1
|
Fu R, Zhou S, Liu C, Zhou J, Li Q. Administration of a combination of COX-2/TGF-β1 siRNAs induces hypertrophic scar fibroblast apoptosis through a TP53 mediated caspase pathway. Sci Rep 2024; 14:26427. [PMID: 39488600 PMCID: PMC11531465 DOI: 10.1038/s41598-024-77756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Hypertrophic scar (HTS) formation is a pathological fibrotic skin disease, with no satisfactory treatments available currently. Inducing apoptosis of HTS-derived fibroblasts (HSFs) are becoming promising approaches. In this research, we aim to improve the technology with co-delivery COX-2 and TGF-β1 siRNAs and further investigate the underlying mechanism. Firstly, the HSFs were transfected with 1 µg/ml COX-2 and/or TGF-β1 siRNAs, and proved that the apoptosis of HSFs was greater induced by COX-2/TGF-β1 siRNAs than either COX-2 or TGF-β1 siRNA alone by flow cytometry. To investigate the impact of co-silencing TGF-β1 and COX-2 mRNA expression in vivo, we established HTSs model in rat tails. Our results confirmed that co-silencing of TGF-β1 and COX-2 mRNA expression could significantly alleviate the HTS formation in vivo. Furthermore, we explored the potential molecular mechanism and revealed that the protein levels of TP53, Bcl-2 and Caspase-3 were downregulated while Bax and Cleaved Caspase-3 were upregulated in the COX-2/TGF-β1 siRNA groups compared with HKP group. Taken together, our results demonstrated that simultaneous silencing of COX-2 and TGF-β1 expression by siRNAs induced HSF apoptosis through a TP53 mediated caspase pathway. Therefore, COX-2/TGF-β1 siRNAs might serve as a novel and effective therapeutic alternative for HTSs treatments.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sizheng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
2
|
Zhang J, Li S, Kuang C, Shen Y, Yu H, Chen F, Tang R, Mao S, Lv L, Qi M, Zhang J, Yuan K. CD74 + fibroblasts proliferate upon mechanical stretching to promote angiogenesis in keloids. FASEB J 2024; 38:e70103. [PMID: 39400419 DOI: 10.1096/fj.202401302r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The healing of human skin wounds is susceptible to perturbation caused by excessive mechanical stretching, resulting in enlarged scars, hypertrophic scars, or even keloids in predisposed individuals. Keloids are fibro-proliferative scar tissues that extend beyond the initial wound boundary, consisting of the actively progressing periphery and the quiescent center. The stretch-associated outgrowth and enhanced angiogenesis are two features of the periphery of keloids. However, which cell population is responsible for transducing the mechanical stimulation to the progression of keloids remains unclear. Herein, through integrative analysis of single-cell RNA sequencing of keloids, we identified CD74+ fibroblasts, a previously unappreciated subset of fibroblasts with pro-angiogenic and stretch-induced proliferative capacities, as a key player in stretch-induced progression of keloids. Immunostaining of keloid cryosections depicted a predominant distribution of CD74+ fibroblasts in the periphery, interacting with the vasculature. In vitro tube formation assays on purified CD74+ fibroblasts ascertained their pro-angiogenic function. BrdU assays revealed that these cells proliferate upon stretching, through PIEZO1-mediated calcium influx and the downstream ERK and AKT signaling. Collectively, our findings propose a model wherein CD74+ fibroblasts serve as pivotal drivers of stretch-induced keloid progression, fueled by their proliferative and pro-angiogenic activities. Targeting the attributes of CD74+ fibroblasts holds promise as a therapeutic strategy for the management of keloids.
Collapse
Affiliation(s)
- Jingheng Zhang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyao Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunfan Shen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Li Y, Liu A, Wang J, Yang C, Lv K, He W, Wu J, Chen W. Suture-anchored cutaneous tension induces persistent hypertrophic scarring in a novel murine model. BURNS & TRAUMA 2024; 12:tkae051. [PMID: 39429643 PMCID: PMC11491161 DOI: 10.1093/burnst/tkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/31/2023] [Indexed: 10/22/2024]
Abstract
Background Hypertrophic scars cause impaired skin appearance and function, seriously affecting physical and mental health. Due to medical ethics and clinical accessibility, the collection of human scar specimens is frequently restricted, and the establishment of scar experimental animal models for scientific research is urgently needed. The four most commonly used animal models of hypertrophic scars have the following drawbacks: the rabbit ear model takes a long time to construct; the immunodeficient mouse hypertrophic scar model necessitates careful feeding and experimental operations; female Duroc pigs are expensive to purchase and maintain, and their large size makes it difficult to produce a significant number of models; and mouse scar models that rely on tension require special skin stretch devices, which are often damaged and shed, resulting in unstable model establishment. Our group overcame the shortcomings of previous scar animal models and created a new mouse model of hypertrophic scarring induced by suture anchoring at the wound edge. Methods We utilized suture anchoring of incisional wounds to impose directional tension throughout the healing process, restrain wound contraction, and generate granulation tissue, thus inducing scar formation. Dorsal paired incisions were generated in mice, with wound edges on the upper back sutured to the rib cage and the wound edges on the lower back relaxed as a control. Macroscopic manifestation, microscopic histological analysis, mRNA sequencing, bioinformatics, and in vitro cell assays were also conducted to verify the reliability of this method. Results Compared with those in relaxed controls, the fibrotic changes in stretched wounds were more profound. Histologically, the stretched scars were hypercellular, hypervascular, and hyperproliferative with disorganized extracellular matrix deposition, and displayed molecular hallmarks of hypertrophic fibrosis. In addition, the stretched scars exhibited transcriptional overlap with mechanically stretched scars, and human hypertrophic and keloid scars. Phosphatidylinositol 3-kinase-serine/threonine-protein kinase B signaling was implicated as a profibrotic mediator of apoptosis resistance under suture-induced tension. Conclusions This straightforward murine model successfully induces cardinal molecular and histological features of pathological hypertrophic scarring through localized suture tension to inhibit wound contraction. The model enables us to interrogate the mechanisms of tension-induced fibrosis and evaluate anti-scarring therapies.
Collapse
Affiliation(s)
- Yashu Li
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Anqi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jingyan Wang
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Changsheng Yang
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Kaiyang Lv
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan main Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang Road, Futian District, Shenzhen 518035, People's Republic of China
| | - Wenbin Chen
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| |
Collapse
|
4
|
Gu H, Liu Y, Yang L, Cui Z, Jiang W, Gu Q, Shen T, Luo P, Xiao S, Xia Z. A novel model of post-burn hypertrophic scarring in rat tail with a high success rate and simple methodology. Burns 2024; 50:107272. [PMID: 39413466 DOI: 10.1016/j.burns.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Hypertrophic scars present a serious concern after surgeries and trauma, particularly with the highest risk following burn injury. The current modeling methods usually involve relatively complicated surgical operations and special equipment, and have unstable reproducibility and reliability. This study aimed to establish a simple and reliable model of post-burn hypertrophic scarring in the rat tail. METHODS Wet gauze saturated with hot water (94-98 °C) was applied to the dorsal side of the rat tail for varying durations to induce burn injury. Wounds were left exposed until completely healed, and the optimal duration for scalding treatment was determined based on gross examination. Thereafter, the optimal scalding duration was used again to evaluate scar formation over time, which was tracked through hematoxylin-eosin (HE) and Masson staining, immunohistochemistry of scar-related proteins and number/distribution of vascular endothelial cells, and picrosirius red staining to measure the quantities and proportion of type I and III collagen. RESULTS The scalding duration which led to optimal post-burn scarring was 15 s, with an overall success rate of 87.5 %. Complete healing of the wound occurred after roughly 30 days, leading to the formation of scars grossly red in appearance, tough to the touch and raised compared to the surrounding skin. Microscopically, the epidermis and dermis of the scar were significantly thicker than normal rat tail skin, and the dermis of scar contained a large number of disorganized bundles of fine filamentous collagen. We also observed a significant increase in the number of TGF-β1-positive cells and capillaries in the dermis (p < 0.05). Picrosirius red staining showed that compared to type III collagen, the expression of type I collagen was more dominant in scar tissue, and was more finely distributed than in normal rat tail skin. CONCLUSION We successfully established a model for post-burn hypertrophic scarring, utilizing reliable and simple techniques and materials, which could simulate the biological characteristics of post-burn scarring. Our innovative model has the potential to facilitate the study of post-burn wound healing and scar formation.
