1
|
Li Y, Duan W, Shen L, Ma X, Ma J, Zhang Y, Guo Y. Shengji solution accelerates the wound angiogenesis of full-thickness skin defect in rats via activation of TGF-β1/Smad3-VEGF signaling pathway. Biotechnol Genet Eng Rev 2024; 40:1855-1872. [PMID: 37009818 DOI: 10.1080/02648725.2023.2196901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Shengji solution is made according to the classic prescription - Shengji prescription. Shengji solution is a external prescription of traditional Chinese medicine with the functions of nourishing blood, relieving pain, producing muscle and shrinking the wound. In the present study, we investigated the therapeutic effects of Shengji solution on dorsal full-thickness skin defects in rats. We also detected the activation of transforming growth factor beta1 (TGF-β1)/SMAD3/vascular endothelial growth factor (VEGF) signaling pathways in the wound-healing process. The results showed that the wound was cleaned with normal saline followed by bandaging with cotton gauze according to the groups, respectively: (a) control group; (b) Kangfuxin group, the wound was moistened with Kangfuxin solution; (c) Shengji solution group, the wounds were moistened with Shengji solution; (d) Shengji solution+SB431542 inhibitor group, the wound was moistened with Shengji solution, and then SB431542 inhibitor (10 mg/kg) was injected intraperitoneally for 5 days. On the 14th day after operation, the wound-healing rate of Shengji solution group was more than 95% and also greater than that in the control group and Shengji solution+SB431542 inhibitor group. Besides, Shengji solution could inhibit the inflammation and capillary production by enhancing the epithelial regeneration, dermal repair and angiogenesis. Moreover, Shengji solution could also increase CD34 content, the expressions of TGF-β1, VEGF proteins and the phosphorylation of SMAD3 in wound granulation tissue. In conclusion, Shengji solution can accelerate the dermal cutaneous wound healing in rats, stimulate angiogenesis and collagen synthesis by activating TGF-β1/SMAD3/VEGF pathway.
Collapse
Affiliation(s)
- Yuntao Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Hospital, Tianjin, China
| | - Wenxu Duan
- Department of Gynecology, Tianjin NanKai Hospital, Tianjin, China
| | - Lin Shen
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Jianxiong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Yang Zhang
- Department of Tissue Engineering Research Office, Orthopaedic Research Institute of Tianjin Hospital, Tianjin, China
| | - Yue Guo
- Department of Tissue Engineering Research Office, Orthopaedic Research Institute of Tianjin Hospital, Tianjin, China
| |
Collapse
|
2
|
Simaey M, De Decker I, Vanlauwe F, Blondeel P, Monstrey S, Claes KEY. The added value of cultured cells in burn treatment: A systematic review. Burns 2024; 50:107247. [PMID: 39447287 DOI: 10.1016/j.burns.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Advancements in resuscitative care and burn surgery have improved survival rates after extensive burn injuries, shifting focus to enhancing the quality of survival. Conventional treatment with split-thickness skin grafts (STSG) presents limitations such as donor-site morbidity, limited availability in extensive burn injuries, and hypertrophic scarring. Tissue engineering aims to address these drawbacks by developing optimal skin substitutes. This systematic review aims to provide an overview of the current applications of cultured cells in burn surgery, encompassing diverse approaches and addressing existing challenges to enhance burn wound management and improve patient outcomes. METHODS Following PRISMA guidelines, a comprehensive search was performed across three databases (PubMed, Embase, Cochrane Library) for articles on cultured cell use in burn treatment. Only clinical studies were included. Articles were screened by two independent reviewers. Quality assessment was performed. RESULTS The search yielded 167 articles, of which 14 met the eligibility criteria. The selection included 8 randomized controlled trials, 5 prospective cohort trials, and 1 retrospective cohort study. Various tissue-engineered skin substitutes, from cultured epidermal autografts to dermal regeneration templates seeded with cultured cells, showed promising outcomes. Several substitutes exhibited take rates comparable to STSG with improved scar quality. CONCLUSION Results are promising, though standardization of cultured skin substitutes and robust clinical trials with larger populations and appropriate comparators are still lacking.
Collapse
Affiliation(s)
- Marie Simaey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Florian Vanlauwe
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Polymer Chemistry and Biomaterials Group-Centre of Macromolecular Chemistry (CMaC)-Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Najem S, Fattouh M, Wintges K, Schoof B, Koerner M, Reinshagen K, Koenigs I. NovoSorb® Biodegradable Temporizing Matrix: a novel approach for treatment of extremity avulsion injuries in children. Eur J Trauma Emerg Surg 2024; 50:1807-1815. [PMID: 38668874 PMCID: PMC11458696 DOI: 10.1007/s00068-024-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE In pediatric population, large soft tissue defects occur in avulsion injuries. In addition to the challenges of primary surgical therapy, elasticity, appearance and function of the scar in children are of crucial importance, especially in the context of body growth. So far various flaps, plasties, skin grafts and dermal substitutes have become established, although infections and skin shrinkage remain challenging. In 2020, a new skin substitute material-NovoSorb® Biodegradable Temporizing Matrix (BTM)-was introduced in Europe for temporary wound closure and tissue regeneration. The aim of this study was to evaluate the value of BTM in pediatric patients. METHODS The study included all children treated with BTM after traumatic soft tissue defects following limb avulsion injuries between June 2021 and June 2023 at a university hospital. RESULTS 7 patients with limb avulsion injuries were treated with BTM, 4 boys, 3 girls. Mean age was 6.5 years (2-11 years) at the time of BTM placement. 4/7 had concomitant fractures. BTM was used successfully in all cases, infection did not occur, skin shrinkage was seen in one case. Split thickness skin graft (STSG) after BTM application was performed in average after 33 days (26 to 39 days). Limitations of this study were highlighted. CONCLUSION BTM is a promising alternative for reconstruction of complex trauma extremity wounds in children following avulsion injuries, even in cases of concomitant bone injuries. Interpretation may be limited by sample size.
Collapse
Affiliation(s)
- Safiullah Najem
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Department of Pediatric Surgery, Altona Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Miriam Fattouh
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Department of Pediatric Surgery, Altona Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Kristofer Wintges
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
| | - Benjamin Schoof
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
| | - Merle Koerner
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Department of Pediatric Surgery, Altona Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Department of Pediatric Surgery, Altona Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Ingo Koenigs
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany.
- Department of Pediatric Surgery, Altona Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany.
| |
Collapse
|
4
|
Verga M, Kessels RL, Bonasegale A, Del Re L, Fenaroli P, Carminati M. 3D Lipogluing: Preliminary Results of a Novel Technique for Direct Three-dimensional Fat Grafting in Breast Reconstruction Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5788. [PMID: 38712016 PMCID: PMC11073776 DOI: 10.1097/gox.0000000000005788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
Lipofilling has emerged as an effective technique in breast reconstruction for enhancing aesthetic outcomes and addressing residual deformities. Traditionally, fat grafting has been performed as a secondary step in implant-based breast reconstruction during the replacement of the expander with a breast implant or as a revisional procedure. Our study investigates the technical feasibility and presents preliminary results of a new promising technique for delivering fat grafting in a three-dimensional (3D) shape, directly during mastectomy with immediate breast reconstruction or in delayed breast reconstructive procedures. Our new 3D lipogluing technique involves securing the fat tissue in a 3D manner using fibrin glue. This method enhances the coverage of soft tissues and provides improved volume and shape supplementation. In selected cases between December 2015 and September 2023, we treated 24 patients using the 3D lipogluing technique and five patients using 3D lipocubing (without use of fibrin glue).The patient cohort consisted of different indications for breast reconstructions: direct-to-implant, expander-based breast reconstruction, and "conservative" surgery. Preliminary findings suggest the technique is a safe and effective approach that can enhance the soft-tissue envelope of reconstructed breasts by acting as an autologous scaffold, owing to its regenerative properties. This technique not only improves the overall aesthetic outcome but also has the potential to reduce implant-related complications. Furthermore, ongoing studies are investigating methods to optimize the results and explore the potential application of 3D lipogluing and 3D lipocubing in breast-conserving oncoplastic surgery, cosmetic breast surgery, and other areas of plastic reconstructive and aesthetic surgery.
