy controls (HCs). After group independent component analysis, sliding window based dynamic functional network connectivity (dFNC) analysis was applied to investigate specific FC states and related temporal properties. Then, the dynamics of the whole brain topological organization were estimated by calculating the coefficient of variation of graph-theoretical properties. Further correlation analyses were performed between all these measurements and clinical data. Results Two distinct states were identified. Of these, the state 2, characterized by complicated coupling between default mode network (DMN) and cognitive control network (CC) and tight connections within DMN, was expressed more in CTN patients and presented as increased fractional windows and dwell time. Moreover, patients switched less frequently between states than HCs. Regarding the dynamic topological analysis, disruptions in global graph-theoretical properties (including network efficiency and small-worldness) were observed in patients, coupled with decreased variability in nodal efficiency of anterior cingulate cortex (ACC) in the salience network (SN) and the thalamus and caudate nucleus in the subcortical network (SC). The variation of topological properties showed negative correlation with disease duration and attack frequency. Conclusions The present study indicated disrupted flexibility of brain topological organization under persistent noxious stimulation and further highlighted the important role of “dynamic pain connectome” regions (including DMN/CC/SN) in the pathophysiology of CTN from the temporal fluctuation aspect. Additionally, the findings provided supplementary evidence for current knowledge about the aberrant cortical-subcortical interaction in pain development. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01354-z.
Collapse
Affiliation(s)
- Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China.,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yanli Jiang
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China.,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Guangyao Liu
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China.,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jiao Han
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
| | - Jun Wang
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China.,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Laiyang Ma
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China.,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, P. R. China.
| |
Collapse
|
20
|
Li L, Di X, Zhang H, Huang G, Zhang L, Liang Z, Zhang Z. Characterization of whole-brain task-modulated functional connectivity in response to nociceptive pain: A multisensory comparison study. Hum Brain Mapp 2021; 43:1061-1075. [PMID: 34761468 PMCID: PMC8764484 DOI: 10.1002/hbm.25707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that brain responses to nociceptive pain, non-nociceptive somatosensory, visual, and auditory stimuli are extremely similar. Actually, perception of external sensory stimulation requires complex interactions among distributed cortical and subcortical brain regions. However, the interactions among these regions elicited by nociceptive pain remain unclear, which limits our understanding of mechanisms of pain from a brain network perspective. Task fMRI data were collected with a random sequence of intermixed stimuli of four sensory modalities in 80 healthy subjects. Whole-brain psychophysiological interaction analysis was performed to identify task-modulated functional connectivity (FC) patterns for each modality. Task-modulated FC strength and graph-theoretical-based network properties were compared among the four modalities. Lastly, we performed across-sensory-modality prediction analysis based on the whole-brain task-modulated FC patterns to confirm the specific relationship between brain patterns and sensory modalities. For each sensory modality, task-modulated FC patterns were distributed over widespread brain regions beyond those typically activated or deactivated during the stimulation. As compared with the other three sensory modalities, nociceptive stimulation exhibited significantly different patterns (more widespread and stronger FC within the cingulo-opercular network, between cingulo-opercular and sensorimotor networks, between cingulo-opercular and emotional networks, and between default mode and emotional networks) and global property (smaller modularity). Further, a cross-sensory-modality prediction analysis found that task-modulated FC patterns could predict sensory modality at the subject level successfully. Collectively, these results demonstrated that the whole-brain task-modulated FC is preferentially modulated by pain, thus providing new insights into the neural mechanisms of pain processing.
Collapse
Affiliation(s)
- Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
21
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
22
|
Modares-Haghighi P, Boostani R, Nami M, Sanei S. Quantification of pain severity using EEG-based functional connectivity. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Bush NJ, Schneider V, Sevel L, Bishop MD, Boissoneault J. Associations of Regional and Network Functional Connectivity With Exercise-Induced Low Back Pain. THE JOURNAL OF PAIN 2021; 22:1606-1616. [PMID: 34111507 DOI: 10.1016/j.jpain.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Musculoskeletal pain is an aversive experience that exists within a variety of conditions and can result in significant impairment for individuals. Gaining greater understanding of the factors related to pain vulnerability and resilience to musculoskeletal pain may help target at-risk individuals for early intervention. This analysis builds on our previous work identifying regions where greater gray matter density was associated with lower pain following standardized, exercise induced musculoskeletal injury. Here we sought to examine the relationship between baseline resting state functional connectivity in a priori regions and networks, and delayed onset muscle soreness (DOMS) pain intensity following a single session of eccentric exercise in healthy adults. Participants completed a baseline functional MRI scan and a high intensity trunk exercise protocol in the erector spinae. Pain intensity ratings were collected 48-hours later. Resting state functional connectivity from four seed regions and 3 networks were separately regressed on pain intensity scores. Results revealed that connectivity between left middle frontal gyrus, the left occipital gyrus and cerebellar network seeds and clusters associated with discriminative, emotional, and cognitive aspects of pain were associated with lower post-DOMS pain. Results suggest resilience to clinically relevant pain is associated with aspects of regional and network neural coherence. Investigations of pain modulatory capacity that integrate multimodal neuroimaging metrics are called for. Perspective: Our results provide key support for the role of structural and functional coherence in regional and network connectivity in adaptive pain response and represent an important step in clarifying neural mechanisms of resilience to clinically relevant pain.