Collapse
Affiliation(s)
- Haoyu Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Yingying Liu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Lu Yang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Zhenci Cui
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Wen Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Qiuyun Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Tingting Shen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Pengfei Luo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China.
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China.
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
5
|
Wang P, Peng Z, Yu L, Liu Y, Wang H, Zhou Z, Liu H, Hong S, Nie Y, Deng Y, Liu Y, Xie J. Verteporfin-Loaded Bioadhesive Nanoparticles for the Prevention of Hypertrophic Scar. SMALL METHODS 2024; 8:e2301295. [PMID: 38084464 DOI: 10.1002/smtd.202301295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 08/18/2024]
Abstract
Hypertrophic scarring (HS) is a common skin injury complication with unmet needs. Verteporfin (VP) should be an ideal HS-targeted therapeutic drug due to its efficient fibrosis and angiogenesis inhibitory abilities. However, its application is restricted by its side effects such as dose-dependent cytotoxicity on normal cells. Herein, the bioadhesive nanoparticles encapsulated VP (VP/BNPs) are successfully developed to attenuate the side effects of VP and enhance its HS inhibition effects by limiting VP releasing slowly and stably in the lesion site but not diffusing easily to normal tissues. VP/BNPs displayed significant inhibition on the proliferation, migration, collagen deposition, and vessel formation of human hypertrophic scar fibroblasts (HSFBs) and dermal vascular endothelial cells (HDVECs). In a rat tail HS model, VP/BNPs treated HS exhibits dramatic scar repression with almost no side effects compared with free VP or VP-loaded non-bioadhesive nanoparticles (VP/NNPs) administration. Further immunofluorescence analysis on scar tissue serial sections validated VP/BNPs effectively inhibited the collagen deposition and angiogenesis by firmly confined in the scar tissue and persistently releasing VP targeted to nucleus Yes-associated protein (nYAP) of HSFBs and HDVECs. These findings collectively suggest that VP/BNPs can be a promising and technically advantageous agent for HS therapies.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhangwen Peng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Liu Yu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziheng Zhou
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Hong
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yichu Nie
- Department of Translational medicine research institute, First People's Hospital of Foshan, No. 81, North Lingnan Road, Foshan, Guangdong, 528000, China
| | - Yang Deng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yang Liu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| |
Collapse
|
6
|
Hu C, Yang Q, Huang X, Wang F, Zhou H, Su X. Three-Dimensional Mechanical Microenvironment Rescued the Decline of Osteogenic Differentiation of Old Human Jaw Bone Marrow Mesenchymal Stem Cells. ACS Biomater Sci Eng 2024; 10:4496-4509. [PMID: 38860704 DOI: 10.1021/acsbiomaterials.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Resorption and atrophy of the alveolar bone, as two consequences of osteoporosis that remarkably complicate the orthodontic and prosthodontic treatments, contribute to the differentiated biological features and force-induced response of jaw bone marrow-derived mesenchymal stem cells (JBMSCs) in elderly patients. We isolated and cultured JBMSCs from adolescent and adult patients and then simulated the loading of orthodontic tension stress by constructing an in vitro three-dimensional (3D) stress loading model. The decline in osteogenic differentiation of aged JBMSCs was reversed by tensile stress stimulation. It is interesting to note that tension stimulation had a stronger effect on the osteogenic differentiation of elderly JBMSCs compared to the young ones, indicating a possible mechanism of aging rescue. High-throughput sequencing of microRNA (miRNAs) was subsequently performed before and after tension stimulation in all JBMSCs, followed by the comprehensive comparison of mechanically responsive miRNAs in the 3D strain microenvironment. The results suggested a significant reduction in the expression of miR-210-3p and miR-214-3p triggered by the 3D strain microenvironment in old-JBMSCs. Bioinformatic analysis indicated that both miRNAs participate in the regulation of critical pathways of aging and cellular senescence. Taken together, this study demonstrated that the 3D strain microenvironment efficiently rescued the cellular senescence of old-JBMSCs via modulating specific miRNAs, which provides a novel strategy for coordinating periodontal bone loss and regeneration of the elderly.
Collapse
Affiliation(s)
- Cheng Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology & Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiyuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojun Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
7
|
Pignet AL, Schellnegger M, Hecker A, Kamolz LP, Kotzbeck P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J Invest Dermatol 2024; 144:1454-1470. [PMID: 38483357 DOI: 10.1016/j.jid.2023.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 06/24/2024]
Abstract
In an aging society with common lifestyle-associated health issues such as obesity and diabetes, chronic wounds pose a frequent challenge that physicians face in everyday clinical practice. Therefore, nonhealing wounds have attracted much scientific attention. Several in vitro and in vivo models have been introduced to deepen our understanding of chronic wound pathogenesis and amplify therapeutic strategies. Understanding how wounds become chronic will provide insights to reverse or avoid chronicity. Although choosing a suitable model is of utmost importance to receive valuable outcomes, an ideal in vivo model capturing the complexity of chronic wounds is still missing and remains a translational challenge. This review discusses the most relevant mammalian models for wound healing studies and provides guidance on how to implement the hallmarks of chronic wounds. It highlights the benefits and pitfalls of established models and maps out future avenues for research.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria.
| | - Andrzej Hecker
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Palikova YA, Palikov VA, Kazakov VA, Borozdina NA, Khmara KV, Semushina SG, Dyachenko IA. Experimental Approaches to Scar Modeling through Mechanical Skin Damage and Chemical Burn in Sprague Dawley Rats. Bull Exp Biol Med 2024; 176:640-644. [PMID: 38733481 DOI: 10.1007/s10517-024-06084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 05/13/2024]
Abstract
Creating of a scar model in laboratory animals is the most acceptable option for the preclinical search of scar treatment. However, due to high skin regeneration rate in laboratory rodents, creating an optimal animal model of scar formation is a challenge. Here we describe five methods for modeling a scar tissue in rats that we have tested. These methods allowed achieving different histopathological features and different stages of skin scar formation.