Collapse
Affiliation(s)
- Maurizio Verga
- From the Division of Plastic Surgery, Papa Giovanni XXIII Hospital, Bergamo Italy
| | - Raquel Leão Kessels
- Faculty of Health, Medicine & Life Sciences, Maastricht University, Paesi Bassi
| | - Anna Bonasegale
- Division of General Surgery, “Ospedale Civile di Vigevano” Hospital, Pavia, Italy
| | - Luca Del Re
- Division of General Surgery, “Ospedale Civile di Vigevano” Hospital, Pavia, Italy
| | - Privato Fenaroli
- Division of Breast Surgery, “Papa Giovanni XXIII” Hospital, Bergamo Italy
| | - Marcello Carminati
- From the Division of Plastic Surgery, Papa Giovanni XXIII Hospital, Bergamo Italy
| |
Collapse
|
5
|
Sun J, Lai YC, Lin YW, Fang CH, Sun JS. Enhancing cutaneous wound healing: A study on the beneficial effects of nano-gelatin scaffold in rat models. Int J Artif Organs 2024; 47:280-289. [PMID: 38624101 DOI: 10.1177/03913988241244661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The challenges in achieving optimal outcomes for wound healing have persisted for decades, prompting ongoing exploration of interventions and management strategies. This study focuses on assessing the potential benefits of implementing a nano-gelatin scaffold for wound healing. Using a rat skin defect model, full-thickness incisional wounds were created on each side of the thoracic-lumbar regions after anesthesia. The wounds were left un-sutured, with one side covered by a gelatin nano-fibrous membrane and the other left uncovered. Wound size changes were measured on days 1, 4, 7, and 14, and on day 14, rats were sacrificed for tissue sample excision, examined with hematoxylin and eosin, and Masson's trichrome stain. Statistical comparisons were performed. The gelatin nanofibers exhibited a smooth surface with a fiber diameter of 260 ± 40 nm and porous structures with proper interconnectivity. Throughout the 14-day experimental period, significant differences in the percentage of wound closure were observed between the groups. Histological scores were higher in the experiment group, indicating less inflammation but dense and well-aligned collagen fiber formation. A preliminary clinical trial on diabetic ulcers also demonstrated promising results. This study highlights the potential of the nano-collagen fibrous membrane to reduce inflammatory infiltration and enhance fibroblast differentiation into myofibroblasts during the early stages of cutaneous wound healing. The nano-fibrous collagen membrane emerges as a promising candidate for promoting wound healing, with considerable potential for future therapeutic applications.
Collapse
Affiliation(s)
- Jason Sun
- Carmel Catholic High School, Mundelein, IL, USA
| | - Yi-Chung Lai
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsiang Fang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Orthopedic Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| |
Collapse
|
6
|
Waldron OP, El-Mallah JC, Lochan D, Wen C, Landmesser ME, Asgardoon M, Dawes J, Horchler SN, Schlidt K, Agrawal S, Wang Y, Ravnic DJ. Ushering in the era of regenerative surgery. Minerva Surg 2024; 79:166-182. [PMID: 38088753 DOI: 10.23736/s2724-5691.23.10113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Tissue loss, irrespective of etiology, often requires extensive reconstruction. In many instances, the need exceeds what current treatments and technologies modern medicine can offer. Tissue engineering has made immense strides within the past few decades due to advances in biologics, biomaterials, and manufacturing. The convergence of these three domains has created limitless potential for future surgical care. Unfortunately, there still exists a disconnect on how to best implant these 'replacement parts' and care for the patient. It is therefore vital to develop paradigms for the integration of advanced surgical and tissue engineering technologies. This paper explores the convergence between tissue engineering and reconstructive surgery. We will describe the clinical problem of tissue loss, discuss currently available solutions, address limitations, and propose processes for integrating surgery and tissue engineering, thereby ushering in the era of regenerative surgery.
Collapse
Affiliation(s)
- Olivia P Waldron
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica C El-Mallah
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dev Lochan
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Mary E Landmesser
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mohammadhossein Asgardoon
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jazzmyn Dawes
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Summer N Horchler
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Kevin Schlidt
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Shailaja Agrawal
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dino J Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA -
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Šuca H, Čoma M, Tomšů J, Sabová J, Zajíček R, Brož A, Doubková M, Novotný T, Bačáková L, Jenčová V, Kuželová Košťáková E, Lukačín Š, Rejman D, Gál P. Current Approaches to Wound Repair in Burns: How far Have we Come From Cover to Close? A Narrative Review. J Surg Res 2024; 296:383-403. [PMID: 38309220 DOI: 10.1016/j.jss.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 02/05/2024]
Abstract
Burn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound. Currently, split-thickness/full-thickness skin autografts are the gold standard for permanent skin substitution. However, deep burns treated with split-thickness skin autografts may contract, leading to functional and appearance issues. Conversely, defects treated with full-thickness skin autografts often result in more satisfactory function and appearance. The development of tissue-engineered dermal templates has further expanded the scope of wound repair, providing scar reductive and regenerative properties that have extended their use to reconstructive surgical interventions. Although their interactions with the wound microenvironment are not fully understood, these templates have shown potential in local infection control. This narrative review discusses the current state of wound repair in burn injuries, focusing on the progress made from wound cover to wound closure and local infection control. Advancements in technology and therapies hold promise for improving the outcomes for burn injury patients. Understanding the underlying mechanisms of wound repair and tissue regeneration may provide new insights for developing more effective treatments in the future.
Collapse
Affiliation(s)
- Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic; Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
| | - Júlia Tomšů
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Antonín Brož
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Doubková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Novotný
- Department of Orthopaedics, University J.E. Purkině and Masaryk Hospital, Ústí nad Labem, Czech Republic; Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Orthopaedic Surgery, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Jenčová
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Eva Kuželová Košťáková
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Gál
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic; Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic; Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic; Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovak Republic.
| |
Collapse
|
8
|
Xia S, Wang R, Bai X, Nie JJ, Chen D, Teng L, Yang L. The research status and prospects of nanomaterials in wound healing: A scientometric study. Medicine (Baltimore) 2024; 103:e37462. [PMID: 38489685 PMCID: PMC10939702 DOI: 10.1097/md.0000000000037462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Nanotechnology and nanomaterials have swiftly influenced wound healing, propelling the development of wound-healing nanomaterials. Therefore, it's crucial to gather essential information about prominent researches in this domain. Moreover, identifying primary directions and related frontiers in wound healing and nanomaterials is paramount. This will enhance our comprehension of the current research landscape and foster progress in this field. Retrieved from the Web of Science core database, a total of 838 relevant studies published from 2013 to 2022 were analyzed through bibliometric visualization tools such as CiteSpace, VOSviewer, and Bibliometrics Online Analysis Platform. The annual study count has been rising steadily, primary contributors to this field include China, India, and the United States. The author with the highest output is Zangeneh, Akram, while Grumezescu, Alexandru Mihai garners the most citations. Chinese Academy of Sciences emerges as the leading institution, with Nanomaterials as the predominant journal. The keyword "antibacterial" signals prevailing and forthcoming trends in this domain. This study presents the first scientometric study and bibliometric visualization for wound healing-related nanomaterials, shedding light on research hotspots and trends. Over the course of the decade from 2013 to 2022, enthusiasm for nanomaterials in wound healing research has surged, auguring well for upcoming investigations.
Collapse
Affiliation(s)
- Songxia Xia
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- JST sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xueshan Bai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Li Teng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liya Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Qi W, Zhang R, Wang Z, Du H, Zhao Y, Shi B, Wang Y, Wang X, Wang P. Advances in the Application of Black Phosphorus-Based Composite Biomedical Materials in the Field of Tissue Engineering. Pharmaceuticals (Basel) 2024; 17:242. [PMID: 38399457 PMCID: PMC10892510 DOI: 10.3390/ph17020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.
Collapse
Affiliation(s)
- Wanying Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Ru Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Zaishang Wang
- School of Pharmacy, Guilin Medical University, Guilin 541001, China;
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Yiwu Zhao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Bin Shi
- Shandong Medicinal Biotechnology Center, Jinan 250062, China;
| | - Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| |
Collapse
|
10
|
Abstract
Wound healing occurs as a response to disruption of the epidermis and dermis. It is an intricate and well-orchestrated response with the goal to restore skin integrity and function. However, in hundreds of millions of patients, skin wound healing results in abnormal scarring, including keloid lesions or hypertrophic scarring. Although the underlying mechanisms of hypertrophic scars and keloid lesions are not well defined, evidence suggests that the changes in the extracellular matrix are perpetuated by ongoing inflammation in susceptible individuals, resulting in a fibrotic phenotype. The lesions then become established, with ongoing deposition of excess disordered collagen. Not only can abnormal scarring be debilitating and painful, it can also cause functional impairment and profound changes in appearance, thereby substantially affecting patients' lives. Despite the vast demand on patient health and the medical society, very little progress has been made in the care of patients with abnormal scarring. To improve the outcome of pathological scarring, standardized and innovative approaches are required.