Collapse
Affiliation(s)
- Nicholas J Bush
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
| | - Victor Schneider
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
| | - Landrew Sevel
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee; Osher Center for Integrative Medicine at Vanderbilt, Vanderbilt Medical Center, Nashville, Tennessee
| | - Mark D Bishop
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida; Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida.
| |
Collapse
|
24
|
Zou Y, Tang W, Qiao X, Li J. Aberrant modulations of static functional connectivity and dynamic functional network connectivity in chronic migraine. Quant Imaging Med Surg 2021; 11:2253-2264. [PMID: 34079699 DOI: 10.21037/qims-20-588] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Chronic migraine (CM) is a common and disabling neurological disorder that affects 1-2% of the global population. The aim of the present study was to identify the functional characteristics of the CM brain using static functional connectivity (s-FC), static functional network connectivity (s-FNC), and dynamic functional network connectivity (d-FNC) analyses. Methods In the present study, 17 CM patients and 20 sex- and age-matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. We utilized independent component (IC) analysis to identify 13 ICs. These 13 ICs were then classified into the following 6 resting-state networks (RSNs): the default mode network (DMN), executive control network (ECN), dorsal attention network, auditory network (AN), visual network (VN), and cerebellum network. Subsequently, s-FC, s-FNC, and d-FNC analyses of 13 ICs were employed for between-group comparisons. Three temporal metrics (fraction of time spent, mean dwell time, and number of transitions), which were derived from the state-transition vector, were calculated for group comparisons. In addition, correlation analyses were performed between these dynamic metrics and clinical characteristics [mean visual analog scale (VAS) scores, days with headache per month, days with migraine pain feature per month, and disease duration]. Results In the comparison of s-FC of 13 ICs within RSNs between the CM and HC groups, increased connectivity was observed in the left angular gyrus (Angular_L) of the ECN (IC 2) and the right superior parietal gyrus (Parietal_Sup_R) of the AN (IC 5), and reduced connectivity was found in the left superior frontal gyrus (Frontal_Sup_2_L) of the AN (IC 5) and DMN (IC 19), the right calcarine sulcus (Calcarine_R) of the VN (IC 7), and the left precuneus (Precuneus_L) of the DMN (IC 17) in CM patients. In the comparison of the d-FNC of 13 IC pairs within RSNs between the two groups, the CM group exhibited significantly decreased connections between the DMN (IC 11) and AN (IC 5), and increased connections between the ECN (IC 2, IC 4) and DMN (IC 19), ECN (IC 4) and AN (IC 5), and ECN (IC 4) and VN (IC 13) in state 1. However, no significant differences in s-FNC were observed between the two groups during the s-FNC analysis. Between-group comparisons of three dynamic metrics between the CM and HC groups showed a longer fraction of time spent and mean dwell time in state 2 for CM patients. Furthermore, from the correlation analyses between these metrics and clinical characteristics, we observed a significant positive correlation between the number of transitions and mean VAS scores. Conclusions Our findings suggest that functional features of the CM brain may fluctuate over time instead of remaining static, and provide further evidence that migraine chronification may be related to abnormal pattern connectivity between sensory and cognitive brain networks.
Collapse
Affiliation(s)
- Yan Zou
- Department of Integrated Traditional and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangyang Qiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Li
- Department of Integrated Traditional and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Wells RE, Seng EK, Edwards RR, Victorson DE, Pierce CR, Rosenberg L, Napadow V, Schuman-Olivier Z. Mindfulness in migraine: A narrative review. Expert Rev Neurother 2020; 20:207-225. [PMID: 31933391 DOI: 10.1080/14737175.2020.1715212] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Migraine is the second leading cause of disability worldwide, yet many patients are unable to tolerate, benefit from, or afford pharmacological treatment options. Non-pharmacological migraine therapies exist, especially to reduce opioid use, which represents a significant unmet need. Mindfulness-based interventions (MBI) have potential as a non-pharmacological treatment for migraine, primarily through the development of flexible attentional capacity across sensory, cognitive, and emotional experiences.Areas covered: The authors review efficacy and potential mechanisms of MBIs for migraine, including mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT).Expert opinion: While most mindfulness research studies for migraine to date have been pilot trials, which are small and/or lacked rigor, initial evidence suggests there may be improvements in overall headache-related disability and psychological well-being. Many research questions remain to help target the treatment to patients most likely to benefit, including the ideal dosage, duration, delivery method, responder characteristics, and potential mechanisms and biomarkers. A realistic understanding of these factors is important for patients, providers, and the media. Mindfulness will not 'cure' migraine; however, mindfulness may be an important tool as part of a comprehensive treatment approach to help patients 'mindfully' engage in valued life activities.
Collapse
Affiliation(s)
- Rebecca Erwin Wells
- Comprehensive Headache Program, Center for Integrative Medicine, Department of Neurology, Wake Forest School of Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Elizabeth K Seng
- Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - David E Victorson
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles R Pierce
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Lauren Rosenberg
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Vitaly Napadow
- Center for Integrative Pain NeuroImaging (CiPNI), Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zev Schuman-Olivier
- Center for Mindfulness and Compassion, Addictions, Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
26
|
Davis KD, Cheng JC. Differentiating trait pain from state pain: a window into brain mechanisms underlying how we experience and cope with pain. Pain Rep 2019; 4:e735. [PMID: 31579845 PMCID: PMC6727997 DOI: 10.1097/pr9.0000000000000735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022] Open
Abstract
Across various biological and psychological attributes, individuals have a set point around which they can fluctuate transiently into various states. However, if one remains in a different state other than their set point for a considerable period (eg, induced by a disease), this different state can be considered to be a new set point that also has associated surrounding states. This concept is instructive for understanding chronic pain, where an individual's set point may maladaptively shift such that they become stuck at a new set point of pain (trait pain), from which pain can fluctuate on different timescales (ie, pain states). Here, we discuss the importance of considering trait and state pains in neuroimaging studies of brain structure and function to gain an understanding of not only an individual's current pain state but also more broadly to their trait pain, which may be more reflective of their general condition.
Collapse
Affiliation(s)
- Karen D. Davis
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joshua C. Cheng
- Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|