Collapse
Affiliation(s)
- Yu A Palikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - V A Palikov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
- Pushchino Branch of Russian Biotechnological University (ROSBIOTECH), Pushchino, Moscow Region, Russia
| | - V A Kazakov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - N A Borozdina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
- Pushchino Branch of Russian Biotechnological University (ROSBIOTECH), Pushchino, Moscow Region, Russia.
| | - K V Khmara
- Pushchino Branch of Russian Biotechnological University (ROSBIOTECH), Pushchino, Moscow Region, Russia
| | - S G Semushina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - I A Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
- Pushchino Branch of Russian Biotechnological University (ROSBIOTECH), Pushchino, Moscow Region, Russia
| |
Collapse
|
10
|
Zhao S, Liu H, Wang H, He X, Tang J, Qi S, Yang R, Xie J. Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway. BURNS & TRAUMA 2024; 12:tkad048. [PMID: 38179473 PMCID: PMC10762504 DOI: 10.1093/burnst/tkad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 01/06/2024]
Abstract
Background Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar. Methods Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence in situ hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of in vitro and in vivo experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed. Results Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts in vitro, and improved the morphology and histology of scars in vivo. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA. Conclusions PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Jinming Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| |
Collapse
|
11
|
Li Y, Shan X, Liang J, Cai Z. Establishment of a Model for Human Hypertrophic Scar Using Tissue Engineering Method. J Craniofac Surg 2024; 35:268-272. [PMID: 37602502 DOI: 10.1097/scs.0000000000009648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Treatment of human hypertrophic scar (HS) is a challenge for plastic surgeons, whereas the clinical and experimental research has been limited due to the lack of an ideal model of human HS tissue. OBJECTIVE To establish a model of human HS using tissue engineering method, to improve the research for HS in the clinic and laboratory. METHODS Hypertrophic scar fibroblasts (HSFBs) were transferred to polylactic acid (PLA)/polyglycolic acid (PGA) scaffolds. Biocompatibility of HSFBs-PLA/PGA composites was evaluated using scanning electron microscopy. Composites of HSFBs-PLA/PGA were implanted in subcutaneous pockets in athymic mice after 4 weeks in vitro culture. A re-entry operation was performed to obtain the HS-like tissues after 12 weeks of in vivo culture. The histological stain, the expression of type I collagen, the proliferation ability, and vitality of HSFBs were compared between human HS tissue and HS-like tissue. RESULTS The structure of PLA/PGA scaffolds facilitates HSFBs adhesion and proliferation. The HSFBs-PLA/PGA composites were in vivo cultured for 12 weeks, and then HS-like tissues were harvested from nude athymic mice. There was no statistical significance in the expression of type I collagen, cell cycle, and cell proliferation between human HS tissue and HS-like tissue. CONCLUSION The authors successfully established a model of human HS using the tissue engineering method, which could provide HS-like tissue for research. And it also could provide enough HS-like tissues to help reduce experimental variability within groups. This model can be used to investigate in prevention and treatment of HS and further explore the mechanisms of HS.
Collapse
Affiliation(s)
- Yawei Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing
- Department of Oral & Maxillofacial Surgery and Oral Biomedical Engineering Laboratory Shanghai Stomatological Hospital Fudan University, Shanghai, China
| | - Xiaofeng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing
| | - Zhigang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing
| |
Collapse
|
12
|
Carolo A, Melotti L, Zivelonghi G, Sacchetto R, Akyürek EE, Martinello T, Venerando A, Iacopetti I, Sugni M, Martinelli G, Roncoroni M, Marzorati S, Barbon S, Contran M, Incendi D, Perozzo F, Porzionato A, Vindigni V, Patruno M. Mutable Collagenous Tissue Isolated from Echinoderms Leads to the Production of a Dermal Template That Is Biocompatible and Effective for Wound Healing in Rats. Mar Drugs 2023; 21:506. [PMID: 37888441 PMCID: PMC10608188 DOI: 10.3390/md21100506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
The mutable collagenous tissue (MCT) of echinoderms possesses biological peculiarities that facilitate native collagen extraction and employment for biomedical applications such as regenerative purposes for the treatment of skin wounds. Strategies for skin regeneration have been developed and dermal substitutes have been used to cover the lesion to facilitate cell proliferation, although very little is known about the application of novel matrix obtained from marine collagen. From food waste we isolated eco-friendly collagen, naturally enriched with glycosaminoglycans, to produce an innovative marine-derived biomaterial assembled as a novel bi-layered skin substitute (Marine Collagen Dermal Template or MCDT). The present work carried out a preliminary experimental in vivo comparative analysis between the MCDT and Integra, one of the most widely used dermal templates for wound management, in a rat model of full-thickness skin wounds. Clinical, histological, and molecular evaluations showed that the MCDT might be a valuable tool in promoting and supporting skin wound healing: it is biocompatible, as no adverse reactions were observed, along with stimulating angiogenesis and the deposition of mature collagen. Therefore, the two dermal templates used in this study displayed similar biocompatibility and outcome with focus on full-thickness skin wounds, although a peculiar cellular behavior involving the angiogenesis process was observed for the MCDT.
Collapse
Affiliation(s)
- Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Tiziana Martinello
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Silvia Barbon
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Martina Contran
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Damiana Incendi
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Filippo Perozzo
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, 35128 Padova, Italy;
| | - Andrea Porzionato
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Vincenzo Vindigni
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| |
Collapse
|
13
|
Li M, Wang P, Li J, Zhou F, Huang S, Qi S, Shu B. NRP1 transduces mechanical stress inhibition via LATS1/YAP in hypertrophic scars. Cell Death Discov 2023; 9:341. [PMID: 37704618 PMCID: PMC10499927 DOI: 10.1038/s41420-023-01635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Hypertrophic scar (HS) is an abnormal fibrous hyperplasia of the skin caused by excessive tissue repair in response to skin burns and trauma, which restricts physical function and impairs patients' quality of life. Numerous studies have shown that pressure garment therapy (PGT) is an effective treatment for preventing hypertrophic scars. Herein, we found that mechanical stress stimulates the neuropilin 1 (NRP1) expression through screening GSE165027, GSE137210, and GSE120194 from Gene Expression Omnibus (GEO) database and bioinformatics analysis. We verified this stimulation in the human hypertrophic scar, pressure culture cell model, and rat tail-scar model. Mechanical compression increased LATS1 and pYAP enrichment, thus repressing the expression of YAP. Functionally, the knockdown of NRP1 promoted the expression of LATS1, thus decreasing the expression of YAP and inhibiting endothelial cell proliferation. Furthermore, co-immunoprecipitation analysis confirmed that NRP1 binds to YAP, and mechanical compression disrupted this binding, which resulted in the promotion of YAP relocation to nuclear. In conclusion, our results indicated that NRP1 transduces mechanical force inhibition by inhibiting YAP expression. Mechanical pressure can release YAP bound to NRP1, which explains the phenomenon that mechanical stress increases YAP in the nucleus. Strategies targeting NRP1 may promote compression therapy with optimal and comfortable pressures.