Collapse
Affiliation(s)
- Marc G Jeschke
- Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Fiona M Wood
- Burns Service of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Perth, Western Australia, Australia
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Esther Middelkoop
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands
- Association of Dutch Burn Centers (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Ardeshir Bayat
- Medical Research Council Wound Healing Unit, Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Luc Teot
- Department of Plastic Surgery, Burns, Wound Healing, Montpellier University Hospital, Montpellier, France
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Gerd G Gauglitz
- Department of Dermatology and Allergy, Ludwig-Maximilian University Munich, Munich, Germany
- Haut- und Laserzentrum Glockenbach, Munich, Germany
| |
Collapse
|
11
|
Martin‐Piedra MA, Carmona G, Campos F, Carriel V, Fernández‐González A, Campos A, Cuende N, Garzón I, Gacto P, Alaminos M. Histological assessment of nanostructured fibrin-agarose skin substitutes grafted in burnt patients. A time-course study. Bioeng Transl Med 2023; 8:e10572. [PMID: 38023713 PMCID: PMC10658487 DOI: 10.1002/btm2.10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
A previously developed fibrin-agarose skin model-UGRSKIN-showed promising clinical results in severely burnt patients. To determine the histological parameters associated to the biocompatibility and therapeutic effects of this model, we carried out a comprehensive structural and ultrastructural study of UGRSKIN grafted in severely burnt patients after 3 months of follow-up. The grafted epidermis was analogue to native human skin from day 30th onward, revealing well-structured strata with well-differentiated keratinocytes expressing CK5, CK8, CK10, claudin, plakoglobin, filaggrin, and involucrin in a similar way to controls, suggesting that the epidermis was able to mature and differentiate very early. Melanocytes and Langerhans cells were found from day 30th onward, together with a basement membrane, abundant hemidesmosomes and lack of rete ridges. At the dermal layer, we found an interface between the grafted skin and the host tissue at day 30th, which tended to disappear with time. The grafted superficial dermis showed a progressive increase in properly-oriented collagen fibers, elastic fibers and proteoglycans, including decorin, similarly to control dermis at day 60-90th of in vivo follow-up. Blood vessels determined by CD31 and SMA expression were more abundant in grafted skin than controls, whereas lymphatic vessels were more abundant at day 90th. These results contribute to shed light on the histological parameters associated to biocompatibility and therapeutic effect of the UGRSKIN model grafted in patients and demonstrate that the bioengineered skin grafted in patients is able to mature and differentiate very early at the epithelial level and after 60-90 days at the dermal level.
Collapse
Affiliation(s)
- Miguel Angel Martin‐Piedra
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Gloria Carmona
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
- Doctoral program in BiomedicineUniversity of GranadaGranadaSpain
| | - Fernando Campos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Víctor Carriel
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Ana Fernández‐González
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
- Unidad de Producción Celular e Ingeniería TisularHospital Universitario Virgen de las NievesGranadaSpain
| | - Antonio Campos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Natividad Cuende
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | | | - Miguel Alaminos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| |
Collapse
|
12
|
Sierra-Sánchez Á, Magne B, Savard E, Martel C, Ferland K, Barbier MA, Demers A, Larouche D, Arias-Santiago S, Germain L. In vitro comparison of human plasma-based and self-assembled tissue-engineered skin substitutes: two different manufacturing processes for the treatment of deep and difficult to heal injuries. BURNS & TRAUMA 2023; 11:tkad043. [PMID: 37908563 PMCID: PMC10615253 DOI: 10.1093/burnst/tkad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 11/02/2023]
Abstract
Background The aim of this in vitro study was to compare side-by-side two models of human bilayered tissue-engineered skin substitutes (hbTESSs) designed for the treatment of severely burned patients. These are the scaffold-free self-assembled skin substitute (SASS) and the human plasma-based skin substitute (HPSS). Methods Fibroblasts and keratinocytes from three humans were extracted from skin biopsies (N = 3) and cells from the same donor were used to produce both hbTESS models. For SASS manufacture, keratinocytes were seeded over three self-assembled dermal sheets comprising fibroblasts and the extracellular matrix they produced (n = 12), while for HPSS production, keratinocytes were cultured over hydrogels composed of fibroblasts embedded in either plasma as unique biomaterial (Fibrin), plasma combined with hyaluronic acid (Fibrin-HA) or plasma combined with collagen (Fibrin-Col) (n/biomaterial = 9). The production time was 46-55 days for SASSs and 32-39 days for HPSSs. Substitutes were characterized by histology, mechanical testing, PrestoBlue™-assay, immunofluorescence (Ki67, Keratin (K) 10, K15, K19, Loricrin, type IV collagen) and Western blot (type I and IV collagens). Results The SASSs were more resistant to tensile forces (p-value < 0.01) but less elastic (p-value < 0.001) compared to HPSSs. A higher number of proliferative Ki67+ cells were found in SASSs although their metabolic activity was lower. After epidermal differentiation, no significant difference was observed in the expression of K10, K15, K19 and Loricrin. Overall, the production of type I and type IV collagens and the adhesive strength of the dermal-epidermal junction was higher in SASSs. Conclusions This study demonstrates, for the first time, that both hbTESS models present similar in vitro biological characteristics. However, mechanical properties differ and future in vivo experiments will aim to compare their wound healing potential.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- Unidad de Producción Celular e Ingeniería Tisular (UPCIT), Virgen de las Nieves University Hospital, ibs. GRANADA, Andalusian Network for the design and translation of Advanced Therapies, Av. de las Fuerzas Armadas, Nº2, 4ª Planta Ed. de Gobierno, 18014, Granada, Spain
| | - Brice Magne
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Etienne Savard
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Christian Martel
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Karel Ferland
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Martin A Barbier
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Anabelle Demers
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Danielle Larouche
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular (UPCIT), Virgen de las Nieves University Hospital, ibs. GRANADA, Andalusian Network for the design and translation of Advanced Therapies, Av. de las Fuerzas Armadas, Nº2, 4ª Planta Ed. de Gobierno, 18014, Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Av. Madrid, Nº11–15, 18012, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Av. de la Investigación, Nº11, 18016, Granada, Spain
| | - Lucie Germain
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| |
Collapse
|
13
|
Zielinska D, Fisch P, Moehrlen U, Finkielsztein S, Linder T, Zenobi-Wong M, Biedermann T, Klar AS. Combining bioengineered human skin with bioprinted cartilage for ear reconstruction. SCIENCE ADVANCES 2023; 9:eadh1890. [PMID: 37792948 PMCID: PMC10550230 DOI: 10.1126/sciadv.adh1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Microtia is a congenital disorder that manifests as a malformation of the external ear leading to psychosocial problems in affected children. Here, we present a tissue-engineered treatment approach based on a bioprinted autologous auricular cartilage construct (EarCartilage) combined with a bioengineered human pigmented and prevascularized dermo-epidermal skin substitute (EarSkin) tested in immunocompromised rats. We confirmed that human-engineered blood capillaries of EarSkin connected to the recipient's vasculature within 1 week, enabling rapid blood perfusion and epidermal maturation. Bioengineered EarSkin displayed a stratified epidermis containing mature keratinocytes and melanocytes. The latter resided within the basal layer of the epidermis and efficiently restored the skin color. Further, in vivo tests demonstrated favorable mechanical stability of EarCartilage along with enhanced extracellular matrix deposition. In conclusion, EarCartilage combined with EarSkin represents a novel approach for the treatment of microtia with the potential to circumvent existing limitations and improve the aesthetic outcome of microtia reconstruction.
Collapse
Affiliation(s)
- Dominika Zielinska
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Philipp Fisch
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | | | - Thomas Linder
- Klinik für Hals-, Nasen-, Ohren- und Gesichtschirurgie, Luzerner Kantonsspital, Luzern, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Dhar S, Chrisman T, Simman R. Clinical Indications of Cultured Epithelial Autografts. Ann Plast Surg 2023; 91:433-440. [PMID: 37157145 DOI: 10.1097/sap.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ABSTRACT Cultured epithelial autografts (CEAs) have been used for decades as a treatment for massive burn injuries. Cultured epithelial autografts allow for wounds to heal by taking a small sample and growing a patient's own epithelium in culture to create large, graftable sheets. This technique is especially useful in large wounds where donor sites are limited compared with conventional skin grafting. However, CEAs have a variety of uses in wound healing and reconstruction and have the potential to aid in the closure of several types of defects. Cultured epithelial autografts have shown applicability in large burns, chronic nonhealing wounds, ulcerating wounds of various etiologies, congenital defects, wounds requiring specialized epithelium to replace like by like, and wounds in critically ill patients. Several factors must be considered when using CEAs, such as time, cost, and outcomes. In this article, we detail the various clinical applications of CEAs and how they can be situationally advantageous outside of their original purpose.