Collapse
Affiliation(s)
- Mengzhi Li
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Zhou
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shixin Huang
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaohai Qi
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Bin Shu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
15
|
Liu H, Yang R, Zhao S, Zhou F, Liu Y, Zhou Z, Chen L, Xie J. Collagen scaffolds derived from bovine skin loaded with MSC optimized M1 macrophages remodeling and chronic diabetic wounds healing. Bioeng Transl Med 2023; 8:e10467. [PMID: 37206210 PMCID: PMC10189465 DOI: 10.1002/btm2.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to the persistent inflammatory microenvironment and unsubstantial dermal tissues, chronic diabetic wounds do not heal easily and their recurrence rate is high. Therefore, a dermal substitute that can induce rapid tissue regeneration and inhibit scar formation is urgently required to address this concern. In this study, we established biologically active dermal substitutes (BADS) by combining novel animal tissue-derived collagen dermal-replacement scaffolds (CDRS) and bone marrow mesenchymal stem cells (BMSCs) for the healing and recurrence treatments of chronic diabetic wounds. The collagen scaffolds derived from bovine skin (CBS) displayed good physicochemical properties and superior biocompatibility. CBS loaded with BMSCs (CBS-MCSs) could inhibit M1 macrophage polarization in vitro. Decreased MMP-9 and increased Col3 at the protein level were detected in CBS-MSCs-treated M1 macrophages, which may be attributed to the suppression of the TNF-α/NF-κB signaling pathway (downregulating phospho-IKKα/β/total IKKα/β, phospho-IκB/total IκB, and phospho-NFκB/total NFκB) in M1 macrophages. Moreover, CBS-MSCs could benefit the transformation of M1 (downregulating iNOS) to M2 (upregulating CD206) macrophages. Wound-healing evaluations demonstrated that CBS-MSCs regulated the polarization of macrophages and the balance of inflammatory factors (pro-inflammatory: IL-1β, TNF-α, and MMP-9; anti-inflammatory: IL-10 and TGF-β3) in db/db mice. Furthermore, CBS-MSCs facilitated the noncontractile and re-epithelialized processes, granulation tissue regeneration, and neovascularization of chronic diabetic wounds. Thus, CBS-MSCs have a potential value for clinical application in promoting the healing of chronic diabetic wounds and preventing the recurrence of ulcers.
Collapse
Affiliation(s)
- Hengdeng Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's Hospital, South China University of TechnologyGuangzhouGuangdongChina
| | - Shixin Zhao
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Fei Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yiling Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ziheng Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Lei Chen
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Julin Xie
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
16
|
Grosu OM, Dragostin OM, Gardikiotis I, Chitescu CL, Lisa EL, Zamfir AS, Confederat L, Dragostin I, Dragan M, Stan CD, Zamfir CL. Experimentally Induced Burns in Rats Treated with Innovative Polymeric Films Type Therapies. Biomedicines 2023; 11:852. [PMID: 36979831 PMCID: PMC10045338 DOI: 10.3390/biomedicines11030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Considering that microbial resistance to antibiotics is becoming an increasingly widespread problem, burn management, which usually includes the use of topical antimicrobial dressings, is still facing difficulties regarding their efficiency to ensure rapid healing. In this context, the main objective of this research is to include new oxytetracycline derivatives in polymeric-film-type dressings for the treatment of wounds caused by experimentally induced burns in rats. The structural and physico-chemical properties of synthesized oxytetracycline derivatives and the corresponding membranes were analyzed by FT-IR and MS spectroscopy, swelling ability and biodegradation capacity. In vitro antimicrobial activity using Gram-positive and Gram-negative bacterial strains and pathogenic yeasts, along with an in vivo study of a burn wound model induced in Wistar rats, was also analyzed. The newly obtained polymeric films, namely chitosan-oxytetracycline derivative membranes, showed good antimicrobial activity noticed in the tested strains, a membrane swelling ratio (MSR) of up to 1578% in acidic conditions and a biodegradation rate of up to 15.7% on day 7 of testing, which are important required characteristics for the tissue regeneration process, after the production of a burn. The in vivo study proved that chitosan-derived oxytetracycline membranes showed also improved healing effects which contributes to supporting the idea of using them for the treatment of wounds caused by burns.
Collapse
Affiliation(s)
- Oxana-Madalina Grosu
- Department of Surgery I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Lidia Chitescu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Elena Lacramioara Lisa
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Alexandra-Simona Zamfir
- Medical Department III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania
| | - Luminita Confederat
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ionut Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Maria Dragan
- Department of Pharmaceutical Science, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania
| | - Catalina Daniela Stan
- Department of Pharmaceutical Science, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania
| | - Carmen-Lacramioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
17
|
Burmeister DM, Supp DM, Clark RA, Tredget EE, Powell HM, Enkhbaatar P, Bohannon JK, Cancio LC, Hill DM, Nygaard RM. Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 2021 Research Special Interest Group. J Burn Care Res 2022; 43:1032-1041. [PMID: 35778269 DOI: 10.1093/jbcr/irac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Multiple animal species and approaches have been used for modeling different aspects of burn care, with some strategies considered more appropriate or translatable than others. On April 15, 2021, the Research Special Interest Group of the American Burn Association held a virtual session as part of the agenda for the annual meeting. The session was set up as a pro/con debate on the use of small versus large animals for application to four important aspects of burn pathophysiology: burn healing/conversion; scarring; inhalation injury; and sepsis. For each of these topics, 2 experienced investigators (one each for small and large animal models) described the advantages and disadvantages of using these preclinical models. The use of swine as a large animal model was a common theme due to anatomic similarities with human skin. The exception to this was a well-defined ovine model of inhalation injury; both of these species have larger airways which allow for incorporation of clinical tools such as bronchoscopes. However, these models are expensive and demanding from labor and resource standpoints. Various strategies have been implemented to make the more inexpensive rodent models appropriate for answering specific questions of interest in burns. Moreover, modelling burn-sepsis in large animals has proven difficult. It was agreed that the use of both small and large animal models have merit for answering basic questions about the responses to burn injury. Expert opinion and the ensuing lively conversations are summarized herein, which we hope will help inform experimental design of future research.
Collapse
Affiliation(s)
- David M Burmeister
- Uniformed Services University of the Health Sciences, Department of Medicine, Bethesda, MD, United States of America
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Richard A Clark
- Stony Brook University, Departments of Dermatology, Biomedical Engineering and Medicine, Stony Brook, NY, USA
| | - Edward E Tredget
- Firefighters' Burn Treatment Unit, Department of Surgery, 2D3.31 Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, USA
| | - Julia K Bohannon
- Vanderbilt University Medical Center, Department of Anesthesiology, Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - David M Hill
- Firefighters' Burn Center, Regional One Health, 877 Jefferson Avenue, Memphis, TN, USA
| | - Rachel M Nygaard
- Department of Surgery, Hennepin Healthcare, Minneapolis, MN, USA
| |
Collapse
|
18
|
Single-Cell RNA-Sequencing Reveals the Cellular and Genetic Heterogeneity of Skin Scar to Verify the Therapeutic Effects and Mechanism of Action of Dispel-Scar Ointment in Hypertrophic Scar Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7331164. [PMID: 35722137 PMCID: PMC9200508 DOI: 10.1155/2022/7331164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
Hypertrophic scarring (HS), caused by excessive fibrosis of injured skin, imposes a psychological burden and creates a source of distress that impairs the quality of life of affected individuals. However, the gold standard for HS treatment has not yet been determined due to the complicated and difficult nature of the routines and procedures involved. Previous studies have indicated that the topical application of certain active components found in traditional Chinese medicines shows potential as a therapeutic alternative for scars. Here, single-cell RNA-sequencing was performed to determine cellular heterogeneity and identify marker genes and mechanisms associated with HS. It was found that fibroblasts comprise the largest proportion of HS cell types. The marker genes that were highly expressed in fibroblasts were extracellular matrix (ECM)-related, whereas ECM-receptor interactions and the transforming growth factor (TGF)-β signalling pathway were also found to be active. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, which was applied to identify the molecular compounds of Dispel-Scar Ointment (DSO), revealed 74 effective chemical components belonging to 14 types of constituents, such as flavonoids, tanshinones, salvianolic acids, glycosides, and phthalides. Furthermore, in vivo studies using rat scar models showed that the topical application of Salvia miltiorrhiza, Ligusticum chuanxiong, peach kernel, safflower, and motherwort exerted beneficial effects on fibroblasts. DSO promoted scar maturation and reduced scar areas, its efficacy being similar to that of topically applied silicone. Functional studies using immunofluorescence staining, western blotting, and quantitative real-time polymerase chain reaction demonstrated that DSO may target the TGF-β/Smad pathway to inhibit collagen synthesis and promote ECM remodelling. However, further in vitro mechanistic research and single-drug prescription studies may be required to identify the specific effective compound or active ingredient of DSO, which would provide more substantial evidence regarding the potential therapeutic value of traditional herbs in HS.
Collapse
|
19
|
Rössler S, Nischwitz SP, Luze H, Holzer-Geissler JCJ, Zrim R, Kamolz LP. In Vivo Models for Hypertrophic Scars—A Systematic Review. Medicina (B Aires) 2022; 58:medicina58060736. [PMID: 35743999 PMCID: PMC9229864 DOI: 10.3390/medicina58060736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Backgroundand Objectives: Hypertrophic scars following surgeries or burns present a serious concern for many patients because these scars not only lead to an aesthetical but also to a functional and psychological burden. Treatment of hypertrophic scars is challenging because despite various treatment options, a low level of evidence hinders preference of any specific treatment plan. To properly identify new therapeutic approaches, the use of in vivo models remains indispensable. A gold standard for hypertrophic scars has not been established to date. This review aims at giving a comprehensive overview of the available in vivo models. Materials and Methods: PubMed and CINAHL were queried for currently existing models. Results: Models with mice, rats, rabbits, pigs, guinea pigs and dogs are used in hypertrophic scar research. Rodent models provide the advantage of ready availability and low costs, but the number of scars per animal is limited due to their relatively small body surface, leading to a high number of test animals which should be avoided according to the 3Rs. Multiple scars per animal can be created in the guinea pig and rabbit ear model; but like other rodent models, these models exhibit low transferability to human conditions. Pig models show a good transferability, but are cost-intensive and require adequate housing facilities. Further, it is not clear if a currently available pig model can deliver clinical and histological features of human hypertrophic scars concurrently. Conclusions: None of the analyzed animal models can be clearly recommended as a standard model in hypertrophic scar research because the particular research question must be considered to elect a suitable model.
Collapse
Affiliation(s)
- Stefan Rössler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
- Correspondence: ; Tel.: +43-664-1209100
| | - Sebastian Philipp Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
| | - Hanna Luze
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
| | - Judith C. J. Holzer-Geissler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
| | - Robert Zrim
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
- International University of Monaco, 98000 Monaco-Ville, Monaco
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| |
Collapse
|
20
|
Mistry R, Veres M, Issa F. A Systematic Review Comparing Animal and Human Scarring Models. Front Surg 2022; 9:711094. [PMID: 35529910 PMCID: PMC9073696 DOI: 10.3389/fsurg.2022.711094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction A reproducible, standardised model for cutaneous scar tissue to assess therapeutics is crucial to the progress of the field. A systematic review was performed to critically evaluate scarring models in both animal and human research. Method All studies in which cutaneous scars are modelling in animals or humans were included. Models that were focused on the wound healing process or those in humans with scars from an existing injury were excluded. Ovid Medline® was searched on 25 February 2019 to perform two near identical searches; one aimed at animals and the other aimed at humans. Two reviewers independently screened the titles and abstracts for study selection. Full texts of potentially suitable studies were then obtained for analysis. Results The animal kingdom search yielded 818 results, of which 71 were included in the review. Animals utilised included rabbits, mice, pigs, dogs and primates. Methods used for creating scar tissue included sharp excision, dermatome injury, thermal injury and injection of fibrotic substances. The search for scar assessment in humans yielded 287 results, of which 9 met the inclusion criteria. In all human studies, sharp incision was used to create scar tissue. Some studies focused on patients before or after elective surgery, including bilateral breast reduction, knee replacement or midline sternotomy. Discussion The rabbit ear scar model was the most popular tool for scar research, although pigs produce scar tissue which most closely resembles that of humans. Immunodeficient mouse models allow for in vivo engraftment and study of human scar tissue, however, there are limitations relating to the systemic response to these xenografts. Factors that determine the use of animals include cost of housing requirements, genetic traceability, and ethical concerns. In humans, surgical patients are often studied for scarring responses and outcomes, but reproducibility and patient factors that impact healing can limit interpretation. Human tissue use in vitro may serve as a good basis to rapidly screen and assess treatments prior to clinical use, with the advantage of reduced cost and setup requirements.
Collapse
Affiliation(s)
- Riyam Mistry
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Correspondence: Riyam Mistry
| | - Mark Veres
- John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Powell HM, Nedelec B. Mechanomodulation of Burn Scarring Via Pressure Therapy. Adv Wound Care (New Rochelle) 2022; 11:179-191. [PMID: 34078127 DOI: 10.1089/wound.2021.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Significance: The physical and psychological sequalae of burn injuries account for 10 million disability-adjusted life years lost annually. Hypertrophic scarring (HSc) after burn injury results in reduced mobility, contracture, pain, itching, and aesthetic changes for burn survivors. Despite the prevalence of scarring and the number of scar therapies available, none are highly effective at preventing HSc after burn injury. Recent Advances: Recent studies modulating the mechanical environment surrounding incisional and excisional wounds have shown off-loading of tension to be a powerful strategy to prevent scar formation. Preclinical studies applying force perpendicular to the surface of the skin or using a combination of pressure both circumferentially and perpendicularly have shown substantial reductions in scar thickness and contraction after burn injury. Critical Issues: Though pressure therapy is highly effective in preclinical studies, outcomes in clinical studies have been variable and may be a result of differing therapy protocols and garment material fatigue. A recent adult clinical study reported a significant reduction in pressure after 1 month of use and significant reduction between 1 and 2 months of use, resulting in below therapeutic doses of pressure applied after only 1 month of use. Future Directions: To enhance efficacy of pressure garments, new low-fatigue materials must be developed for use in standard garments or garments must be redesigned to allow for adjustment to compensate for the loss of pressure with time. Additionally, measurements of applied pressure should be performed routinely during clinic visits to ensure that therapeutic doses of pressure are being delivered.
Collapse
Affiliation(s)
- Heather M. Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Shriners Children's Ohio, Dayton, Ohio, USA
| | - Bernadette Nedelec
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
- Hôpital de réadaptation Villa Medica, Montreal, Quebec, Canada
| |
Collapse
|
22
|
JIMI S, SAPAROV A, KOIZUMI S, MIYAZAKI M, TAKAGI S. A novel mouse wound model for scar tissue formation in abdominal muscle wall. J Vet Med Sci 2021; 83:1933-1942. [PMID: 34719609 PMCID: PMC8762401 DOI: 10.1292/jvms.21-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022] Open
Abstract
Hypertrophic scars found on the human body rarely develop in experimental animals, possibly due to their looser skin structure. This makes it difficult to understand the genesis of scar lesions. Therefore, appropriate animal models are urgently needed. In this study, we established a novel experimental model of a scar-forming wound by resecting a small portion of the abdominal muscle wall on the lower center of the abdomen in C57BL/6N mice, which are exposed to contractive forces by the surrounding muscle tissue. As a low-tension control, a back skin excision model was used with a splint fixed onto the excised skin edge, and granulation tissue formed on the muscle fascia supported by the back skeleton. One week after the resection, initial healing reactions, such as fibroblast proliferation, occurred in both models. However, after 21 days, lesions with collagen-rich granulation tissues, which were also accompanied by multiple nodular/spherical-like structures, developed only in the abdominal wall model. These lesions were analogous to scar lesions in humans. Therefore, the animal model developed in this study is unique in that fibrous scar tissues form under physiological conditions without using any artificial factors and is valuable for studying the pathogenesis and preclinical treatment of scar lesions.