Collapse
Affiliation(s)
- Sarit Dhar
- From the Department of Surgery, University of Toledo, College of Medicine and Life Science
| | - Timothy Chrisman
- From the Department of Surgery, University of Toledo, College of Medicine and Life Science
| | | |
Collapse
|
15
|
Gardien KLM, Pijpe A, Brouwer KM, Stoop M, Singh SK, Timmermans FW, Vlig M, van Zuijlen PPM, Middelkoop E. Short- and Long-term Outcomes of an Acellular Dermal Substitute versus Standard of Care in Burns and Reconstructions: A Phase I/II Intrapatient Randomized Controlled Trial. Adv Skin Wound Care 2023; 36:540-548. [PMID: 37729164 PMCID: PMC10545063 DOI: 10.1097/asw.0000000000000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Dermal substitutes promote dermal regeneration and improve scar quality, but knowledge gaps remain regarding their efficacy and indications for use. The authors investigated the safety and short- and long-term efficacy of an acellular dermal substitute in patients with full-thickness wounds. METHODS This intrapatient randomized controlled, open-label, phase I (safety) and phase II (efficacy) study compared treatment with Novomaix (Matricel GmbH), a dermal collagen/elastin-based scaffold, with split-thickness skin graft (STSG) only. The primary safety outcome was graft take at 5 to 7 days postsurgery. Postsurgical scar quality was assessed by measuring elasticity, color, and scores on the Patient and Observer Scar Assessment Scale at 3 months, 12 months, and 6 years. RESULTS Twenty-five patients were included, of which 24 received treatment allocation. Graft take and wound healing were statistically significantly lower/delayed in the dermal matrix group compared with STSG alone (P < .004). Serious adverse events were delayed epithelialization in four dermal matrix and three STSG study areas. At 12 months postsurgery, skin extension (P = .034) and elasticity (P = .036) were better for the dermal matrix group compared with the group receiving STSG alone. Other scar quality parameters at 12 months and 6 years did not differ between treatment arms. CONCLUSIONS The dermal substitute was a safe treatment modality for full-thickness wounds. Compared with STSG alone, time to wound healing was slightly increased. Nevertheless, scar quality at 12 months seemed somewhat improved in the wounds treated with the dermal substitute, indicative of enhanced scar maturation. In the long term, final scar quality was similar for both treatment modalities.
Collapse
Affiliation(s)
- Kim L M Gardien
- Kim L. M. Gardien, MD, is Burn Physician and Anouk Pijpe, PhD, is Epidemiologist and Research Coordinator, Association of Dutch Burn Centres, Beverwijk, the Netherlands; Burn Center, Red Cross Hospital, Beverwijk; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam; and Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC. Katrien M. Brouwer, PhD, is Senior Researcher, Association of Dutch Burn Centres. Matthea Stoop, RN, is Research Nurse, Association of Dutch Burn Centres; Burn Center, Red Cross Hospital, Beverwijk; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam. Simarjeet K. Singh is Research Student, Burn Center, Red Cross Hospital, Beverwijk. Floyd W. Timmermans, MD, PhD, is Clinical Researcher, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam; and AMS Institute, Amsterdam UMC. Marcel Vlig, BAS, is Senior Technician, Association of Dutch Burn Centres. Paul P. M. van Zuijlen, MD, PhD, is Plastic Surgeon and Professor of Burn Care, Burn Center, Red Cross Hospital, Beverwijk; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam; AMS Institute, Amsterdam UMC; and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk. Esther Middelkoop, PhD, is Director of Research and Professor of Wound Healing and Skin Regeneration, Association of Dutch Burn Centres, Beverwijk, the Netherlands; Burn Center, Red Cross Hospital, Beverwijk; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam; and AMS Institute, Amsterdam UMC
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen X, Laurent A, Liao Z, Jaccoud S, Abdel-Sayed P, Flahaut M, Scaletta C, Raffoul W, Applegate LA, Hirt-Burri N. Cutaneous Cell Therapy Manufacturing Timeframe Rationalization: Allogeneic Off-the-Freezer Fibroblasts for Dermo-Epidermal Combined Preparations (DE-FE002-SK2) in Burn Care. Pharmaceutics 2023; 15:2334. [PMID: 37765300 PMCID: PMC10536166 DOI: 10.3390/pharmaceutics15092334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Autologous cell therapy manufacturing timeframes constitute bottlenecks in clinical management pathways of severe burn patients. While effective temporary wound coverings exist for high-TBSA burns, any means to shorten the time-to-treatment with cytotherapeutic skin grafts could provide substantial therapeutic benefits. This study aimed to establish proofs-of-concept for a novel combinational cytotherapeutic construct (autologous/allogeneic DE-FE002-SK2 full dermo-epidermal graft) designed for significant cutaneous cell therapy manufacturing timeframe rationalization. Process development was based on several decades (four for autologous protocols, three for allogeneic protocols) of in-house clinical experience in cutaneous cytotherapies. Clinical grade dermal progenitor fibroblasts (standardized FE002-SK2 cell source) were used as off-the-freezer substrates in novel autologous/allogeneic dermo-epidermal bilayer sheets. Under vitamin C stimulation, FE002-SK2 primary progenitor fibroblasts rapidly produced robust allogeneic dermal templates, allowing patient keratinocyte attachment in co-culture. Notably, FE002-SK2 primary progenitor fibroblasts significantly outperformed patient fibroblasts for collagen deposition. An ex vivo de-epidermalized dermis model was used to demonstrate the efficient DE-FE002-SK2 construct bio-adhesion properties. Importantly, the presented DE-FE002-SK2 manufacturing process decreased clinical lot production timeframes from 6-8 weeks (standard autologous combined cytotherapies) to 2-3 weeks. Overall, these findings bear the potential to significantly optimize burn patient clinical pathways (for rapid wound closure and enhanced tissue healing quality) by combining extensively clinically proven cutaneous cell-based technologies.
Collapse
Affiliation(s)
- Xi Chen
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
| | - Alexis Laurent
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Zhifeng Liao
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
| | - Sandra Jaccoud
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Marjorie Flahaut
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Corinne Scaletta
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Nathalie Hirt-Burri
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (X.C.); (A.L.); (Z.L.); (S.J.); (P.A.-S.); (M.F.); (C.S.); (W.R.)
| |
Collapse
|
17
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
18
|
Abellan Lopez M, Hutter L, Pagin E, Vélier M, Véran J, Giraudo L, Dumoulin C, Arnaud L, Macagno N, Appay R, Daniel L, Guillet B, Balasse L, Caso H, Casanova D, Bertrand B, Dignat F, Hermant L, Riesterer H, Guillemot F, Sabatier F, Magalon J. In vivo efficacy proof of concept of a large-size bioprinted dermo-epidermal substitute for permanent wound coverage. Front Bioeng Biotechnol 2023; 11:1217655. [PMID: 37560537 PMCID: PMC10407941 DOI: 10.3389/fbioe.2023.1217655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction: An autologous split-thickness skin graft (STSG) is a standard treatment for coverage of full-thickness skin defects. However, this technique has two major drawbacks: the use of general anesthesia for skin harvesting and scar sequelae on the donor site. In order to reduce morbidity associated with STSG harvesting, researchers have developed autologous dermo-epidermal substitutes (DESs) using cell culture, tissue engineering, and, more recently, bioprinting approaches. This study assessed the manufacturing reliability and in vivo efficacy of a large-size good manufacturing practice (GMP)-compatible bio-printed human DES, named Poieskin®, for acute wound healing treatment. Methods: Two batches (40 cm2 each) of Poieskin® were produced, and their reliability and homogeneity were assessed using histological scoring. Immunosuppressed mice received either samples of Poieskin® (n = 8) or human STSG (n = 8) immediately after longitudinal acute full-thickness excision of size 1 × 1.5 cm, applied on the skeletal muscle plane. The engraftment rate was assessed through standardized photographs on day 16 of the follow-up. Moreover, wound contraction, superficial vascularization, and local inflammation were evaluated via standardized photographs, laser Doppler imaging, and PET imaging, respectively. Histological analysis was finally performed after euthanasia. Results: Histological scoring reached 75% ± 8% and 73% ± 12%, respectively, displaying a robust and homogeneous construct. Engraftment was comparable for both groups: 91.8% (SD = 0.1152) for the Poieskin® group versus 100% (SD = 0) for the human STSG group. We did not record differences in either graft perfusion, PET imaging, or histological scoring on day 16. Conclusion: Poieskin® presents consistent bioengineering manufacturing characteristics to treat full-thickness cutaneous defects as an alternative to STSG in clinical applications. Manufacturing of Poieskin® is reliable and homogeneous, leading to a clinically satisfying rate of graft take compared to the reference human STSG in a mouse model. These results encourage the use of Poieskin® in phase I clinical trials as its manufacturing procedure is compatible with pharmaceutical guidelines.