Collapse
Affiliation(s)
- Shiro JIMI
- Central Lab for Pathology and Morphology, Faculty of
Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Arman SAPAROV
- Department of Medicine, School of Medicine, Nazarbayev
University, Nur-Sultan 010000, Kazakhstan
| | - Seiko KOIZUMI
- R&D Center, Nitta Gelatin Inc., Osaka 581-0024,
Japan
| | - Motoyasu MIYAZAKI
- Department of Pharmacy, Fukuoka University Chikushi
Hospital, Fukuoka 818-0067, Japan
| | - Satoshi TAKAGI
- Department of Plastic Reconstructive and aesthetic Surgery,
Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
23
|
Xia Z, Wang J, Yang S, Liu C, Qin S, Li W, Cheng Y, Hu H, Qian J, Liu Y, Deng C. Emodin alleviates hypertrophic scar formation by suppressing macrophage polarization and inhibiting the Notch and TGF-β pathways in macrophages. ACTA ACUST UNITED AC 2021; 54:e11184. [PMID: 34320121 PMCID: PMC8302142 DOI: 10.1590/1414-431x2021e11184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Hypertrophic scar (HS) formation is a common complication that develops after skin injury; however, there are few effective and specific therapeutic approaches for HS. Emodin has previously been reported to inhibit mechanical stress-induced HS inflammation. Here, we investigated the molecular mechanisms underlying the inhibitory effects of emodin on HS formation. First, we conducted in vitro assays that revealed that emodin inhibited M1 and M2 polarization in rat macrophages. We subsequently established a combined rat model of tail HS and dorsal subcutaneous polyvinyl alcohol (PVA) sponge-induced wounds. Rats were treated with emodin or vehicle (DMEM). Tail scar specimens were harvested at 14, 28, and 42 days post-incision and subjected to H&E staining and Masson's trichrome staining. Histopathological analyses confirmed that emodin attenuated HS formation and fibrosis. Macrophages were separated from wound cells collected from the PVA sponge at 3 and 7 days after implantation. Flow cytometry analysis demonstrated that emodin suppressed in vivo macrophage recruitment and polarization at the wound site. Finally, we explored the molecular mechanisms of emodin in modulating macrophage polarization by evaluating the expression levels of selected effectors of the Notch and TGF-β pathways in macrophages isolated from PVA sponges. Western blot and qPCR assays showed that Notch1, Notch4, Hes1, TGF-β, and Smad3 were downregulated in response to emodin treatment. Taken together, our findings suggested that emodin attenuated HS formation and fibrosis by suppressing macrophage polarization, which is associated with the inhibition of the Notch and TGF-β pathways in macrophages.
Collapse
Affiliation(s)
- Zihuan Xia
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiancheng Wang
- Department of General Surgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songlin Yang
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng Liu
- Department of Plastic Surgery, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Shu Qin
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yulong Cheng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huan Hu
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin Qian
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Liu
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
24
|
A review of animal models from 2015 to 2020 for preclinical chronic wounds relevant to human health. J Tissue Viability 2021; 30:291-300. [PMID: 34103213 DOI: 10.1016/j.jtv.2021.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Chronic wounds fail to heal in a timely manner and exhibit sustained inflammation with slow tissue repair and remodelling. They decrease mobility and quality of life, and remain a major clinical challenge in the long-term care of many patients, affecting 6.5 million individuals annually in the U.S., decreasing mobility and quality of life. Treatment costs are a major burden on the U.S. healthcare system, totalling between $25 and $100 billion annually. Chronic wound severity depends upon several factors such as comorbidities, severity of tissue damage, infection and presence of necrosis and vary greatly in their healing mechanisms. In vivo animal models are critical for studying healing pathways of chronic wounds and seek to replicate clinical factors for trials of topical, systemic, and device-based therapeutics. This comprehensive review discusses murine, rat, lapine, canine, feline and porcine models of chronic wounds. RECENT ADVANCES Foundational chronic wound models for several species are discussed together with refinements and advances in the time period between 2015 and 2020 which have the potential for broad utility in investigating biological and device-based wound treatment therapies for human health. CRITICAL ISSUES Chronic wounds fail to heal in a timely manner and have differing aetiologies, rendering no single in vivo animal model universally applicable. FUTURE DIRECTIONS Further studies are required to develop clinically relevant chronic wound animal model which reflect the clinical reality of the various influences of age, disease, comorbidities and gender on delayed healing and enhance understanding of the biological processes of human wound healing.
Collapse
|
25
|
Pontes GH, Carneiro Filho FSM, Vargas Guerrero LA, Lipinski LC, de Noronha L, Silva EN, Serra-Guimarães F. Reduced Remodeling Biomarkers Tissue Expression in Nanotextured Compared With Polyurethane Implants Capsules: A Study in Rats. Aesthet Surg J 2021; 41:NP664-NP683. [PMID: 33232440 DOI: 10.1093/asj/sjaa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the biological response to biomaterials, the implant shell plays a key role in immune and inflammatory reactions. We hypothesized that the capsules formed around nanotextured implants exhibit an immunohistochemical behavior different to those formed around polyurethane implants. OBJECTIVES The aim of this study was to evaluate through immunohistochemistry markers the capsules formed around nanotextured and polyurethane implants. METHODS Sixty albino female Wistar rats were divided into 2 groups (nanotextured and polyurethane), with 30 animals in each group. A mini silicone implant was inserted on the back of the animals. After a predetermined period, the animals were killed, and the capsules formed around the implants were studied. The capsules in the 30-, 60-, and 90-day subgroups were analyzed via immunohistochemistry to detect markers for fibroblast α smooth muscle actin (α-SMA), transforming growth factor β (TGF-β), cluster of differentiation 34 (CD34), and CD68, via picrosirius staining to determine the density of type I and III collagen fibers and via hematoxylin and eosin staining to assess capsule thickness. A Wilcoxon-Mann-Whitney test was used to compare the groups, and a Kruskal-Wallis test was used to compare the subgroups. RESULTS Lower α-SMA, TGF-β, CD34 and CD68 immunoexpression was observed in the nanotextured 30- and 60-day subgroups than in the corresponding polyurethane subgroups. In the 90-day subgroup, more pronounced α-SMA and CD34 immunoexpression was observed in the nanotextured group; however, TGF-β and CD68 immunoexpression remained lower. The nanotextured implants showed reduced capsular thickness and greater formation of type I collagen in all the analyzed subgroups. CONCLUSIONS Nanotextured implants led to reduced immune and inflammatory reactions compared with polyurethane implants according to all analyzed variables.