Collapse
Affiliation(s)
- Maxime Abellan Lopez
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | | | | | - Mélanie Vélier
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Julie Véran
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Laurent Giraudo
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Chloe Dumoulin
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Laurent Arnaud
- Vascular Biology Department, Hôpital de la Timone, AP-HM, Marseille, France
| | - Nicolas Macagno
- Anatomy and Pathology Department, INSERM U1263, C2VN, Hôpital de la Timone, Marseille, France
| | - Romain Appay
- Anatomy and Pathology Department, INSERM U1263, C2VN, Hôpital de la Timone, Marseille, France
| | - Laurent Daniel
- Anatomy and Pathology Department, INSERM U1263, C2VN, Hôpital de la Timone, Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Laure Balasse
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Hugo Caso
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Dominique Casanova
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Baptiste Bertrand
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Françoise Dignat
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | | | | | | | - Florence Sabatier
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Jérémy Magalon
- Aix-Marseille Université, INSERM, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| |
Collapse
|
19
|
Schiestl C, Zamparelli M, Meuli M, Hartmann-Fritsch F, Cavaliere A, Neuhaus K, Reichmann E, Böttcher-Haberzeth S. Life threatening non-accidental burns, pandemic dependent telemedicine, and successful use of cultured Zurich Skin in a neonate – A case report. BURNS OPEN 2023. [DOI: 10.1016/j.burnso.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
20
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
21
|
Feisst V, Kelch I, Dunn E, Williams E, Meidinger S, Chen CJJ, Girvan R, Zhou L, Sheppard H, Locke M, Dunbar PR. Rapid culture of human keratinocytes in an autologous, feeder-free system with a novel growth medium. Cytotherapy 2023; 25:174-184. [PMID: 36229300 DOI: 10.1016/j.jcyt.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AIMS The ability to culture human keratinocytes is beneficial in the treatment of skin injury and disease, as well as for testing chemicals in vitro as a substitute for animal testing. RESULTS We have identified a novel culture medium for the rapid growth of keratinocytes from human skin. "Kelch's medium" supports keratinocyte growth that is as rapid as in the classical Rheinwald and Green method, but without the need for cholera toxin or xenogeneic feeder cells. It enables keratinocytes to out-compete co-cultured autologous fibroblasts so that separation of the epidermis from the dermis is no longer required before keratinocyte culture. Enzymatic digests of whole human skin can therefore be used to generate parallel cultures of autologous keratinocytes, fibroblasts and melanocytes simply by using different cell culture media. CONCLUSIONS This new keratinocyte medium and the simplified manufacturing procedures it enables are likely to be beneficial in skin engineering, especially for clinical applications.
Collapse
Affiliation(s)
- Vaughan Feisst
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | - Inken Kelch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Elliott Dunn
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Eloise Williams
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah Meidinger
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Rebecca Girvan
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Lisa Zhou
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Hilary Sheppard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle Locke
- Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand; Counties Manukau District Health Board, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Laurent A, Rey M, Scaletta C, Abdel-Sayed P, Michetti M, Flahaut M, Raffoul W, de Buys Roessingh A, Hirt-Burri N, Applegate LA. Retrospectives on Three Decades of Safe Clinical Experience with Allogeneic Dermal Progenitor Fibroblasts: High Versatility in Topical Cytotherapeutic Care. Pharmaceutics 2023; 15:pharmaceutics15010184. [PMID: 36678813 PMCID: PMC9866885 DOI: 10.3390/pharmaceutics15010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate general context, the first aim of this study was to provide a current global overview of approved cell and gene therapy products, with an emphasis on cytotherapies for cutaneous application. Notable advances were shown for North America, Europe, Iran, Japan, and Korea. Then, the second and main aim of this study was to perform a retrospective analysis on the various applications of dermal progenitor fibroblasts and derivatives, as clinically used under the Swiss progenitor cell transplantation program for the past three decades. Therein, the focus was set on the extent and versatility of use of the therapies under consideration, their safety parameters, as well as formulation options for topical application. Quantitative and illustrative data were summarized and reported for over 300 patients treated with various cell-based or cell-derived preparations (e.g., progenitor biological bandages or semi-solid emulsions) in Lausanne since 1992. Overall, this study shows the strong current interest in biological-based approaches to cutaneous regenerative medicine from a global developmental perspective, as well as the consolidated local clinical experience gathered with a specific and safe allogeneic cytotherapeutic approach. Taken together, these current and historical elements may serve as tangible working bases for the further optimization of local and modern translational pathways for the provision of topical cytotherapeutic care.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| | - Marina Rey
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Marjorie Flahaut
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Anthony de Buys Roessingh
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
23
|
Palmieri TL. Emerging Therapies for Full-Thickness Skin Regeneration. J Burn Care Res 2023; 44:S65-S67. [PMID: 36567471 DOI: 10.1093/jbcr/irac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The classical treatment of extensive full-thickness skin loss due to trauma or burns has been the split-thickness skin graft. While split-thickness skin grafts close the wound, they leave patients with visible scars, dry skin, pruritis, pain, pigmentation alterations, and changes in sensation. The optimal replacement for full-thickness skin loss is replacement with intact full-thickness skin. New technologies combined with advances in the understanding of the mechanisms behind wound healing have led to the development of techniques and products that may eventually recapitulate the functions, appearance, and physical properties of normal skin. Autologous homologous skin constructs, minimal functional skin units, and composite bioengineered skin with dermal substitutes all represent potential avenues for full-thickness composite skin development and application in extensive wounds. This article summarizes the progress, state, and future of full-thickness skin regeneration in burn and massive wound patients.
Collapse
Affiliation(s)
- Tina L Palmieri
- Shriners Children's Northern California and University of California Davis, Sacramento, CA, USA
| |
Collapse
|
24
|
Chogan F, Chen Y, Wood F, Jeschke MG. Skin Tissue Engineering Advances in Burns: A Brief Introduction to the Past, the Present, and the Future Potential. J Burn Care Res 2023; 44:S1-S4. [PMID: 36567473 PMCID: PMC10233492 DOI: 10.1093/jbcr/irac127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Burn injuries are a severe form of skin damage with a significant risk of scarring and systemic sequelae. Approximately 11 million individuals worldwide suffer burn injuries annually, with 180,000 people dying due to their injuries. Wound healing is considered the main determinant for the survival of severe burns and remains a challenge. The surgical treatment of burn wounds entails debridement of necrotic tissue, and the wound is covered with autologous skin substitutes taken from healthy donor areas. Autologous skin transplantation is still considered to be the gold standard for wound repair. However, autologous skin grafts are not always possible, especially in cases with extensive burns and limited donor sites. Allografts from human cadaver skin and xenografts from pig skin may be used in these situations to cover the wounds temporarily. Alternatively, dermal analogs are used until permanent coverage with autologous skin grafts or artificial skins can be achieved, requiring staged procedures to prolong the healing times with the associated risks of local and systemic infection. Over the last few decades, the wound healing process through tissue-engineered skin substitutes has significantly enhanced as the advances in intensive care ensuring early survival have led to the need to repair large skin defects. The focus has shifted from survival to the quality of survival, necessitating accelerated wound repair. This special volume of JBCR is dedicated to the discoveries, developments, and applications leading the reader into the past, present, and future perspectives of skin tissue engineering in burn injuries.
Collapse
Affiliation(s)
- Faraz Chogan
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yufei Chen
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Wood
- Department of Burns, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- Department of Burns, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Division of Surgery, University of Western Australia, Crawley, Western Australia, Australia
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Fiona Wood Foundation, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Immunology, Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Kabir A, Sarkar A, Barui A. Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
26
|
Chen L, Huang C, Zhong Y, Chen Y, Zhang H, Zheng Z, Jiang Z, Wei X, Peng Y, Huang L, Niu L, Gao Y, Ma J, Yang L. Multifunctional sponge scaffold loaded with concentrated growth factors for promoting wound healing. iScience 2022; 26:105835. [PMID: 36624841 PMCID: PMC9823238 DOI: 10.1016/j.isci.2022.105835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Although both are applied in regenerative medicine, acellular dermal matrix (ADM) and concentrated growth factor (CGF) have their respective shortcoming: The functioning of CGF is often hindered by sudden release effects, among other problems, and ADM can only be used in outer dressing for wound healing. In this study, a compound network with physical-chemical double cross-linking was constructed using chemical cross-linking and the intertwining of ADM and chitosan chains under freezing conditions; equipped with good biocompatibility and cell/tissue affinity, the heparin-modified composite scaffold was able to significantly promote cell adhesion and proliferation to achieve adequate fixation and slow down the release of CGF; polydopamine nanoparticles having excellent near-infrared light photothermal conversion ability could significantly promote the survival of rat autologous skin grafts. In a word, this multifunctional composite scaffold is a promising new type of implant biomaterial capable of delivering CGF to promote the healing of full-thickness skin defects.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yu Zhong
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yujia Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Libin Niu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| |
Collapse
|
27
|
Treatment of Complex Wounds with NovoSorb ® Biodegradable Temporising Matrix (BTM)-A Retrospective Analysis of Clinical Outcomes. J Pers Med 2022; 12:jpm12122002. [PMID: 36556223 PMCID: PMC9781929 DOI: 10.3390/jpm12122002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Complex and chronic wounds represent a highly prevalent condition worldwide that requires a multimodal and interdisciplinary treatment approach to achieve good functional and aesthetic outcomes. Due to increasing costs of health care, an aging population and an increase in difficult-to-treat microbial colonization of wounds, complex wounds will become a substantial clinical, social and economic challenge in the upcoming years. In plastic reconstructive surgery, a variety of dermal skin substitutes have been established for clinical use. Since its approval as a dermal skin substitute in Germany, NovoSorb® Biodegradable Temporising Matrix (BTM) has become a valuable therapeutic option for the treatment of full-thickness wound defects. The clinical data published to date are limited to case reports and small-scale case series with the main focus on single wounds. The aim of this single-center study was a retrospective analysis of our own patient collective that has received treatment with BTM for complex wounds. Overall, BTM showed to be a reliable and versatile reconstructive option, especially for patients with multiple co-morbidities and microbiologically colonized wounds. Although the preliminary findings have produced promising results, further investigation and research are warranted regarding long-term outcomes and additional clinical applications.