Collapse
Affiliation(s)
- Gisela Hobson Pontes
- Postgraduate Program in Physiopathology and Surgical Sciences, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | - Lucia de Noronha
- Anatomical Pathology, Pontifical Catholic University of Paraná (PUC-PR), Curitiba-PR, Brazil
| | | | - Fernando Serra-Guimarães
- Postgraduate Program in Physiopathology and Surgical Sciences, State University of Rio de Janeiro (UERJ)
| |
Collapse
|
26
|
Shen Y, Xu G, Huang H, Wang K, Wang H, Lang M, Gao H, Zhao S. Sequential Release of Small Extracellular Vesicles from Bilayered Thiolated Alginate/Polyethylene Glycol Diacrylate Hydrogels for Scarless Wound Healing. ACS NANO 2021; 15:6352-6368. [PMID: 33723994 DOI: 10.1021/acsnano.0c07714] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excessive scar formation has adverse physiological and psychological effects on patients; therefore, a therapeutic strategy for rapid wound healing and reduced scar formation is urgently needed. Herein, bilayered thiolated alginate/PEG diacrylate (BSSPD) hydrogels were fabricated for sequential release of small extracellular vesicles (sEVs), which acted in different wound healing phases, to achieve rapid and scarless wound healing. The sEVs secreted by bone marrow derived mesenchymal stem cells (B-sEVs) were released from the lower layer of the hydrogels to promote angiogenesis and collagen deposition by accelerating fibroblast and endothelial cell proliferation and migration during the early inflammation and proliferation phases, while sEVs secreted by miR-29b-3p-enriched bone marrow derived mesenchymal stem cells were released from the upper layer of the hydrogels and suppressed excessive capillary proliferation and collagen deposition during the late proliferation and maturation phases. In a full-thickness skin defect model of rats and rabbit ears, the wound repair rate, angiogenesis, and collagen deposition were evaluated at different time points after treatment with BSSPD loaded with B-sEVs. Interestingly, during the end of the maturation phase in the in vivo model, tissues in the groups treated with BSSPD loaded with sEVs for sequential release (SR-sEVs@BSSPD) exhibited a more uniform vascular structure distribution, more regular collagen arrangement, and lower volume of hyperplastic scar tissue than tissues in the other groups. Hence, SR-sEVs@BSSPD based on skin repair phases was successfully designed and has considerable potential as a cell-free therapy for scarless wound healing.
Collapse
Affiliation(s)
- Yifan Shen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guanzhe Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou 311200, China
| | - Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui Wang
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shichang Zhao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
27
|
Taeger CD, Wallner S, Martini T, Schiltz D, Kehrer A, Prantl L, Biermann N. Analysis of Rinsing Fluid during Negative Pressure Wound Therapy with Instillation: A Potential Monitoring Tool in Acute and Chronic Wound Treatment. A Pilot Study. Cells 2021; 10:cells10040732. [PMID: 33810232 PMCID: PMC8065450 DOI: 10.3390/cells10040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background: During negative pressure wound therapy (NPWT), open wounds are draped with a nontransparent sponge, making daily wound evaluation impossible. Sometimes, late or undetected bacterial infections and postoperative bleeding result in repetitive surgery, thus prolonging inpatient time. With the introduction of additional fluid instillation (NPWTi), the wound surface is rinsed, and bacteria, proteins and biomarkers are flushed into a collecting canister, which is later discarded. Methods: The aim of this pilot study was to analyze rinsing fluid samples (0.9% sodium chloride) from the NPWTi device in patients with acute and chronic wounds. In 31 consecutive patients a standardized laboratory analysis was performed to evaluate cellular composition and potassium, phosphate, lactate dehydrooxygenase, pH and total protein levels. Results: While there was an increase in the total cellular amount and the number of polymorphonuclear cells, the number of red blood cells (RBC) decreased after surgery. Potassium and pH showed no significant changes in the first three postoperative days, whereas total protein showed an undulant and partially significant course. Conclusion: We were able to quantify cellular metabolites by analyzing the rinsing fluid of NPWTi. We propose the analysis of this material as a novel and potentially promising tool to monitor wound status without removal of the dressing. The establishment of reference values might help to improve the NPWTi therapy.
Collapse
Affiliation(s)
- Christian D. Taeger
- Center of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (T.M.); (D.S.); (A.K.); (L.P.); (N.B.)
- Correspondence: ; Tel.: +49-941-944-6763
| | - Stefan Wallner
- Institute for Clinical Chemistry, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Teresa Martini
- Center of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (T.M.); (D.S.); (A.K.); (L.P.); (N.B.)
| | - Daniel Schiltz
- Center of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (T.M.); (D.S.); (A.K.); (L.P.); (N.B.)
| | - Andreas Kehrer
- Center of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (T.M.); (D.S.); (A.K.); (L.P.); (N.B.)
| | - Lukas Prantl
- Center of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (T.M.); (D.S.); (A.K.); (L.P.); (N.B.)
| | - Niklas Biermann
- Center of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (T.M.); (D.S.); (A.K.); (L.P.); (N.B.)
| |
Collapse
|
28
|
Afzali H, Khaksari M, Jeddi S, Kashfi K, Abdollahifar MA, Ghasemi A. Acidified Nitrite Accelerates Wound Healing in Type 2 Diabetic Male Rats: A Histological and Stereological Evaluation. Molecules 2021; 26:1872. [PMID: 33810327 PMCID: PMC8037216 DOI: 10.3390/molecules26071872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023] Open
Abstract
Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 μm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.
Collapse
Affiliation(s)
- Hamideh Afzali
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (H.A.); (M.K.)
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (H.A.); (M.K.)
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| |
Collapse
|
29
|
He J, Fang B, Shan S, Xie Y, Wang C, Zhang Y, Zhang X, Li Q. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1. Cell Death Dis 2021; 12:226. [PMID: 33649312 PMCID: PMC7921104 DOI: 10.1038/s41419-021-03481-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
Hypertrophic scar (HS) formation is a skin fibroproliferative disease that occurs following a cutaneous injury, leading to functional and cosmetic impairment. To date, few therapeutic treatments exhibit satisfactory outcomes. The mechanical force has been shown to be a key regulator of HS formation, but the underlying mechanism is not completely understood. The Piezo1 channel has been identified as a novel mechanically activated cation channel (MAC) and is reportedly capable of regulating force-mediated cellular biological behaviors. However, the mechanotransduction role of Piezo1 in HS formation has not been investigated. In this work, we found that Piezo1 was overexpressed in myofibroblasts of human and rat HS tissues. In vitro, cyclic mechanical stretch (CMS) increased Piezo1 expression and Piezo1-mediated calcium influx in human dermal fibroblasts (HDFs). In addition, Piezo1 activity promoted HDFs proliferation, motility, and differentiation in response to CMS. More importantly, intradermal injection of GsMTx4, a Piezo1-blocking peptide, protected rats from stretch-induced HS formation. Together, Piezo1 was shown to participate in HS formation and could be a novel target for the development of promising therapies for HS formation.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), 200092, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), 200092, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
30
|
Xin Y, Xu P, Wang X, Chen Y, Zhang Z, Zhang Y. Human foreskin-derived dermal stem/progenitor cell-conditioned medium combined with hyaluronic acid promotes extracellular matrix regeneration in diabetic wounds. Stem Cell Res Ther 2021; 12:49. [PMID: 33422138 PMCID: PMC7796620 DOI: 10.1186/s13287-020-02116-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic wounds remain a challenging clinical problem, which requires further treatment development. Published data showed that dermis-derived stem/progenitor cells (DSPCs) display superior wound healing in vitro. The beneficial effects of DSPCs are mediated through paracrine secretion, which can be obtained from conditioned medium (CM). Hyaluronic acid (HA) is especially suitable for skin regeneration and delivering bioactive molecules in CM. This study investigated the effect of human foreskin-derived dermal stem/progenitor cell (hFDSPC)-CM combined with HA on a diabetic mouse model and relevant mechanism in vitro. METHODS hFDSPCs and human adipose-derived stem cells (hADSCs) were identified, and the respective CM was prepared. PBS, HA, hFDSPC-CM combined with HA, or hADSC-CM combined with HA was topically applied to mice. HE, CD31, CD68, CD86, and CD206 staining was performed to evaluate gross wound condition, angiogenesis, and inflammation, respectively. Masson and Picrosirius red staining was performed to evaluate collagen deposition and maturation. The effects of hFDSPC-CM and hADSC-CM on human keratinocyte cells (HaCaT) and fibroblasts were evaluated in vitro using CCK-8 and EdU assays to determine cell viability and proliferation, respectively. The scratch assay was performed to evaluate cell migration. Tube formation assay was performed on human umbilical vein endothelial cells (HUVECs) to confirm angiogenesis. Extracellular matrix (ECM) metabolic balance-related genes and proteins, such as collagen I (COL 1), collagen III (COL 3), fibronectin (FN), α-SMA, matrix metalloproteinases 1 (MMP-1), matrix metalloproteinases 3 (MMP-3), and transforming growth factor-beta 1 (TGF-β1), were analysed. RESULTS hFDSPC-CM combined with HA showed superior wound closure rate over hADSC-CM. Histologically, the hFDSPC-CM combined with HA group showed significantly improved re-epithelialisation, angiogenesis, anti-inflammation, collagen regeneration, and maturation compared to hADSC-CM combined with HA group. In vitro assays revealed that hFDSPC-CM displayed significant advantages on cell proliferation, migration, and ECM regeneration through a TGF-β/Smad signalling pathway compared with hADSC-CM. CONCLUSIONS hFDSPC-CM combined with HA was superior for treating diabetic wounds. The underlying mechanism may promote proliferation and migration of epidermal cells with fibroblasts, thus leading to ECM deposition and remodelling. Reduced inflammation may be due to the above-mentioned mechanism.
Collapse
Affiliation(s)
- Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
31
|
Zhang C, Wang T, Zhang L, Chen P, Tang S, Chen A, Li M, Peng G, Gao H, Weng H, Zhang H, Li S, Chen J, Chen L, Chen X. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring. Stem Cell Res Ther 2021; 12:23. [PMID: 33413617 PMCID: PMC7792059 DOI: 10.1186/s13287-020-02061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell-based acellular therapies have been widely exploited in managing hypertrophic scars. However, low maintenance dose and transitory therapeutic effects during topical medication remain a thorny issue. Herein, this study aimed to optimize the curative effect of adipose-derived stem cell conditioned medium (ADSC-CM) in the prevention of hypertrophic scarring. METHODS In the present study, ADSC-CM was concentrated via the freeze-drying procedure. The efficacy of different dose groups (CM, CM5, CM10) was conducted on the proliferation, apoptosis, and α-smooth muscle actin (α-SMA) expression of human keloid fibroblasts (HKFs) in vitro. Incorporation of adipose-derived stem cell concentrated conditioned medium (ADSCC-CM) into polysaccharide hydrogel was investigated in rabbit ear, in vivo. Haematoxylin-eosin (H&E) and Masson's trichrome staining were performed for the evaluation of scar hyperplasia. RESULTS We noted that ADSCC-CM could downregulate the α-SMA expression of HKFs in a dose-dependent manner. In the rabbit ear model, the scar hyperplasia in the medium-dose group (CM5) and high-dose group (CM10) was inhibited with reduced scar elevation index (SEI) under 4 months of observation. It is noteworthy that the union of CM5 and polysaccharide hydrogel (CM5+H) yielded the best preventive effect on scar hyperplasia. Briefly, melanin, height, vascularity, and pliability in the CM5+H group were better than those of the control group. Collagen was evenly distributed, and skin appendages could be regenerated. CONCLUSIONS Altogether, ADSCC-CM can downregulate the expression of α-SMA due to its anti-fibrosis effect and promote the rearrangement of collagen fibres, which is integral to scar precaution. The in situ cross bonding of ADSCC-CM and polysaccharide hydrogel could remarkably enhance the therapeutic outcomes in inhibiting scar proliferation. Hence, the alliance of ADSCC-CM and hydrogel may become a potential alternative in hypertrophic scar prophylaxis.
Collapse
Affiliation(s)
- Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Ting Wang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Central Sterile Supply, Fujian Medical University Union Hospital, Fuzhou, China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Haiyan Weng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Shirong Li
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Army Military Medical University, Chongqing, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China. .,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
32
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|
33
|
Crane MJ, Henry WL, Tran HL, Albina JE, Jamieson AM. Assessment of Acute Wound Healing using the Dorsal Subcutaneous Polyvinyl Alcohol Sponge Implantation and Excisional Tail Skin Wound Models. J Vis Exp 2020. [PMID: 32281981 DOI: 10.3791/60653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wound healing is a complex process that requires the orderly progression of inflammation, granulation tissue formation, fibrosis, and resolution. Murine models provide valuable mechanistic insight into these processes; however, no single model fully addresses all aspects of the wound healing response. Instead, it is ideal to use multiple models to address the different aspects of wound healing. Here, two different methods that address diverse aspects of the wound healing response are described. In the first model, polyvinyl alcohol sponges are subcutaneously implanted along the mouse dorsum. Following sponge retrieval, cells can be isolated by mechanical disruption, and fluids can be extracted by centrifugation, thus allowing for a detailed characterization of cellular and cytokine responses in the acute wound environment. A limitation of this model is the inability to assess the rate of wound closure. For this, a tail skin excision model is utilized. In this model, a 10 mm x 3 mm rectangular piece of tail skin is excised along the dorsal surface, near the base of the tail. This model can be easily photographed for planimetric analysis to determine healing rates and can be excised for histological analysis. Both described methods can be utilized in genetically altered mouse strains, or in conjunction with models of comorbid conditions, such as diabetes, aging, or secondary infection, in order to elucidate wound healing mechanisms.
Collapse
Affiliation(s)
- Meredith J Crane
- Department of Molecular Microbiology & Immunology, Brown University
| | - William L Henry
- Department of Molecular Microbiology & Immunology, Brown University
| | - Holly L Tran
- Department of Molecular Microbiology & Immunology, Brown University
| | - Jorge E Albina
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University
| | - Amanda M Jamieson
- Department of Molecular Microbiology & Immunology, Brown University;
| |
Collapse
|
34
|
Xu X, Khoong YM, Gu S, Huang X, Ren JY, Gu YH, Li H, Gao Y, Wang Z, Zan T. Investigating the potential of LSKL peptide as a novel hypertrophic scar treatment. Biomed Pharmacother 2020; 124:109824. [PMID: 31972355 DOI: 10.1016/j.biopha.2020.109824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023] Open
Abstract
Hypertrophic scar (HTS) is a common pathologic dermal fibroproliferative disease after skin injury. Transforming growth factor β (TGF-β) plays a central role in HTS formation and development. Thrombospondin-1 (TSP-1) activates latent TGF-β by binding to latency-associated peptide-β on TGF-β structure. So far, LSKL peptide was shown to selectively antagonize TSP-1. In this study, TSP-1 was first confirmed to be highly expressed in HTS. LSKL peptide was proven to inhibit the overexpression of extracellular matrix and contractile ability of HTS fibroblasts. In vivo, LSKL could attenuate the thickness of HTS, distortion of collagen alignment and fibrogenesis. Results also demonstrated that LSKL peptide not only remarkably attenuated cell proliferation and migration, but also induced cell apoptosis of HTS fibroblasts. Western blot analysis further revealed that LSKL peptide significantly suppressed the phosphorylation of PI3K, AKT, and mTOR, while not affecting the phosphorylation of Smad2/3 and MEK/ERK. These findings suggested that LSKL might be a promising anti-fibrosis agent to HTS through PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
35
|
Discussion: A Novel Model for Cutaneous Wound Healing and Scarring in the Rat. Plast Reconstr Surg 2019; 143:478-479. [PMID: 30688889 DOI: 10.1097/prs.0000000000005284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|