Collapse
|
28
|
Sklenářová R, Akla N, Latorre MJ, Ulrichová J, Franková J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J Funct Biomater 2022; 13:jfb13040249. [PMID: 36412890 PMCID: PMC9680244 DOI: 10.3390/jfb13040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. In particular, fibroblasts that are stimulated often transition into repair fibroblasts or myofibroblasts that synthesize extracellular matrix (ECM) components into the wound area. Control of wound ECM deposition is critical, as a disorganized ECM can block restoration of function. One of the most abundant structural proteins in the mammalian ECM is collagen. Collagen type I is the main component in connective tissues. It can be readily obtained and purified, and short analogs have also been developed for tissue engineering applications, including modulating the wound healing response. This review discusses the effect of several current collagen implants on the stimulation of corneal and skin wound healing. These range from collagen sponges and hydrogels to films and membranes.
Collapse
Affiliation(s)
- Renáta Sklenářová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Naoufal Akla
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
| | - Jana Franková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
29
|
Pelizzo G, Lanfranchi G, Pantaloni M, Camporesi A, Tommasi P, Durante E, Costanzo S, Canonica CMP, Zoia E, Zuccotti G, Ruotolopalmi V, Donzelli C, Tosi GL, Calcaterra V. Epidemiological and Clinical Profile of Pediatric Burns in the COVID-19 Era: The Experience of a Reference Center. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1735. [PMID: 36421184 PMCID: PMC9688935 DOI: 10.3390/children9111735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 02/08/2024]
Abstract
Pediatric burns represent a significant public health problem. We analyzed the characteristics of pediatric burns in a reference center, in order to identify better strategies for prevention and care. Burn patients admitted to the pediatric departments of our hospital from January 2020 to June 2022 were retrospectively evaluated. Age, gender, the etiology of injuries, the total burn surface area (TBSA), the degree of burns, the length of hospital stay (LOS), concomitant SARS-CoV-2 infection, and burn surface microbial colonization were analyzed. Forty-seven patients were included in the analysis (M:F = 1:0.67). Most of the cases involved patients between 0 and 4 years of age (83%). Hot liquid burns accounted for 79% of cases, flame burns for 9%, thermal burns for 6%, scald burns for 4% and chemical burns for 2%. Mean TBSA was 14 ± 11%. A second-degree lesion was detected in 79% of patients and third-degree in 21%. Mean LOS was 17 days. No additional infection risks or major sequelae were reported in patients with SARS-CoV-2 infection. Fifteen different species of bacteria plus C. parapsilosis were isolated, while no anaerobic microorganisms were detected. In the light of our experience, we recommend a carefully planned and proactive management strategy, always multidisciplinary, to ensure the best care for the burned child.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Giulia Lanfranchi
- Pediatric Surgery Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Marcello Pantaloni
- Plastic and Reconstructive Surgery Unit, Fatebenefratelli Sacco Hospital, 20154 Milan, Italy
| | - Anna Camporesi
- Pediatric Intensive Care Unit, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Paola Tommasi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Eleonora Durante
- Pediatric Surgery Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Sara Costanzo
- Pediatric Surgery Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | | | - Elena Zoia
- Pediatric Intensive Care Unit, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Valeria Ruotolopalmi
- Head Nurse Operating Room, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Claudia Donzelli
- Head Nurse Pediatric Surgery Unit, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Giulia Lina Tosi
- Pharmacy Service Manager, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
30
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
31
|
Michalak-Micka K, Rütsche D, Mazzone L, Büchler VL, Moehrlen U, Klar AS, Biedermann T. Human fetal skin derived merkel cells display distinctive characteristics in vitro and in bio-engineered skin substitutes in vivo. Front Bioeng Biotechnol 2022; 10:983870. [PMID: 36185452 PMCID: PMC9520781 DOI: 10.3389/fbioe.2022.983870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human skin contains specialized neuroendocrine Merkel cells responsible for fine touch sensation. In the present study, we performed in-depth analysis of Merkel cells in human fetal back skin. We revealed that these Merkel cells expressed cytokeratin 20 (CK20), were positive for the neuroendocrine markers synaptophysin and chromogranin A, and the mechanosensitive ion channel Piezo2. Further, we demonstrated that Merkel cells were present in freshly isolated human fetal epidermal cells in vitro, and in tissue-engineered human dermo-epidermal skin substitutes 4 weeks after transplantation on immune-compromised rats. Merkel cells retained the expression of CK20, synaptophysin, chromogranin A, and Piezo2 after isolation and in culture, and in the skin substitutes after transplantation. Interestingly, we observed that in fetal skin and in skin substitutes, only Merkel cells were positive for CK8, while in culture, also non-Merkel cells showed positivity for CK8. In summary, human fetal Merkel cells showed phenotypical features confirming their cell identity. This findings are of pivotal importance for the future application of fetal tissue-engineered skin in clinics.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Luca Mazzone
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children’s Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, Zurich, Switzerland
| | - Vanessa L. Büchler
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children’s Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Thomas Biedermann,
| |
Collapse
|
32
|
Gao E, Wang P, Chen F, Xu Y, Wang Q, Chen H, Jiang G, Zhou G, Li D, Liu Y, Duan L. Skin-derived epithelial lining facilitates orthotopic tracheal transplantation by protecting the tracheal cartilage and inhibiting granulation hyperplasia. BIOMATERIALS ADVANCES 2022; 139:213037. [PMID: 35882125 DOI: 10.1016/j.bioadv.2022.213037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/28/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Long-segment tracheal defects caused by tumours, inflammation or trauma can cause serious damage to the quality of life of patients. Although many novel neotracheas have been constructed, the therapeutic effect of orthotopic transplantation was compromised mainly because of the lack of an epithelial lining in those neotracheas. In this study, we aimed to investigate the therapeutic function of skin-derived epithelial lining for orthotopic tracheal transplantation. Strips of auricular cartilage with fixed interval were interrupted sutured on a silicone tube to mimic the cartilage rings of the native trachea. Neotrachea in the with epithelium group retained the unilateral skin as the epithelial lining in the lumen, whereas the neotrachea in the without epithelium group consisted solely of cartilage strips. After revascularized in the sternohyoid muscle, 2-cm-long tracheal defects were made and were reconstructed using these neotracheas. Our results showed that the skin-derived epithelial lining simultaneously protected the engineered tracheal cartilage and inhibited granulation hyperplasia in the tracheal lumen; further, compared with the without epithelium group, the group with epithelium showed a marked improvement in the tracheal lumen patency and the survival rate of rabbits. Our study provides a critical cue for improvements in the repair of tracheal defects via skin-derived epithelial lining and may significantly advance the clinical translation of tissue-engineered trachea.
Collapse
Affiliation(s)
- Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feifan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyi Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| | - Hong Chen
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China.
| | - Dan Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
33
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Fibroblasts in Scar Formation: Biology and Clinical Translation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4586569. [PMID: 35602101 PMCID: PMC9119755 DOI: 10.1155/2022/4586569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Scarring, which develops due to fibroblast activation and excessive extracellular matrix deposition, can cause physical, psychological, and cosmetic problems. Fibroblasts are the main type of connective tissue cells and play important roles in wound healing. However, the underlying mechanisms of fibroblast in reaching scarless wound healing require more exploration. Herein, we systematically reviewed how fibroblasts behave in response to skin injuries, as well as their functions in regeneration and scar formation. Several biocompatible materials, including hydrogels and nanoparticles, were also suggested. Moreover, factors that concern transformation from fibroblasts into cancer-associated fibroblasts are mentioned due to a tight association between scar formation and primary skin cancers. These findings will help us better understand skin fibrotic pathogenesis, as well as provide potential targets for scarless wound healing therapies.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affifiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China
| |
Collapse
|
34
|
Scientific and Clinical Abstracts From WOCNext® 2022: Fort Worth, Texas ♦ June 5-8, 2022. J Wound Ostomy Continence Nurs 2022; 49:S1-S99. [PMID: 35639023 DOI: 10.1097/won.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Pontiggia L, Van Hengel IAJ, Klar A, Rütsche D, Nanni M, Scheidegger A, Figi S, Reichmann E, Moehrlen U, Biedermann T. Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J Tissue Eng 2022; 13:20417314221088513. [PMID: 35495096 PMCID: PMC9044789 DOI: 10.1177/20417314221088513] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Extensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization. The first has important physiological and psychological implications for the patient, the second impacts survival and quality of the graft. Additionally, accurate reproduction of large amounts of patient’s skin in an automated way is essential for upscaling DESS production. Therefore, in the present study, we implemented a new robotic unit (called SkinFactory) for 3D bioprinting of pigmented and pre-vascularized DESS using normal human skin derived fibroblasts, blood- and lymphatic endothelial cells, keratinocytes, and melanocytes. We show the feasibility of our approach by demonstrating the viability of all the cells after printing in vitro, the integrity of the reconstituted capillary network in vivo after transplantation to immunodeficient rats and the anastomosis to the vascular plexus of the host. Our work has to be considered as a proof of concept in view of the implementation of an extended platform, which fully automatize the process of skin substitution: this would be a considerable improvement of the treatment of burn victims and patients with severe skin lesions based on patients own skin derived cells.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ingmar AJ Van Hengel
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Agnes Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
37
|
Laurent A, Abdel-Sayed P, Scaletta C, Laurent P, Laurent E, Michetti M, de Buys Roessingh A, Raffoul W, Hirt-Burri N, Applegate LA. Back to the Cradle of Cytotherapy: Integrating a Century of Clinical Research and Biotechnology-Based Manufacturing for Modern Tissue-Specific Cellular Treatments in Switzerland. Bioengineering (Basel) 2021; 8:bioengineering8120221. [PMID: 34940374 PMCID: PMC8698568 DOI: 10.3390/bioengineering8120221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Empirically studied by Dr. Brown-Séquard in the late 1800s, cytotherapies were later democratized by Dr. Niehans during the twentieth century in Western Switzerland. Many local cultural landmarks around the Léman Riviera are reminiscent of the inception of such cell-based treatments. Despite the discreet extravagance of the remaining heirs of "living cell therapy" and specific enforcements by Swiss health authorities, current interest in modern and scientifically sound cell-based regenerative medicine has never been stronger. Respective progress made in bioengineering and in biotechnology have enabled the clinical implementation of modern cell-based therapeutic treatments within updated medical and regulatory frameworks. Notably, the Swiss progenitor cell transplantation program has enabled the gathering of two decades of clinical experience in Lausanne for the therapeutic management of cutaneous and musculoskeletal affections, using homologous allogeneic cell-based approaches. While striking conceptual similarities exist between the respective works of the fathers of cytotherapy and of modern highly specialized clinicians, major and important iterative updates have been implemented, centered on product quality and risk-analysis-based patient safety insurance. This perspective article highlights some historical similarities and major evolutive differences, particularly regarding product safety and quality issues, characterizing the use of cell-based therapies in Switzerland over the past century. We outline the vast therapeutic potential to be harnessed for the benefit of overall patient health and the importance of specific scientific methodological aspects.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Applied Research Department, LAM Biotechnologies SA, 1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, 1038 Bercher, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
| | - Philippe Laurent
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Private Practice, Pharmacie du Gros-de-Vaud SA, 1038 Bercher, Switzerland;
| | - Elénie Laurent
- Private Practice, Pharmacie du Gros-de-Vaud SA, 1038 Bercher, Switzerland;
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Wassim Raffoul
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
38
|
Sun H, Zhang YX, Li YM. Generation of Skin Organoids: Potential Opportunities and Challenges. Front Cell Dev Biol 2021; 9:709824. [PMID: 34805138 PMCID: PMC8600117 DOI: 10.3389/fcell.2021.709824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although several types of human skin substitutes are currently available, they usually do not include important skin appendages such as hair follicles and sweat glands, or various skin-related cells, such as dermal adipocytes and sensory neurons. This highlights the need to improve the in vitro human skin generation model for use as a tool for investigating skin diseases and as a source of cells or tissues for skin regeneration. Skin organoids are generated from stem cells and are expected to possess the complexity and function of natural skin. Here, we summarize the current literatures relating to the "niches" of the local skin stem cell microenvironment and the formation of skin organoids, and then discuss the opportunities and challenges associated with multifunctional skin organoids.
Collapse
Affiliation(s)
- Hui Sun
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi-Xuan Zhang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Li J, Fu S, Lu KW, Christie O, Gozelski MT, Cottone MC, Cottone P, Kianian S, Feng KC, Simon M, Rafailovich M, Dagum AB, Singh G. Engineering functional skin constructs: A quantitative comparison of three-dimensional bioprinting with traditional methods. Exp Dermatol 2021; 31:516-527. [PMID: 34727395 DOI: 10.1111/exd.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Tissue engineering has been successful in reproducing human skin equivalents while incorporating new approaches such as three-dimensional (3D) bioprinting. The latter method offers a plethora of advantages including increased production scale, ability to incorporate multiple cell types and printing on demand. However, the quality of printed skin equivalents compared to those developed manually has never been assessed. To leverage the benefits of this method, it is imperative that 3D-printed skin should be structurally and functionally similar to real human skin. Here, we developed four bilayered human skin epidermal-dermal equivalents: non-printed dermis and epidermis (NN), printed dermis and epidermis (PP), printed epidermis and non-printed dermis (PN), and non-printed epidermis and printed dermis (NP). The effects of printing induced shear stress [0.025 kPa (epidermis); 0.049 kPa (dermis)] were characterized both at the cellular and at the tissue level. At cellular level, no statistically significant differences in keratinocyte colony-forming efficiency (CFE) (p = 0.1641) were observed. In the case of fibroblasts, no significant differences in the cell alignment index (p < 0.1717) and their ability to contract collagen gel (p = 0.851) were detected. At the tissue levels, all the four skin equivalents were characterized using histological and immunohistochemical analysis with no significant differences found in either epidermal basal cell count, thickness of viable epidermis, and relative intensity of filaggrin and claudin-1. Our results demonstrated that 3D printing can achieve the same high-quality skin constructs as have been developed traditionally, thus opening new avenues for numerous high-throughput industrial and clinical applications.
Collapse
Affiliation(s)
- Juyi Li
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Shi Fu
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Kimberly W Lu
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Olias Christie
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Michael T Gozelski
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Michael C Cottone
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Philip Cottone
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Sara Kianian
- Department of Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Kuan-Che Feng
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Marcia Simon
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering Stony Brook, Stony Brook University, New York, USA
| | - Alexander B Dagum
- Department of Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Gurtej Singh
- Department of Surgery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
40
|
Marino D, Ronfard V. The future of bioengineering personalised skin on demand for large skin defects. J Wound Care 2021; 30:878-879. [PMID: 34747214 DOI: 10.12968/jowc.2021.30.11.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Aleemardani M, Trikić MZ, Green NH, Claeyssens F. The Importance of Mimicking Dermal-Epidermal Junction for Skin Tissue Engineering: A Review. Bioengineering (Basel) 2021; 8:bioengineering8110148. [PMID: 34821714 PMCID: PMC8614934 DOI: 10.3390/bioengineering8110148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
There is a distinct boundary between the dermis and epidermis in the human skin called the basement membrane, a dense collagen network that creates undulations of the dermal-epidermal junction (DEJ). The DEJ plays multiple roles in skin homeostasis and function, namely, enhancing the adhesion and physical interlock of the layers, creating niches for epidermal stem cells, regulating the cellular microenvironment, and providing a physical boundary layer between fibroblasts and keratinocytes. However, the primary role of the DEJ has been determined as skin integrity; there are still aspects of it that are poorly investigated. Tissue engineering (TE) has evolved promising skin regeneration strategies and already developed TE scaffolds for clinical use. However, the currently available skin TE equivalents neglect to replicate the DEJ anatomical structures. The emergent ability to produce increasingly complex scaffolds for skin TE will enable the development of closer physical and physiological mimics to natural skin; it also allows researchers to study the DEJ effect on cell function. Few studies have created patterned substrates that could mimic the human DEJ to explore their significance. Here, we first review the DEJ roles and then critically discuss the TE strategies to create the DEJ undulating structure and their effects. New approaches in this field could be instrumental for improving bioengineered skin substitutes, creating 3D engineered skin, identifying pathological mechanisms, and producing and screening drugs.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
| | - Michael Zivojin Trikić
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
| | - Nicola Helen Green
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
- Correspondence:
| |
Collapse
|
42
|
Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Acta Biomater 2021; 134:215-227. [PMID: 34303011 DOI: 10.1016/j.actbio.2021.07.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Severe injuries to skin including hypodermis require full-thickness skin replacement. Here, we bioengineered a tri-layered human skin substitute (TLSS) containing the epidermis, dermis, and hypodermis. The hypodermal layer was generated by differentiation of human adipose stem cells (ASC) in a collagen type I hydrogel and combined with a prevascularized dermis consisting of human dermal microvascular endothelial cells and fibroblasts, which arranged into a dense vascular network. Subsequently, keratinocytes were seeded on top to generate the epidermal layer of the TLSS. The differentiation of ASC into adipocytes was confirmed in vitro on the mRNA level by the presence of adiponectin, as well as by the expression of perilipin and FABP-4 proteins. Moreover, functional characteristics of the hypodermis in vitro and in vivo were evaluated by Oil Red O, BODIPY, and AdipoRed stainings visualizing intracellular lipid droplets. Further, we demonstrated that both undifferentiated ASC and mature adipocytes present in the hypodermis influenced the keratinocyte maturation and homeostasis in the skin substitutes after transplantation. In particular, an enhanced secretion of TGF-β1 by these cells affected the epidermal morphogenesis as assessed by the expression of key proteins involved in the epidermal differentiation including cytokeratin 1, 10, 19 and cornified envelope formation such as involucrin. Here, we propose a novel functional hypodermal-dermo-epidermal tri-layered skin substitute containing blood capillaries that efficiently promote regeneration of skin defects. STATEMENT OF SIGNIFICANCE: The main objective of this study was to develop and assess the usefulness of a tri-layered human prevascularized skin substitute (TLSS) containing an epidermis, dermis, and hypodermis. The bioengineered hypodermis was generated from human adipose mesenchymal stem cells (ASC) and combined with a prevascularized dermis and epidermis. The TLSS represents an exceptional model for studying the role of cell-cell and cell-matrix interactions in vitro and in vivo. In particular, we observed that enhanced secretion of TGF-β1 in the hypodermis exerted a profound impact on fibroblast and keratinocyte differentiation, as well as epidermal barrier formation and homeostasis. Therefore, improved understanding of the cell-cell interactions in such a physiological skin model is essential to gain insights into different aspects of wound healing.
Collapse
|
43
|
Moiemen N, Schiestl C, Hartmann-Fritsch F, Neuhaus K, Reichmann E, Löw A, Stenger C, Böttcher-Haberzeth S, Meuli M. First time compassionate use of laboratory engineered autologous Zurich skin in a massively burned child. BURNS OPEN 2021. [DOI: 10.1016/j.burnso.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Schiestl C, Meuli M, Vojvodic M, Pontiggia L, Neuhaus D, Brotschi B, Reichmann E, Böttcher-Haberzeth S, Neuhaus K. Expanding into the future: Combining a novel dermal template with distinct variants of autologous cultured skin substitutes in massive burns. BURNS OPEN 2021. [DOI: 10.1016/j.burnso.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
46
|
Wahlsten A, Rütsche D, Nanni M, Giampietro C, Biedermann T, Reichmann E, Mazza E. Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials 2021; 273:120779. [PMID: 33932701 DOI: 10.1016/j.biomaterials.2021.120779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/28/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
The clinical treatment of large, full-thickness skin injuries with tissue-engineered autologous dermo-epidermal skin substitutes is an emerging alternative to split-thickness skin grafting. However, their production requires about one month of in vitro cell and tissue culture, which is a significant drawback for the treatment of patients with severe skin defects. With the aim to reduce the production time, we developed a new dynamic bioreactor setup that applies cyclic biaxial tension to collagen hydrogels for skin tissue engineering. By reliably controlling the time history of mechanical loading, the dynamic culturing results in a three-fold increase in collagen hydrogel stiffness and stimulates the embedded fibroblasts to enter the cell cycle. As a result, the number of fibroblasts is increased by 75% compared to under corresponding static culturing. Enhanced fibroblast proliferation promotes expression of dermal extracellular matrix proteins, keratinocyte proliferation, and the early establishment of the epidermis. The time required for early tissue maturation can therefore be reduced by one week. Analysis of the separate effects of cyclic loading, matrix stiffening, and interstitial fluid flow indicates that cyclic deformation is the dominant biophysical factor determining fibroblast proliferation, while tissue stiffening plays a lesser role. Local differences in the direction of deformation (in-plane equibiaxial vs. uniaxial strain) influence fibroblast orientation but not proliferation, nor the resulting tissue properties. Importantly, dynamic culturing does not activate fibroblast differentiation into myofibroblasts. The present work demonstrates that control of mechanobiological cues can be very effective in driving cell response toward a shorter production time for human skin substitutes.
Collapse
Affiliation(s)
- Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Monica Nanni
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland.
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| |
Collapse
|
47
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Schlottmann F, Bucan V, Vogt PM, Krezdorn N. A Short History of Skin Grafting in Burns: From the Gold Standard of Autologous Skin Grafting to the Possibilities of Allogeneic Skin Grafting with Immunomodulatory Approaches. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:225. [PMID: 33801228 PMCID: PMC7998351 DOI: 10.3390/medicina57030225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Due to groundbreaking and pioneering developments in the last century, significant improvements in the care of burn patients have been achieved. In addition to the still valid therapeutic standard of autologous split-thickness skin grafting, various commercially available skin substitutes are currently available. Significant progress in the field of tissue engineering has led to the development of promising therapeutic approaches. However, scientific advances in the field of allografting and transplant immunology are of great importance. The achievement of various milestones over the past decades has provided thought-provoking impulses in the field of skin allotransplantation. Thus, biologically viable skin allotransplantation is still not a part of the clinical routine. The purpose of this article is to review the achievements in burn surgery with regards to skin allotransplantation in recent years.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand- and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (V.B.); (P.M.V.); (N.K.)
| | | | | | | |
Collapse
|
49
|
Abstract
As the largest organ in the human body, the skin has the function of maintaining balance and protecting from external factors such as bacteria, chemicals, and temperature. If the wound does not heal in time after skin damage, it may cause infection or life-threatening complications. In particular, medical treatment of large skin defects caused by burns or trauma remains challenging. Therefore, human bioengineered skin substitutes represent an alternative approach to treat such injuries. Based on the chemical composition and scaffold material, skin substitutes can be classified into acellular or cellular grafts, as well as natural-based or synthetic skin substitutes. Further, they can be categorized as epidermal, dermal, and composite grafts, based on the skin component they contain. This review presents the common commercially available skin substitutes and their clinical use. Moreover, the choice of an appropriate hydrogel type to prepare cell-laden skin substitutes is discussed. Additionally, we present recent advances in the field of bioengineered human skin substitutes using three-dimensional (3D) bioprinting techniques. Finally, we discuss different skin substitute developments to meet different criteria for optimal wound healing.
Collapse
|
50
|
Sekar MP, Budharaju H, Zennifer A, Sethuraman S, Vermeulen N, Sundaramurthi D, Kalaskar DM. Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. J Tissue Eng 2021; 12:20417314211027677. [PMID: 34377431 PMCID: PMC8330463 DOI: 10.1177/20417314211027677] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023] Open
Abstract
Tissue engineering is an evolving multi-disciplinary field with cutting-edge technologies and innovative scientific perceptions that promise functional regeneration of damaged tissues/organs. Tissue engineered medical products (TEMPs) are biomaterial-cell products or a cell-drug combination which is injected, implanted or topically applied in the course of a therapeutic or diagnostic procedure. Current tissue engineering strategies aim at 3D printing/bioprinting that uses cells and polymers to construct living tissues/organs in a layer-by-layer fashion with high 3D precision. However, unlike conventional drugs or therapeutics, TEMPs and 3D bioprinted tissues are novel therapeutics and need different regulatory protocols for clinical trials and commercialization processes. Therefore, it is essential to understand the complexity of raw materials, cellular components, and manufacturing procedures to establish standards that can help to translate these products from bench to bedside. These complexities are reflected in the regulations and standards that are globally in practice to prevent any compromise or undue risks to patients. This review comprehensively describes the current legislations, standards for TEMPs with a special emphasis on 3D bioprinted tissues. Based on these overviews, challenges in the clinical translation of TEMPs & 3D bioprinted tissues/organs along with their ethical concerns and future perspectives are discussed.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Niki Vermeulen
- Department of Science, Technology and Innovation Studies, School of Social and Political Science, University of Edinburgh, High School Yards, Edinburgh, UK
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | |
Collapse
|